相平衡热力学方法在超细碳化物高碳合金钢合金设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢中碳化物类型、数量、尺寸及分布对钢的工艺、组织及性能有极为重要的影响。碳化物的细化对提高钢的强韧性、抗疲劳断裂等性能均有重要作用。目前应用于工模具材料的高碳合金钢分为两种,一种为高碳低合金工模具钢,另一种为高碳高合金工模具钢。对于低合金钢,当为了提高其耐磨性而增加合金含量使之成为高碳中合金钢时,碳化物细化却成为难题。而且,由于高碳中合金钢的淬火残余奥氏体量比高碳低合金钢高得多,势必要求更高的回火温度,由此却可能导致硬度下降。因此,国内外工模具钢历来缺少高碳中合金钢品种。现有的大多数高碳高合金钢中由于碳化物数量多、分布密度大容易聚集长大,通过常规的锻轧加工和热处理工艺很难达到细化的目的,而通过复杂的锻轧加工或热处理工艺又会增加工艺上的困难,并消耗较多的能源,往往也很难达到理想的细化程度。因此,进一步研究超细碳化物高碳中,高合金钢的合金设计方法,对于开发研制性能优越的新型工模具钢材料具有重要的理论意义和实际应用价值。
     本文通过对高碳合金钢的相平衡热力学计算和实验结果分析,对超细碳化物高碳中、高合金钢的合金设计进行了研究,提出了完整的合金设计方法。针对实际的工模具应用开发出具有超细碳化物的DM7S高合金钢和DM8B中合金钢。
     由高合金钢的理论计算和实验结果分析得出,Cr,W,Mo元素含量设计合理时,高合金钢中的M_6C的数量增加,在一定程度上抑制M_(23)C_6和M_7C_3碳化物以使退火碳化物均匀细化。由于MC碳化物是淬火未溶碳化物细化的关键,为了避免共晶MC碳化物的出现,应控制V含量。通过亚稳定平衡计算得到高合金钢在回火过程中存在的稳定碳化物相为M_(23)C_6,MC和M_6C,亚稳定碳化物相为M_7C_3,M_3C渗碳体和M_2C(HCP)。亚稳定平衡计算结果与实验结果基本一致。
     中合金钢实际热处理过程偏离平衡态,需对相平衡热力学计算结果进行修正。中合金钢退火碳化物的细化较之高合金钢更为重要。钢中Cr/(W+2Mo)值越小,M_6C碳化物数量越大,M_6C,MC和M_(23)C_6碳化物数量搭配合适才有利于碳化物细化。因此可以通过相平衡热力学计算推测M_6C碳化物的数量,进而对合金成分进行调整控制,以得到碳化物细化的中合金钢。
     建立了高Cr,低W、Mo的高合金钢的平衡碳计算公式,提出Cp=0.016W+0.063Mo+0.099Cr+0.19V,二次硬化的回火硬度的计算公式为H_c=a(1+b)/(0.0127a+0.00267),其中a为基体碳饱和度,b为碳化物沉淀量的修正因子。提出淬火硬度计算公式HRc=α(1+β)/0.00915α+0.00586,α为基体中含C量的平方根,β为基体中合金元素固溶强化对马氏体硬度影响的修正系数,此公式隐含着洛氏硬度测定和马氏体强化机理的对应关系,对其它钢种也适用。
     研制开发出具有超细碳化物的DM7S高合金钢。DM7S高合金钢退火碳化物类型为M_(23)C_6,M_6C和MC,退火碳化物颗粒的平均尺寸为0.42μm,淬火未溶碳化物类型为M_6C和MC,未溶碳化物颗粒的平均尺寸为0.485μm。二次硬化硬度HRC62.8,同时具有优良的综合机械性能。其组织结构特征和性能与合金设计计算预测的结果相符。
     研制开发出具有超细碳化物的DM8B中合金钢。DM8B中合金钢退火碳化物由M_(23)C_6,M_6C,MC三种类型组成。退火碳化物尺寸主要分布在0.2~0.5μm范围内,淬火未溶碳化物类型为M_(23)C_6,M_6C和MC,平均尺寸为0.33μm,淬火未溶碳化物主要以超细碳化物为主。890℃淬火硬度为HRC65.8,240℃附近回火时,出现低温二次硬化效应,回火硬度为HRC62.4~63.8,具有较高的抗回火性。其组织结构特征和性能与合金设计计算预测的结果相符。
     通过合理的成分设计,研究开发的中、高合金钢热处理后碳化物达到预期的细化程度,机械性能得到全面提高,对于超细碳化物高碳合金钢的开发和应用具有指导意义。为实现高碳合金钢的合金设计完整计算提供了新思路。
The type,amount and size distribution of carbides have important effect on the process,microstructure and properties of the steel.Fine carbides in the steel are very important to improve the performance of strength-toughness and fatigue crack and so on. This kind of tool and die steel is divided two classes,one is high carbon high alloy steel, and another is high carbon low alloy steel.In order to improve the performance of wear-resistance,increasing the content of alloy elements in the low alloy steel,which makes the low alloy steel become medium alloy steel.Because of the amount of retained austenite after quenching of medium alloy steel is larger than that of low alloy steel,medium alloy steel should be tempered at higher temperature,which may make the tempering hardness decrease.At the same time,due to the large amount and high distribution density of carbides that easily gather in high carbon alloy steel,it is difficult to make carbides refine by normal forging and heat treatment.But for complicated forging and heat treatment,it increases the difficulty on the process and consume more energy source.Therefore,as far as development of new tool and die steel is concerned, it is theoretical and practical significance for researching alloy design method for high carbon medium and high alloy steel with fine carbides.
