复合冷作模具钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过轧制可以有效细化高碳高合金钢的碳化物,提高韧性,从而提高工模具的使用寿命。但经大轧制比轧制后钢板的厚度有限,难以满足大尺寸工模具钢的要求。因此通过将性能优异的高碳高合金钢板与低成本、高强韧性的中高碳合金钢焊接成复合工模具钢,既可以发挥高碳高合金钢的性能优势,又能降低成本,对生产实际应用具有重要意义,特别是对大尺寸的冷作模具。
     针对目前广泛使用的Cr12MoV和高速钢碳化物偏析严重、韧性差的缺点,首先研制了一种适合于制造复合冷作模具的高碳高合金钢。在Cr12MoV基础上通过降低C和Cr含量、增加Mo和V含量研制了一种新的高强韧冷作模具钢Crl0Mo1V1。该钢的淬火温度范围较宽(1000℃~1100℃);在热处理时可采用低淬低回工艺也可采用高淬高回工艺。经常规热处理后,Cr10M01V1的抗弯强度、冲击韧性、耐磨性等各项力学性能均高于Cr12MoV。新型冷作模具钢Cr10M01V1所制模具的使用寿命是Cr12MoV制模具的五倍以上。
     对冲头在冲裁过程中的应力分布及变化情况的有限元分析表明,复合模具钢与整体模具钢的应力分布基本相同,因此可以根据被冲材料的材质和厚度判断冲头上应力的分布,确定复合冲头刃口部分厚度以及基材的选材原则。
     研究了5CrMnMo、42CrMo和60Si2Mn三种中碳结构钢作为复合模具钢基材的可行性。针对复合模具钢需要按照模具钢热处理的要求,研究了其热处理后的组织与性能。结果表明,高温淬火可以显著减少钢中韧性差的片状马氏体,全部得到位错型板条马氏体组织,故虽然奥氏体晶粒粗化,但塑性、韧性与强度均无太大变化。高温淬火后如采用低温回火,硬度在60HRC左右,如采用550。C的高温回火,所选的三种中碳合金结构钢的硬度也可达到40HRC。根据应力分析结果,均能满足复合冷作模具钢基体材料的不同需要。
     对高压力下的真空扩散焊技术及其机理进行了研究,结果表明,焊接质量主要决定于变形率,不论焊接温度T、焊接压力P和保温时间t如何变化,只要变形率达到一定的数值就可以获得相同的焊接效果。根据上述结果,高压力下真空扩散焊工艺参数可以通过下列步骤确定:首先,根据设备条件确定压力P;然后,根据P及工件截面S计算压应力σ,根据σ确定RP,要求RP<σ,其次,根据RP确定焊接温度T;最后,保温时间t根据要求的变形率来确定。另外,焊后应进行一次退火以消除焊缝上的平直晶界,使焊缝强度得到进一步提高。对于异种材料的焊接,焊接压力P应根据强度较低的材料的屈服强度来确定。实物试验表明,用M2和5CrMnMo制成的复合冷作模具钢搓丝板寿命比Cr12MoV搓丝板寿命提高了一倍以上。
The ductility of high-carbon high-alloy steels can be improved via refining the carbides by high-ratio rolling, and the service life of the mold fabricated by this type of steels could be prolonged consequently. However, high-ratio rolling leads to thickness limitation of the as-rolled sheet, which is hard to meet the requirement of large size dies. If weld the as-rolled sheet to medium-carbon alloy steel which is relatively inexpensive but possesses good ductility to prepare composite die steels, not only combines the strength and ductility of different materials and prolongs the service life of the die, but also lowers the cost. It is of great significance to the practical application especially to the large size cold work die steels.
     In order to overcome the disadvantages of serious carbide segregation and poor toughness of Cr12MoV and high speed steel that widely used in industry, a new type high-carbon high-alloy steel that is suitable to prepare composite cold work die steel was developed by reducing the content of C and Cr and increasing the content of Mo and V based on the composition of Cr12MoV, named after Cr10Mo1V1.
     The range of quenching temperature of this steel is wide (1000℃-1100℃). The hardness of Cr10Mo1V1 can reach to 63.5HRC after quenching at 1050℃and tempering at 150℃or 61.5HRC after quenching at 1150℃and tempering at 550℃. The mechanical properties of Cr10Mo1V1 such as the bending strength, the toughness and the abrasive resistance etc. are all better than Cr12MoV after conventional heat treatment. The working life of the mold die made of the newly developed cold work die steel Cr10Mo1V1 is more than five times longer than that of Cr12MoV.
