粉末冶金T15M高速钢的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速钢又称锋钢,是一种高碳高合金莱氏体钢。由于具有高耐磨性、高硬度和耐热性,被广泛的应用于工具、模具和一些特殊零部件上。高速钢具有特殊的结构和性能,在特殊钢的使用中占有不可替代的地位。但是,高速钢大多由传统的浇铸法生成。这种方法生产的高速钢存在组织粗大,成分偏析等问题。
     本文采用粉末冶金法分别制备了T15M高速钢和T15M-4NSiC高速钢两种不同成分高速钢,有效的解决了组织粗大及成分偏析的问题。对T15M高速钢的热处理工艺进行了探索,分别研究了T15M高速钢和T15M-4NSiC高速钢的力学性能和滑动磨损机理,利用扫描电镜分析了高速钢的断口形貌以及磨损表面形貌。并且利用热分析法研究了二者的抗氧化性,对高速钢氧化物物相进行了XRD分析。分析了碳化硅的加入对T15M高速钢力学性能、磨损性能和抗氧化性的影响。主要研究结果如下:
     T15M高速钢在经1326℃淬火+540℃三次回火处理后的硬度达68.53HRC,碳化物形貌呈球形且大小合适均匀分布,残余奥氏体回火后几乎都转变为回火马氏体(残余奥氏体体积分数3.46%)。
     碳化硅的加入能明显的增加T15M高速钢的红硬性和耐磨性,但是确降低了其冲击韧性和抗弯性能,其中冲击韧性更是下降高达48.7%。高温时T15M高速钢表面能生成FeCr型及Fe203氧化膜阻止基体进一步氧化,碳化硅在高温时氧化生成SiO2对阻止高速钢高温氧化具有很好的作用。
High-speed steel (HSS) is high carbon alloy ledeburite steel. It is important tool materials due to the fact that it offers a high wear resistance and high hardness. High-speed steel has special structure and properties, make it plays an irreplace role in special steel industry. But the high-speed steel which was produced by the traditional process has problems like coarse microstructure and composition segregation.
     In this thesis, T15M high speed steel and T15M-4NSiC high speed steel fabricated by means of powder metallurgy are studied. Powder metallurgy can solve problems like coarse microstructure and composition segregation effectively. To find better heat treatment process for T15M high speed steel, heat treatment processes was studied. And the mechanical property, wear mechanism and inoxidizability of T15M high speed steel and T15M-4NSiC high speed steel were also studied. The influence of SiC was also studied. The main studies are as follows:
     The optimized heat treatment processing of T15M high speed steel is quenching at1326℃and tempering at540℃three times. In this case, the hardness is high (68.53HRC), produced a rounded or globular form of carbide, most of the retained austenite translated into tempered martensite.(The volume fraction of retained austenite was3.46%).
     The addition of sic helped to significantly improve red hardness and abrasion performance, but reduced the impact toughness and bending properties, the impact toughness dropped as much as48.7%. At high temperature, a layer of oxides produced on the surface, to prevent further oxidation. Sic was oxidized to SiO2at high temperature to prevent further oxidation.
引文
[1]干勇,董瀚,先进钢铁材料技术的发展[J].中国冶金,2004,(8):1-6
    [2]贾成厂,吴立志.粉末冶金高速钢[J].金属世界,2012(2):5-10
    [3]Akinlade D A, Caley W F, Richards N L,et al.Development of a PM nickel-base superalloy[J]. International Journal of Powder Metallurgy,2006,42(4):43-56.
    [4]李长青,张俊才,董胜敏,蒋礼林.粉末冶金教程[M].徐州:中国矿业大学出版社,2010.3-4.
    [5]郭耕三.高速钢及其热处理[M].北京:机械工业出版社,1985.4-5.
    [6]邓玉昆,陈景榕,王世章.高速工具钢[M].北京:冶金工业出版社,2002.3-4.
    [7]李德超.添加TiC颗粒的M3/2粉末高速钢的组织与摩擦性能研究.[D].哈尔滨:哈尔滨工业大学,2007.
    [8]G.Hoyle. High Speed Steels. Butterworlh&Co. Ltd.London,1988:45-4646-47.
    [9]李正邦.我国高速钢发展的新特征[J].世界金属导报,2007(10):5-10.
    [10]宋维达.河北的高速钢[J].河北冶金.2001,(6):37-39.
    [11]罗伯茨GA.卡里普RA.工具钢[M].徐进译,北京:冶金工业出版社,1987.26
    [12]郑文虎.刀具材料和刀具的选用[M].北京:国防工业出版社,2012.1-2.
    [13]奥地利Bokler特殊钢公司来华技术交流资料[M].21
    [14]G. A. Roberts. Tool steels [M].1962.
    [15]任颂赞,张静江,陈质如,施友芳,毛照樵,高汉文.钢铁金相图谱.上海科学技术文献出版社.2003:985
    [16]戴起勋,高速钢金属材料学[M].化学工业出版社.2005
    [17]杨琴.M2高速钢铸带碳化物组织研究[D].重庆:重庆大学,2009:49-50.
    [18]吴元昌.粉末冶金高速钢生产工艺的发展[J].粉末冶金工业,2007,17(2):30-36
    [19]王丽仙,葛昌纯等.粉末冶金高速钢的发展[J].材料导报,2010,(24):459-462
    [20]阮建明,黄培云.粉末冶金原理[M].北京:机械工业出版社,2012.9-10.
    [21]李长青,张俊才,董胜敏等.粉末冶金教程[M].徐州:中国矿业大学出版社,2010,16-28
    [22]詹志洪.热等静压技术和设备的应用和发展[J].中国钨业,2005,20(1):44-47.