     In this paper,the new complete method of the alloy design for high carbon medium and high alloy steel with ultra-fine carbides is put forward through the phase equilibrium thermodynamic calculation and experiment results.For practical application, new medium alloy steel DM8B and high alloy steel DM7S are developed.
     The results of calculation and experiment of high alloy steel show,when the content of the Cr,W and Mo elements in the steel are rational,the amount of M_6C carbides increase and the M_(23)C_6 and M_7C_3 carbides are restricted,which makes the annealing carbides refine.The V content in the steel should be controlled in order to avoid appearing eutectic MC carbides.Through the metastable equilibrium calculation, the tempering carbide phases contain M_(23)C_6,M_6C and MC stable carbides and M_7C_3, M_3C and M_2C metastable carbide,which is agreement with experimental results.
     The phase equilibrium thermodynamic calculation should be corrected for the medium alloy steel deviating equilibrium states in the practical annealing treatment.The Cr/(W+2Mo)ratio lower,the amount of M_6C carbides larger.The rational partition of M_6C,M_(23)C_6 and MC is advantaged to carbides refinement.So according to the amount of M_6C carbides calculated by thermodynamics,the medium alloy steel with fine carbides can be obtained.
     The balanced carbon formula Cp=0.016W+0.063Mo+0.099Cr+0.19V of high alloy steel is put forward.The tempering hardness value can be obtained from HRC=a(1+b)/(0.0127a+0.00267),in which a is the saturation level of carbon in the matrix and b is correction factor.The quenching hardness value of the medium alloy steel can be calculated from HRC=α(1+β)/(0.00915α+0.00586),in whichαis the square root of carbon content in the matrix andβis correction coefficient of solid solution strengthening.This formula implies the relationship of hardness measurement and martin site strengthening.
     High carbon high alloy steel DM7S with ultra-fine carbides is developed.This steel's annealing carbides contain M_6C,M_(23)C_6 and MC.The annealing carbides average size is 0.42μm,undissolving carbides are primarily M_6C and MC and about 0.485μm in diameter.This steel has the value of hardness HRC62.8 and other excellent mechanical properties.
     High carbon medium alloy steel DM8B with ultra-fine carbides is developed.This steel has M_6C,M_(23)C_6 and MC three types of annealing carbides which size is primarily in the range of 0.2~0.5μm.Undissolving carbides is M_6C,M_(23)C_6 and MC and the average size is 0.33μm.The steel has the hardness of HRC65.8 after quenching and tempering hardness is HRC62.4~63.8 after tempering at 240℃.The microstructure and properties are agreement with calculation results.
     The high carbon medium and high alloy steel with ultra-fine carbides and excellent mechanical properties are obtained by rational alloy design which is significant for the development of the high carbon alloy steel with ultra-fine carbides.The new complete research method is provided by the alloy design for high carbon alloy steel.
引文
[1]KENZO GUKAURA,YOSHIHIKO YOKOYAMA,DAIEN YOKOZ,et al..Fatigue of cold-work tool steels;Effect of heat treatment and carbide morphology on fatigue crack formation,life and fracture surface observations.Metallurgical and Materials Transactions A,2004,35(4);1289-1300.