     The finite element analysis of the stress distribution and it's variation of the puncher head during punching shows that the stress distributions of both the composition die steel and conventional die steel are the same. Therefore, the thickness of the edge and the type of base materials of a composite punching head can be determined by the evaluation of the stress distribution of the punching head according to the type and thickness of the materials being blanked.
     Considering that the heat treatment of composite die steel should be in accordance with the normal die steel, the feasibility of three kinds of mild carbon structural steel 5CrMnMo, 42CrMo and 60Si2Mn as base materials of composite die steel was studied mainly on the microstructure and mechanical property after heat treatment. The results show that though high temperature quenching results in the coarsen of austenite, plasticity, toughness and strength do not change too much because the plate martensite with poor toughness is eliminated notably, instead, lath martensite is obtained. After quenching at the high temperature followed low temperature tempering, the hardness is about 60HRC. in case the followed tempering temperature is 550℃,the hardness is 40HRC. The selected three medium carbon structural steels all can meet the different requirement of base materials of composite die steel according to stress analysis
     The technique as well as the mechanism of vacuum diffusion welding using relatively higher pressure is studied, the results show that the welding quality is determined mainly by the deformation rate during the process. No matter how the temperature, pressure and the holding time change, same welding quality will be obtained as long as certain deformation rate is achieved to same extent.
     According to the above mentioned results, the parameters of vacuum diffusion welding using relatively higher pressure can be determined through procedures listed below:the pressure (P) is determined to ensureσ>RP under certain temperature while taking the conditions of equipment, the relationship between materials yield strength (RP) and temperature and the welding cross sectional area(S) into account.The holding time was determined based on the deformation rate and the microstructure requirements. Post welding annealing helps to eliminate the straight welding interface so that the welding quality can be improved further, meanwhile shortens the holding time. In case of dissimilar metals, the pressure (P) should be determined based on the yield strength of the material whose strength is lower. The working life of the screw plate made of composite die steel M2/5CrMnMo is more than two times longer than that made of Cr12MoV.
引文
[1]杜光华.模具钢的发展现状[J].特殊钢,1995,(1):9-14.
    [2]丁洁等.国内外模具钢的生产现状及发展[J].山西冶金,2006,(2):7-10.
    [3]陈再枝,马党参.国内外模具钢产品的进展[J].特殊钢,2006,(5):37-39.
    [4]陈再枝,马党参.我国模具钢的发展战略分析[J].钢铁,2006,(4):5-9.
    [5]闵跃霞.大力发展模具钢材料[J].现代金属加工, 2005,(3):15.·
    [6]从上半年数据透视中国模具进出口现状[EB].http://www.SJZP.com,2006.11.24
    [7]截至08年中国模具带动相关产业产值高达7-12万亿元[EB].http://news.plasticmould.net,2008.4.15
    [8]包斯文.下半年国内模具钢市场将无大波澜[N].中国冶金报,2007.8.14.
    [9]07年中国模具进出口情况统计分析[EB].http://www.molds.cn,2008.3.24
    [10]中国模具工业协会.模具行业“十一五”规划[J].中国模具信息,2005,58(7):5-12.
    [11]肖英龙.日本模具钢开发应用动向[N].世界金属导报,2006.7.18.
    [12]戚正风.扩散焊制造无碳化物偏析高合金莱氏体钢的方法[P].中国:ZL200410006547.9,2007.11.14.
    [13]周广德.电子束焊接技术的特点与应用[J].电工电能新技术,1994(4):25-30.
    [14]符寒光.复合硬质合金辊环的研究进展[J].稀有金属与硬质合金,1998,134(9):37-41.
    [15]张凤林,周玉梅,王成勇.钎焊法制造单层金刚石取孔钻及其界面微观结构[J].焊接学报,2007,28(3):21-24.
    [16]方小红,潘秉锁,张丽.电镀金刚石复合齿锯片的研究[J].金刚石与磨料磨具工程.2003,137(5):40-42.
    [17]沈春蔷,丘定辉,黄炳南.金属基金刚石工具的研究[J].湖南冶金,1994,2:12-14
    [18]汪一麟.实用摩擦学[M].上海:上海科学技术出版社,1984.
    [19]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998.
    [20]邹僖.钎焊[M].北京:机械工业出版社,1989:30-35.
    [21]刘喜旺.高速钢的气体火焰钎焊[J].焊接,1981(5):3-6.