    [23]刘慧渊,何如松,周武平等.热等静压技术的发展与应用[J].新材料产业,2010,(11):12-17.
    [24]师昌绪.中国航空材料手册[M].第2版.北京:中国标准出版社,2001.
    [25]扬琴.M2高速钢铸带碳化物组织研究[D].重庆:重庆大学.2009
    [26]H. J. Goldschmidt. Interstitial Alloys [M].1967:105
    [27]王荣滨.高速钢碳化物形貌对热加工及工具寿命的影响[J].工具技术,2000,(34):20-22
    [28]肖纪美.高速钢的金属学问题[M].北京:冶金工业出版社,1976,30-31.
    [29]Huachu Liu, Wen Shi, Yanlin He, Lin Li.The effect of alloy elements on selective oxidation and galvanizability of TRIP-aided steel[J]. Surf. Interface Anal 2010 (42):1685-1689.
    [30]姚静,张自强.药物冻干制剂技术的设计及应用[M].北京:中国医药科技出版社,2007:2-3.
    [31]沈建,崔伟.浅谈真空冷冻干燥技术[J].农业装备技术.2006,32(2):26-28
    [32]孙企达.冷冻干燥超细粉体技术及应用[M].化学工业出版社,2006,02:10
    [33]肖宏伟,黄传伟等.真空冷冻干燥技术的研究现状和发展[J].医疗卫生装备,2010,31(07):30-32
    [34]江崇经.冷等静压技术的应用[J].电瓷避雷器.1994,(4):13-18
    [35]何林松.多孔β-TCP生物陶瓷的等静压成型[D].武汉理工大学.2006
    [36]尚文静.热等静压(HIP)技术和设备的发展和应用[J].有色冶金设计与研究.2010,31(1):18-21
    [37]闻荻江.复合材料原理[M].武汉工业大学出版社,1998:6-12
    [38]虞伟良.硬度测试技术的新动态与发展趋势[J].理化检验-物理分册.2003,39(8):401-403
    [39]熊文杰,邝先飞,康念铅.X射线在晶体衍射分析中的应用[J].江西化工 2008,(3):137-140
    [40]常铁军,刘喜军.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社,2005.112-119
    [41]王威,利用热重分析研究煤的氧化反应过程及特征温度[D].西安:西安科技大学,2005
    [42]陈戌.热处理工工艺学.中国劳动出版社.1996:311
    [43]白万真,热处理对高钒高速钢组织与滚动磨损性能的影响[D].河南科技大学,2007
    [44]A.Okabayashi, H.Morikawa, Y.Tsujimoto.Development and characteristics of high speed steel roll by centrifugal casting [J]. SEAISI Quaterly,1997,2(4):30-40
    [46]Kayser F and Cohen M. Carbides in high speed steel-their nature and quantity [J].Metal Progress,1952,61 (6):79-85.
    [47]王荣滨.高速钢碳化物形貌对热加工级工具寿命的影响[J].工具技术.2000,(34):20-23
    [48]张子义,离心铸造高速钢轧辊制造技术研究[D].西安:西安建筑科技大学,2005.
    [49]刘佐仁.淬火温度对高速钢力学性能的影响[J].钢铁,2001,36(7):54-57.
    [50]Y. Sun. Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless steel [J]. Tribology International,2013(57):67-75
    [51]余俊,徐真,赵冬初等.摩擦学[M].长沙:湖南科学技术出版社,1984,23.
    [52]Wei Cai, Fanna Meng, Xinyan Gao, Jing Hu. Effect of QPQ nitriding time on wear and corrosion behavior of 45 carbon steel [J]. Applied Surface Science,2012 (261):411-414.
    [53]王洋,45钢磨损性能和磨损机制的研究[D].镇江:江苏大学,2010
    [54]D.H.Buckley, R.L. Johnson.The influence of silicon additions on friction and wear of nickel alloys at temperatures to 1000F [J]. ASLE Trans,1960,3:93-100
    [55]S.C.Lim, M.F.Ashby, Brunton J H. Wear-rate transitions and their relationship to wear mechanisms [J]. Acta Metall.1987,35:1343-1348
    [56]Ashby M.F, Abulawi J, Kong H S. Temperature maps for frictional heating in dry sliding [J]. Tribol. Trans.1991,34:577-587.
    [57]Glaeser, W.A.,Materials for Tribology [J]. Elsevier, Amsterdam,1992.
    [58]戚正风,高速钢的红硬性[J].金属热处理,2001,26(12):8-10.
    [59]许达,余峰,罗迪.影响高速钢韧性的因素[J].2006,18(11):1-6.
    [60]张双益,肖志榆,冼志勇,李元元.SiC颗粒增强铁基粉末冶金复合材料的研究[J].华南理工大学学报,1999,27(5):104-109.
    [61]魏宽,喷射成型CPM9V高速钢组织与性能研究[D].成都:西南交通大学,2012.
    [62]揭晓华,向梅5CrNiMo钢的高温氧化特性[J].汽车研究与开发,1998,(2):41-44.
    [63]欧阳德刚,蒋扬虎,罗安智.钢氧化特性的研究动态[J].工业加热,2007,36(6):8-11
    [64]Hancock P,Hurst R C. Advances in Corrosion Science and Technology[M]. New York:Plenum Press,1974,4:11.
    [65]杨旺,U71Mn钢高温氧化动力学实验研究[D].包头:内蒙古科技大学,2010.
    [66]LITZJ, RAHMEL A, SCHORR M. Selective carbide oxidation and internal nitridation of the Ni-base superalloys N738 LC and N 939 in Air [J]. Oxidation of Metals,1988,30(1/2):95-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700