    [2]马永庆,齐育红,张占平,等.多类型超细碳化物冷作模具钢DM9热处理工艺研究.材料热处理学报.2003,24(3);50-53.
    [3]马永庆,于志伟,张占平,等.高强韧性冷作模具钢7Cr2WMoVSi组织与性能.机械工程材料.1995,19(4);39-41.
    [4]张春基,河镇哲,马永庆.Cr-W-Mo-V-Si工模具钢热处理时碳化物的转变.金属热处理.2001,(4);24-26.
    [5]马永庆,王逊,张春基.新型高强韧性冷作模具钢DM9的组织和性能.特殊钢.2002,23(1);36-38.
    [6]MA Yong-qing,QI Yu-hong,GAO Hong-tao,at al..Alloy design and applications of medium-alloy high carbon steels with multiple types of ultra-fine carbides.Second international conference on advanced structural steels.Shanghai,2004;573-577.
    [7]曹茂盛,黄龙男,陈铮.材料现代设计理论与方法.哈尔滨工业大学出版社,2002,111-125.
    [8]张济山,崔华,胡壮麒.d-电子合金理论及其在合金设计中的应用.材料科学与工程.1993,11(3);1-10.
    [9]张济山,崔华,胡壮麒,等.应用d-电子合金设计理论发展新型抗热腐蚀单晶镍基高温合金Ⅲ.性能评价.金属学报.1994,30(2);A70-77.
    [10]余瑞璜.固体与分子经验电子理论.科学通报.1978,23(4);217-224.
    [11]杜结海,张振宇,何丽桥,等.合金价电子结构对回火转变的影响.吉林工业大学学报,1995,25(2);37-43.
    [12]周飞,李中华,纪嘉明,等.40CrMn合金奥氏体结构及相变行为的电子理论研究.材料科学与工程,2000,18(2);64-68.
    [13]刘志林,孙振国,李志林.余氏理论和程氏理论在合金研究中的应用.自然科学进展,1998,8(2);151-160.
    [14]师瑞霞,杨瑞城,周春华,等.余氏理论中晶格常数与温度的关系.山东大学学报,2004,34(5);5-8.
    [15]吕宇鹏,朱瑞富,雷廷权,等.Me对Fe-Me-C合金奥氏体价电子结构的影响.应用科学 学报,1999,17(4);485-488.
    [16]宋月鹏,刘国权,李志林,等.含合金元素γ-Fe晶胞价电子结构及其对相变过程的影响.北京科技大学学报,2005,27(6);675-678.
    [17]B.Sundman.Thermodynamics for materials design.J Chem.Phys..1993,90;275-280.
    [18]J.Agren,F.H.Hayes,L.Hoglund,et al..Applications of computational thermodynamic.Z.Metallkd,2002,93(2);128-142.
    [19]S.Ranganathan.The technique of successive partial equilibria to predict precipitation carbides in equilibrium with a solution phase.Calphad,1996,20(4);461-470.
    [20]Larry Kaufman.Computational thermodynamic and materials design.Calphad,2001,25(2);141-161.
    [21]N.Saunders,A.P.Miodownik.CALPHAD.Robert W.Cahn FRs,Department of Materials Science and Metallurgy,University of Cambridge,UK,1998;299-409.
    [22]Jing-Bo Li,Caifu Yang,Han Dong.Computer simulations of phase transformation in steels.Materials and Design,2001,22;39-43.
    [23]V.Homolova,J.Janovec,A.Kroupa.Experimental and thermodynamic studies of phase transformations in Cr-V low alloy steels.Materials Science and Engineering A,2002,335;290-297.
    [24]J.BRATBERG,K.FRISK.An experimental and theoretical analysis of the phase equilibria in the Fe-Cr-V-C system.Metallurgical and Materials Transactions A,2004,35(12);3649-3663.
    [25]Zi-Kui Liu.Thermodynamic calculations of carbonitrides in microalloyed steels.Scripta Materialia,2004,50;601-606.
    [26]YOSHIKUNI KADOYA,BRIAN EDYSON,MALCOLM MCLEAN.Microstructural stability during creep of Mo- or W- bearing 12Cr steels.Metallurgical and Materials Transactions A,2002,33(8)2549-2557.
    [27]D.V.SHTANSKY,K.NAKAI,Y.OHMORI.Decomposition of martensite by discontinuous like precipitation reaction in an Fe-17Cr-0.5C alloy.Acta mater.,2000,48;969-983.