    [22]Trenker A. High-vacuum brazing of diamond tools[J]. Industrial Diamond Review,2002 (1):49-51.
    [23]卢金斌,徐九华,徐鸿钧,等.Ni2Cr合金真空钎焊金刚石界面微结构分析[J].机械科学与技术,2004,7(23):832-833.
    [24]马楚凡,王忠义,南俊马,等.一种单层高温钎焊金刚石砂轮的研制[J].金刚石与磨料磨具工程,2002,128(2):34-35.
    [25]孙凤莲,冯吉才,刘会杰,等.Ag2Cu2Ti钎料中Ti元素在金刚石界面的特征[J].中国有色金属学报,2001,11(1):103-106.
    [26]Fenglian Sun, Jicai Feng, Dan Li. Bonding of CVD diamond thick films using an Ag-Cu-Ti brazing alloy[J]. Material Processing Technology,2001115(3):333-337.
    [27]Lee W B, Kwon B D, Jung S B. Effect of bonding time on joint properties of vacuum brazed WC-Co hard metal/carbon steel using stacked Cu and Ni alloy as insert metal[J]. Mater Sci-Technol,2004,20 (2): 1474.1478.
    [28]Won-Bae Lee, Byoung-Dae Kwon, Seung-Boo Jung, et al. Effects of Cr3C2 on the microstructure and mechanical properties of the brazed joints between WC-Co and carbon steel[J]. International Journal of Refractory Metals & Hard Materials,2006,24 (3):215-221.
    [29]Yi S W, Lee W J. Effects of the concentration of other carbides on the properties of submicron WC210Co cemented carbides[J]. J Korean Powder Metall Inst,1996,22 (3):86-90.
    [30]Zhang J X, Chandel R S, Seow H P. Effects of chromium on the interface and bond strength of metal2ceramic joints[J].Mater Chem Phys,2002,75 (6):256-259.
    [31]Nowacki J, Kawiak M. Deformability of WC/Co sinters and 1724 PH steel brazed joints[J]. Journal of Materials Processing Technology,2004,157 (7):584-589.
    [32]Ohmura H, Kawashiri K. Cemented tungsten carbide/carbon steel joint brazed with copper [J]. Q. J. Jpn. Weld. Soc.1988,6 (4):47-52.
    [33]Nakamuram M, Itohe K. Brazing characteristics between cemented carbides and steel used by Ag-In brazing filler[A]. Intelligent Technology in Welding and Joining for the 21st Century Proceedings[C]. International Welding Conference, Gyeongju, Korea,2002 (10):28-30.
    [34]Miyakoshi Y, Takazawa K, Tagashira K, et al. Microstructure and strength of interface in joint of WC-40mass%Co alloy/carbon steel[J]. Journal of the Japan Society of Powder and Powder Metallurgy (Japan),1997,44 (10):958-960.
    [35]肖 冰,徐鸿钧,武志斌.钎焊单层金刚石砂轮关键问题的研究[J].中国机械工程,2002,13(13):1147-1149.
    [36]马伯江,徐鸿钧,傅玉灿,等.高频感应钎焊金刚石界面特征[J].焊接学报,2005,26(3)50-54.
    [37]马伯江,徐鸿钧,傅玉灿,等.两种钎焊金刚石工具微观结构的对比分析[J].机械工程材料,2005,29(7):10-13.
    [38]黄辉,朱火明,徐西鹏.空气中钎焊金刚石磨粒[J].焊接,2004(1):34-36.
    [39]黄辉,张国青,徐西鹏.钎焊金刚石磨粒磨损性能研究[J].福州大学学报(自然科学版)2005,33(3):313-317.
    [40]姚正军,徐鸿钧,肖 冰,等.Ni2Cr合金Ar气保护炉中钎焊金刚石砂轮的研究[J].中国机械工程,2001,12(8):956-958.
    [41]Chattopadhyay A K. Experimental investigation on induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere[J]. Journal of Materials Science,1994,20(5):93-100.
    [42]毛信孚,刘小文,王玉,等.碳素结构钢与高速工具钢摩擦焊与闪光焊接头的组织和性能[J].材料工程,2006(12):28-31.
    [43]刘小文,毛信孚,杜随更.刀具摩擦焊与闪光焊接头组织性能对比分析[J].焊接技术,2001,30(6):95-98.
    [44]杨思乾,蔡伟,赵亚光.高速钢刀具闪光对焊存在的问题及对焊接质量的影响[J].工具技术,1992,26(9):17-19.
    [45]董祖珏,黄庆云,高峰,等.国内外堆焊发展现状[A].中国机械工程学会焊接学会.第八次全国焊接会议论文集(第一册)[C].北京:机械工业出版社,1997:157-164.
    [46]沈利群.高速钢新技术研究现状[J].铸锻热:热处理实践,1997(3):1-5.
    [47]完卫国.用手工电弧堆焊制造及修复工具[J].工具技术,2000,34(3):29-32.
    [48]杨晋萍,孟勤.国内外激光焊接现状[J].焊接枝术,1991,20(5):42-43.
    [49]田乃良,杨保和,杨永强.L135硬质合金与高速钢的激光熔焊[J].焊接学报,1996,17(2)81-87.
    [50]刘中青,刘 凯.异种金属焊接技术指南[M].北京:机械工业出版社,1997.
    [51]黄 倬,张丽英,田海舸,等.喷射成形焊接高速钢与不锈钢[J].粉末冶金技术,1998,16(3):202-205.
    [52]武晓峰,孟力凯,王利卿,等.电渣熔铸模具钢/低合金钢双金属平板件组织与性能的研究[J].铸造技术,2005,26(3):217-219.
    [53]许春伟,李 炎,魏世忠,等.高钒高速钢/35CrMo复合轧辊界面组织和性能研究[J].铸造技术,2007,28(3):319-322.
    [54]冯培忠,强颖怀.离心铸造WC颗粒增强钢基复合材料辊环的研制[J].轧钢,2004,21(4):14-16.
    [55]刘玉兰.摩擦焊接在轴承制造上的应用[J].新技术新工艺,1998(2):25-26.
    [56]Horn H, Ind-Anz. Friction welding of tool steelwith cemented tungsten carbide alternative to soldering [J]. IFAM,1989,111(6):14-19.
    [57]Okita K, AritoshiM, Mriak P. Friction welding of cemented carbide alloy to tool steel[J]. Welding International (UK),1997,11 (4):257-263.
    [58]闫鸿浩,李晓杰,杨文彬等.爆炸焊复合板热处理过程中的碳扩散计算[J].云南大学学报,2002,24(1A):236-239.
    [59]Samoylov V S. A technique for determination of strength of welds of hard alloy-steel prepared by diffusion welding in vacuum [J]. Elektron, ObrabMater (in Russian),1973,39(6):742-748.
    [60]Kazakov N F. App lication of diffusion welding in vacuum of hard alloy to steel in the fabrication of stamped components [J]. Elektron, Obrab Mater (in Russian),1971,21 (5):60-63.
    [61]Sergeev AV, Belyakov VI. Diffusion bonding in vacuum furnaces of hard-alloy working components of dies to a steel base [J]. Svarochnoe Proizvodstvo(Russia),1990(6):2-3.
    [62]赵熹华.压力焊[M].北京:机械工业出版社,1996.
    [63]曾悦坚,赵裕民,张炳范,等.钢结硬质合金与模具钢复合结构模具的扩散焊[J].焊接,1984(3):27-30.
    [64]吴一平,陈建国,刘春才,李福友.Q235钢-冷模具钢轧制复合刀片的组织性能[J].金属热处理,1997,22(2):41-42.
    [65]樊新民.高速钢-Q235钢轧制复合板的组织与性能[J].材料科学与工艺,2004,12(5):521-523.
    [66]张林荣,张福林.CVD技术在模具上的应用[J].北京科技大学学报,1990,12(5):472-477.
    [67]Fan W D, Chen X, Jagannadham K, et al. Diamond-ceramic composite tool coating [J]. J Materials Research,1994,9(11):2850-2867.
    [68]Yashiki T, Nakamura T, Fujimori N, et al. Practical properties of chemical vapor deposition diamond tools [J]. Surface and Coating Technology,1992,52:81-85.
    [69]Reineck I, Soderberg S and Ekholm P E. Chemically vapor deposited diamond as a cutting tool materials-a study of failure mechanism [J]. Surface and Coating Technology,1993,57:47-50.
    [70]Murakawa M and Takeuchi S. mechanical applications of thin and thick diamond films [J]. Surface and coating Technology,1991,49:359-365.
    [71]Spear K E. Diamond-ceramic coating of the future [J]. Am Ceramic Soc,1989,72(2):172-192.