    [28]J.D.Robson,H.K.D.H.Bhadeshia.Kinetics of precipitation in power plant steels.Calphad,1996,20(4);447-460.
    [29]R.C.THOMSON,M.K.MILLER.Carbide precipitation in martensite during the early stages of tempering Cr- and Mo- containing low alloy steels.Acta mater.,1998,46(6);2203-2213.
    [30]S.Yamasaki,H.K.D.H.Bhadeshia.Modeling and characterization of V4C3 precipitation and cementite dissolution during tempering of Fe-C-V martensitic steel.Materials Science and Technology,2003,19(10);1335-1343.
    [31]N.Fujita,H.K.D.H.Bhadeshia.Precipitation of molybdenum carbide in steel;multicornponent diffusion and multicomponent capillary effects.Materials Science and Technology,1999,15(6);627-633.
    [32]Y.de Carlan,M.Murugananth,T.Sourmail,et al..Design of new Fe-9CrWV reduced activation martensitic steels for creep properties at 650℃.Journal of Nuclear Materials,2004,329-333;238-242.
    [33]You Fa Yin,Roy G.Faulkner.Modelling the effects of alloying elements on precipitation in ferritic steels.Materials Science and Engineering A,2003,344;92-102.
    [34]张国英,刘贵立,曾梅光,等.人工神经网络在材料设计中的应用.材料科学与工艺,1999,7(3);93-96.
    [35]戴起勋,戴希敏.神经网络在奥氏体钢设计中的应用.钢铁研究学报,1997,9(6);37-40.
    [36]W.Sitek,L.A.Dobranski,J.Iadona.The modeling of high-speed steels' properties using neural networks.Journal of Materials Processing Technology,2004,157;245-249.
    [37]L.A.Dobranski,W.Sitek.Application of a neural networks in modeling of hardenability of constructional steels.Journal of Materials Processing Technology,1998,78;59-66.
    [38]Carlos Capdevila,Carlos Garcia-Mateo,Francisea G.Caballero,et al..Proposal of an empirical formula for the austenitising temperature.Materials Science and Engineering A,2004,386;354-361.
    [39]M.A.Yescas,H.K.D.H.Bhadeshia,D.J.MacKay.Estimation of the amount of retained austenite in austempered ductile irons using neural networks.Materials Science and Engineering A,2001,311;162-173.
    [40]BILLY CHAN,MALCOLM BIBBY,NEAL HOLTZ.Predicting HAZ hardness with artificial neural networks.Canadian Metallurgical Quarterly,1995,34(4);353-356.
    [41]Leszek A.Dobrzanski,Jacek Trzaska.Application of neural networks for the prediction of continuous cooling transformation diagrams.Computational Materials Science,2004,30;251-259.
    [42]刘艳侠.Fe-Cr-V-Ni-Si-C系多元合金的电子、原子层次的理论计算及其应用;(博士论文).大连;大连海事大学,2005.
    [43]马永庆,等.多元合金的电子、原子层次的理论计算及应用.大连;大连海事大学出版社,2006.
    [44]戴玉梅.多类型超细碳化物高碳低、中合金钢的电子、原子层次合金设计及实验研究;(博士论文).大连;大连海事大学,2005.
    [45]郝士明.材料热力学.北京;化学工业出版社,2004.
    [46]徐祖耀,李麟.材料热力学.北京;科学出版社,1999.
    [47]Mats Hillert.Phase Equilibrium,Phase Diagrams and Phase Transformations Their Thermodynamic Basis.UK;Cambridge University Press,1998.
    [48]J-O Andersson,A thermodynamic evaluation of the Fe-Cr-C system.Metallurgical Transactions A,1988,19A;627-636.
    [49]Hillert M..Predicting carbides in alloy steels by computer.ISIJ International,1990,30(7);559-566.
    [50]Mats Hillert.Thermodynamic modeling of solutions.Calphad,1997,21(2);143-153.
    [51]Hillert M..The compound energy formalism.Journal of Alloys and Compounds,2001,320;161-176.
    [52]李麟,L.Delaey,P.Wollants,et al..一种计算平衡相图的新方法.上海大学学报,1995,1(5);504-508.
    [53]Sundman B.,Jansson B.,Andersson J.O..The Thermo-Calc database system.Calphad,1985,9;153-190.
    [54]Bo Sundman.Thermodynamic databanks,visions and facts.Scandinavian Journal of metallurgy,1991,20;79-85.