    [1]周曼娜.碳化物细化预处理对T10钢组织与性能的影响[J].金属热处理学报,1992,(4):57
    [2]李超.碳化物细化对GCr15钢淬火组织均匀性的影响[J].金属热处理学报,1980,(1):26
    [3]高彩桥.摩擦金属学,哈尔滨工业大学出版社,1988,149
    [4]Hoon K, Chong H K. Fracture Behavior in Medium-Carbon Martensitic Si-and Ni-Steels. Metall. Trans,1986,7(17A):1173
    [5]Garrison WM, Jr. The Effect of Silicon and Nickel Additions on the Sulfide Spacing and Fracture Toughness of a 0.4 Carbon Low Alloy Steel. Metall. Trans,1986,4 (17A):669
    [6]Lai G Y, Wood WE, Clark RA, et al. The Effect of AustenitizingTemperature on the Microstructure and Mechanical Properties of As Quenched 4340 Steel. Metall. Trans,1974,7(5):1663
    [7]Karlsson B, Linden G. Plastic Deformation of Eutectoid Steel With Different Cementite Morphologies. Materials Science and Engineering,1975,1(17):153
    [8]Narasimha BVR, Thomas G. Structure2Property Relations and the Design of Fe-4Cr-C Base Structural Steels for High Strength and Toughness. Metall. Trans,1980,3(11A):441
    [9]Karl-Heinz Schwalbe. ON The Influence of Microstructure on Crack Propagation Mechanisms and Fracture Toughness of Metallic Materials. Eng. Fract. Mech,1977,4 (9):795
    [10]大同特殊钢株式会社内部资料
    [1]Marder A R, Kruss G. The morphology of martensite inairon-carbon alloys. ASM Transaction,1967. 60(1):651-652.
    [2]陈爱华.淬火工艺对铬结构钢显微组织和力学性能的影响中南工业大学学报1997,28(2):170-172.
    [3]Mschasitlivtsev V, Rodionov D P, Khlebnikova YV, Yakorleva I L. Peculiarity of structure and crystallography of plastic deformation of lath martensite in structural steels[J]. Mater Sci Eng,1999, A2732275:439.
    [4]Shtansdy D V, Nakai K, Ohmor Y. Crystallography and structural evolution during reverse transformation in an Fe217Cr2015C tempered martensite [J]. Acta Mater,2000,48 (8):1679.
    [5]Ohmura I, Hara T, Tsuzaki K. Relationship between nanohardness and microstructures in high2purity Fe2C as2quenched and quench2tempered martensite[J]. J Mater Research,2003,18 (6):1465.
    [6]Furuhara T, Morito S, Mark T. Morphology, substructure and crystallography of lath martensite in Fe2C alloy[J]. J De Physique IV,2003,112(Part 1):255.
    [7]Krauss G. Martensite in steel:strength and structure[J]. Mater Sci Eng,1999, A2732275:40.
    [8]Krauss G, Marder R. The morphology of martensite in iron alloys[J]. Metall Trans,1971,2A:2343.
    [9]牧正志,田村今男.铁系合金马氏体的形态和亚结构[J].日本金属学会会报,1974,13(5):329.
    [10]Owen W S. High Strength Materials[M]. New York:Wiley,1965,169.
    [11]牧正志,田村今男.板条马氏体的形态和亚结构[J].铁と钢,1981,67(7):852.
    [12]潘健生,胡明娟,朱祖昌.高氮奥氏体特殊中温转变现象的初步观察[J].金属热处理,2000,25(2):19-22.
    [13]戚正风,张洪哲.高温形变淬火强韧化机理探讨[J].金属热处理学报,1982,3(2):1-17.
    [14]Zackay V F, et al. Iron and Steel Inst,1973,1:175.
    [15]涂光祺.精冲技术.机械工业出版社.1990.
    [16]Lars Olovsson, Larsgunnar Nisson, Kjell Simonsson, An ALE formulation for the solution of two-dimensional metal cutting problems.Computers&Structures.1999,72:497-507.
    [17]Rice J R, Tracey D M.On The Ductile Enlargement Of Voids In Triaxial Stress Fields,J. Mech.Phys.Solids.1969,17:201-207.
    [18]Abdali A,Benkrid K,Bussy P.In:Shen S F,Dawson P R Eds.Simulation Of Materials Processing:Theory,Methods And Applications.NUMIFORM'95,Balkema,Rotterdam,1995:807
    [19]McClintock F A.A Criterion For Ductile Fracture By The Growth Of HoIe.J.Appl.Mech. 1968,35:363-371.
    [20]Ridba Hambli, Alain Potiron.Finite-etal Blanking Operations with Experimental Verification, J.Materials Processing Technology.2000,28-31.
    [21]中川威雄,阿部帮雄,林丰等著,郭青山译.板料冲压加工.天津科技出版社.1981.
    [22]Jeong S H,Kang J J,Oh S I,In:Advanced Technology Of Plasticity 1996-Proceedings Of The Fifth International Conference On Technology Of Plasticity,Columbus:Ohio State University Press,1996:631.
    [23]W.Johnson,R.A.C.Slater.A Survey of The Slow And Fast Blanking of Matels at Ambient And High Temperatures.In:Proceeding of The International Conference of Manufacturing Technology, Michigan.1967 57-62.
    [24]彭成允.厚板小孔(窄槽)冲裁模具寿命有关问题的探讨,锻压技术.2000.6:49-53.
    [25]李兴成.中厚板冲裁问题的研究.陕西工学院学报,2001.6:61-65.
    [26]周全福.厚板冲模凸模进入凹模尺寸的确定.锻压技术.1994.3:59-60.
    [27]秦泗吉.板厚对冲裁力影响规律的研究.金属成形工艺.2002.4:4-7.
    [28]张纪梁.厚板冲裁力的计算与分析.金属成形工艺.2003.4:48-49.
    [29]周照耀.厚板精冲工艺.模具工业.2000.11:13-16.
    [30]杨占尧.厚板冲裁模具设计要点与设备的选用.模具设计与制造.2002.3:53-56.
    [31]Morris DM,Reaugh JE,Morgan B,Quinones DF.A plastic-strain,mean stress criterion for ductile fracture. Journal of Engineering Materials and Technology 1987:279-286.
    [32]B.P.P.A Gouveia,J.M.C.Rodrigues,P.A.F.Martins.Ductile Fracture In Metal Working:Experimental And Theoretical Research[J].Materials Processing Technology,2000,52-63.
    [33]Shet Chandrakanth,Deng Xiaomin,Finite element analysis of the orthogonal metal cutting process. J.Mater.Pro.Tech.,2000,105:95-109.
    [34]Atkin AG.Surface produced by guillotining.Philosophical Magazine 1981;43(3):627-641.
    [35]F.W.Timmerbeil.Effect of Blading Edge Wear on The Blanking Process of Sheet(in German). Werkstattstechnik und Maschinenbau.1956,85-94.
    [36]Xie S S,Wang Z T,The Finite Element Simulation for Process of Metal Forming;Beijing:The press of metal-lurgy industry.1997:53.
    [37]吕日松,董万鹏等.金属塑性成形缺陷的数值模拟预测研究.模具技术.2003.3:3-5.
    [38]冯玉玲,厚板冲孔冲头的设计.模具工业.2000.6:22-25.
    [39]崔 崑,钢铁材料及有色金属材料[M].机械工业出版社,1980:54.
    [40]刘跃军,黄伯云,谭玉华.中碳和高碳钢中束状马氏体的形成机理[J].材料热处理学报.2005,26(1):48-52.
    [2]李成功.锻压技术手册(上册)[M].北京:国防工业出版社,1988,156.
    [3]浙江大学,上海机械学院,合肥工业大学合编.钢铁材料及其热处理工艺[M].上海:上海科学技术出版社,1978,3.
    [4]张贵锋等.日本关于固相扩散焊界面空洞收缩机理的研究[J].焊接,2001,(10):14-18.
    [5]谭天亚,傅正义,张东明.扩散焊接异种金属及陶瓷/金属的研究进展.硅酸盐通报.2003,(1):59-63.
    [6]何鹏,冯吉才,钱乙余等.扩散连接接头金属间化合物新相的形成机理.焊接学报,2001,22(1):53-55
    [7]西口公之等.接合机构领域にょゐ固相接合过程。检讨[J].溶接学会论文集,1986,4(2):311-316。
    [9]郭伟等.扩散连接界面理论的现状与发展[J].航天制造技术,2004,10(5):36-39.
    [10]张九海等.扩散连接接头行为数值模拟的发展现状[J].焊接学报,2000,21(4),84-91.
    [11]何鹏等.扩散连接界面物理接触行为的动态模型[J].焊接学报,2001,22(5),60-64.
    [12]赵昌盛.实用模具材料应用手册[M].北京:机械工业出版社,2005:7-9.
    [13]邓玉昆,陈景榕,王世章.高速工具钢[M].北京:冶金工业出版社,2002:167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700