    [55]J-O Andersson,Thomas Helander,Lars Hogland,et al..Thermo-Calc & DICTRA,Computational tools for materials science.Calphad,2002,26(2);273-312.
    [56]Karin Frisk,Johan Bratberg,Andreas Markstrom.Thermodynamic modeling of the M6C carbide in cemented carbides and high-speed steel.Computer Coupling of Phase Diagrams and Thermochemistry,2005,29;91-96.
    [57]Wise J.P..Systems Design of Advanced Gear Steels;(Ph.D.Thesis).Northwestern University,1998.
    [58]Bernhard C.Schaffernak,Horst H.Cerjak.Design of improved heat resistant materials by use of computational thermodynamics.Calphad,2001,25(2);241-251.
    [59]V.Trabadelo,S.Gimenez,T.Gomez-Acebo,et al..Critical assessment of computational thermodynamics in the alloy design of PM high speed steels.Scripta Materialia,2005,53;287-292.
    [60]R.JAYARAM,R.L.KLUEH.Microstructural characterization of 5 to 9 pct Cr-2 pct W-V-Ta martensitic steels.Metallurgical and Materials Transactions A,1998,29(6);1551-1558.
    [61]A.Schneider,G.Inden.Simulation of the kinetics of precipitation reactions in ferritic steels.Acta Materialia,2005,53;519-531.
    [62]HE Yan-lin,LI Lin,Patrick WOLLANTS.Computer simulation of carbide transformation in die steel for plastic.J.Iron & Steel Res.,Int.,2005,12(4);44-47.
    [63]何燕霖.高性能预硬型塑料模具钢的计算机合金设计;(博士论文).上海;上海大学,2004.
    [64]张占平,齐育红,王晓俊,等.55NiCrMoV7回火钢的组织定量分析.大连海事大学学报,2003,29(3);4-8.
    [65]Y.Lan,H.P.Hougardy.Modeling of particle growth and application to the carbide evolution in special steel;(Final Report-Period 01.12.1990-31.12.1995).Luxembourg.
    [66]王冰辉,钟克端,乔玉泉.基体钢CG-2的碳化物相分析.金属学报,1985,21(6);28-36.
    [67]马翔.二次硬化马氏体时效钢中纳米级强化相的分析.分析化学,1996,24(12);1379-1382.
    [68]陈鹰,陈再枝,董瀚,等.合金工模具钢Fe-M-C淬火马氏体回火的二次硬化研究进展.特殊钢,2004,25(2);35-38.
    [69]A.Zielinska-Lipiec,A.Czyrska-Filemonowicz,P.J.Ennis,et al..The influence of heat treatment on the microstrueture of 9% chromium steels containing tungsten.Journal of Materials Processing Technology,1997,64;397-405.
    [70]刘玉军.耐磨冷作模具钢的合金化和力学行为;(硕士论文).武汉;华中工学院,1988.
    [71]D.V.Shtansky,G.Inden.Phase Transformation in Fe-Mo-C and Fe-W-C Steels-Ⅰ.The Structuctural Evolution during Temerring at 700℃.Acta Materialia,1997,45(7);2861-2878.
    [72]D.V.Shtansky,G.Inden.Phase Transformation in Fe-Mo-C and Fe-W-C Steels-Ⅱ Eutectoid reaction of M_(23)C_6 Carbide Decomposition During Austenitization.Acta Metallurgica,1997,45(7);2879-2895.
    [73]A.Vyrostkova,A.Kroupa,J.Janovec and M.Svoboda.Carbide reactions and phase equilibria in Low alloy Cr-Mo-V steels tempered at 773-993K.Part Ⅰ;Experimental Measurements.Acta materialia,1998,46(1);31-38.
    [74]A.Kroupa,A.Vyrostkova,M.Svoboda and J.Janovec.Carbide reactions and phase equilibria in Low alloy Cr-Mo-V steels tempered at 773-993K.Part Ⅱ;Theoretical calculations,Acta materialia,1998,46(1);39-49.
    [75]K.Ishida.Calculation of the effect of alloying elements on the Ms temperature in steels.Journal of Alloys and Compounds,1995,220;126-131.
    [76]L.A.Dobrzanski,J.Trzaska.Application of neural networks for prediction of critical values of temperatures and time of the supercooled austenite transformations.Journal of Materials Processing Technology,2004,155;1950-1955.
    [77]由伟,方鸿生,白秉哲.用反向传播人工神经网络预测低碳低合金钢的马氏体转变开始温度.金属学报,2003,39(6);630-634.
    [78]T.Sourmail,C.Garcia-Mateo.Critical assessment of models for predicting the Ms temperature of steels.Computational Materials Science,2005,34;323-334.
    [79]T.Sourmail,C.Garcia-Mateo.A model for predicting the Ms temperature of steels.Computational Materials Science,2005,34;213-218.
    [80]陈再枝.模具钢手册.北京;冶金工业出版社,1994.
    [81]张俊善.材料强度学.哈尔滨;哈尔滨工业大学出版社,2004.
    [82]S.E.Offerman,N.H.Van Dijk,J.Sietsma,et al..Solid-state phase transformations involving solute partitioning;modeling and measuring on the level of individual grain.Acta Materials,2004,52;4757-4766.
    [83]M.Shome,O.P.Gapta,O.N.Mohanty.A modified analytical approach for modeling grain growth in the coarse grain HAZ of HSLA steels.Scripta Materialia,2004,50;1007-1010.
    [84]宋晓艳,谷南驹,刘国权,等.第二相粒子含量对基体晶粒长大影响的计算机仿真研究.金属学报,2000,36(6);592-596.
    [85]I.ANDERSEN,Q.GRONG.Analytical modeling of grain growth in metal and alloys in the presence of growing and dissolving precipitates-Ⅰ;Normal grain growth.Acta metall,mater.,1995,43(7);2673-2688.
    [86]I.ANDERSEN,Q.GRONG.Analytical modeling of grain growth in metal and alloys in the presence of growing and dissolving precipitates-Ⅱ;Abnormal grain growth.Acta metall,mater.,1995,43(7);2689-2700.
    [87]Shingo Yamasaki.Modeling precipitation of carbides in martensitic steels;(Ph.DThesis).UK;University of Cambridge,2004.
    [88]郭可信.合金钢中的碳化物.金属学报,1957,2(3);303-319.
    [89]S.SAROJA,P.PARAMESWARAN,M.VIJAYALAKSHMI.Prediction of microstructural states in Cr-Mo steels using phase evolution diagrams.Acta meatll,mater.,1995,43(8);2985-3000.
    [90]K.B.LEE,H.R.YANG,H.KWON.Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martenstic steels containing both Mo and W.Metallurgical and Materials Transactions A,2001,32(7);1659-1670.
    [91]G.Ghosh,G.B.Olson.Precipitation of paraequilibrium cementite;Experiments and thermodynamic and kinetic modeling.Acta Materialia,2002,50;2099-2119.
    [92]Wise J.P..Systems Design of Advanced Gear Steels;(Ph.D.Thesis).Northwestern University,1998.
    [93]G.GHOSH,G.B.Olson.Simulation of paraequilibrium growth in multicomponent systems.Metallurgical and Materials A,2001,32(3);455-467.
    [94]Ernst Kozeschnik,John M.Vitek.Ortho-equilibrium and para-equilibrium phase diagrams for interstitial/substitutional iron alloys.Calphad,2000,24(4);495-502.
    [95]赵振业.超高强度钢中二次硬化现象研究.航空材料学报,2002,22(4);46-55.
    [96]Michel Perez,Alexis Deschamps.Microscopic modeling of simultaneous two-phase precipitation;Application to carbide precipitation in low-carbon steels.Materials Science and Engineering A,2003,360;241-219.
    [97]T.Sourmail,H.K.D.H.Bhadeshia.Modeling simultaneous precipitation reactions in austenitic stainless steels.Computer Coupling of Phase Diagrams and Thermochemistry,2003,27;169-175.
    [98]John Agren,Maria Teresa,Jerzy Golczewski,et al..Applications of computational thermodynamics.Calphad,2000,24(1);41-54.
    [99]胡正飞,吴杏芳,王春旭.二次硬化合金钢中多组元强化相M_2C碳化物的粗化动力学研究.金属学报,2003,39(6);585-591.
    [100]陈景榕.超硬高速钢的平衡碳问题.北京钢铁学院学报,1981,1;40-47.
    [101]陈景榕.超硬高速钢二次硬度的碳饱和度判别法.北京钢铁学院学报,1986,3;17-24.
    [102]MA Yongqing,ZHANG Yang,LIU Sha,et al..Alloy Design and Characteristics of high-alloy High Carbon DM6S Steel with Multiple Types of Ultra-fine Carbides.Proceedings of International Symposium on Materials Science and Engineering,Taiyuan,China,Jul.31-Aug.4,2005,714-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700