嗜酸氧化亚铁硫杆菌浸出低品位磷矿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以湖北省铜禄山铜山口矿区的酸性矿坑水为材料,进行At.f菌的分离纯化,并对其生长特性、浸矿效果、浸出机理进行了初步研究。用9K液体培养基对采集的水样进行富集培养和分离纯化,纯化后的菌株经16S rDNA鉴定后为嗜酸氧化亚铁硫杆菌,命名为C1。C1菌的最适生长pH为2.0、生长温度为30℃、接种量为10%和摇床转速为150 r/min。在温度为30℃、初始pH为1.5、摇床转速为135 r/min、接种量为2%、矿石粒度为74-97μm、加入的FeSO4·7H2O为44.7 g/L、黄铁矿为15 g/L和磷矿为10 g/L的条件下,经过28 d的浸出,浸磷率达77.19%。选取初始pH,接种量,转速,矿石粒度4个因素进行正交实验,各因素对实验结果影响的显著性顺序为pH>接种量>转速>矿石粒度。在浸矿培养基中加入吐温类表面活性剂后,可有效地提高浸磷率,当吐温20,40,60,80用量分别为10 g/m3、10 g/m3、10 g/m3和50 g/m3时效果最佳,此时浸磷率分别提高了31.00%,36.48%,45.19%和41.91%。采用普通浸矿法时,经过4 d的浸出,9K,9K+S及Waksman培养基中,浸磷率分别为57.07%,76.75%,58.13%,而在这三种培养基中采用批浸矿法经过22 d的浸出,浸磷率分别为48.41%,58.89%,25.16%。在以黄铁矿为能源的培养基中,紫外线照射诱变C1菌3 min,当用此诱变菌株对磷矿粉经过14 d的浸出,浸磷率达20.07%,比未处理的原始菌株提高了31.69%;微波辐射诱变C1菌10 s,用此诱变菌株对磷矿粉经过14 d的浸出,浸磷率达21.96%,比原始菌株的浸出率提高了51.87%;用浓度为0.02 mol/L亚硝酸诱变C1菌,诱变菌的浸磷率比初始菌提高了35.01%;用0.6%硫酸二乙酯诱变C1菌15 min,诱变菌的浸磷率比原始菌株提高了31.03%;用1.0%盐酸羟胺诱变C1菌,诱变菌的浸磷率比原始菌株提高了33.31%;经过微波和浓度为0.02 mol/L亚硝酸复合诱变C1菌,此诱变菌的浸磷率达24.86%,比出发菌株提高了28.14%;C1菌经硫酸二乙酯和盐酸羟胺复合诱变后,对磷矿的浸出率比空白有所降低。C1菌在矿物表面经过40 min后达到吸附平衡,此时最大吸附量为41.48%。C1菌对磷矿石经过21 d的浸出,浸磷率达25.71%,比化学浸出法的9.89%提高1.59倍。培养基中加入一定量的甘氨酸、赖氨酸和谷氨酸能够提高浸磷率,而加入一定量的亮氨酸后,浸磷率反而下降。甘氨酸、赖氨酸和谷氨酸的最佳用量分别为0.5 g/L、0.5 g/L、1 g/L,此时浸磷率提高了24.07%、12.03%、7.6%,其中赖氨酸和谷氨酸的作用没有甘氨酸明显。培养基中加入一定量的果糖能够提高浸磷率,而加入一定量的阿拉伯糖后,浸磷率反而下降。果糖的最佳用量为0.5 g/L,此时浸磷率提高了15.54%。
A strain C1 was isolated and purified from acid mine drainage of Tong Shan Kou mine at Tong Lu Shan in Hubei province and its growth characteristics, phosphate ore leached conditions and leaching mechanism was studied. The strain C1 was isolated from 9K medium and identified as Acidithiobacillus ferrooxidans by 16S rDNA analysis and it was named after C1. C1’s optimum growth conditions were temperature 30℃, initial pH 2.0, inoculation amount 10% and rotation speed 150 r/min. The phosphate ore leached rate was 77.19% after 28 d when the temperature 30℃, initial pH 1.5, rotation speed 135 r/min, inoculation amount 2%, particle size of phosphate ore 74-97μm, FeSO4·7H2O 44.7 g/L, pyrite 15 g/L and phosphorous ore 10 g/L. Initial pH, inoculation amount, rotation speed and particle size of phosphate ore were selected for orthogonal experiment and the significant order of influence factors was pH>inoculation amount>rotate speed>paticale size of phosphate ore. Tween 20, 40, 60, 80 could improve the leached rate of the ore and the optimal dosage was 10 g/m3, 10 g/m3, 10 g/m3, 50 g/m3 respectively and the phosphate ore leached rate increase about 31.00%, 36.48%, 45.19% and 41.91% under these conditions. The phosphorus ore leached rate could reach 57.07%, 58.13%, 76.75% respectively after 4 d by ordinary leaching method among 9K, Waksman and 9K+S medium. However the phosphorus ore leached rate only reach 48.41% 25.16%, 58.89% after 22 d by batch leaching method in these three kinds of medium. When using pyrite as an energy source the phosphorus ore leached rate was 20.07% after 14 d by the bacteria which was mutated by UV for 3 min and was 31.69% higher than that of the control, the phosphorus ore leached rate was 21.96% after 14 d by the bacteria which was mutated by microwave for 10 s and was 51.87% higher than that of the control, the phosphorus ore leached rate was 20.98% after 14 d by the bacteria which was mutated by 0.02 mol/L nitrous acid and was 35.01% higher than that of the control, the phosphorus ore leached rate was 20.65% after 14 d by the bacteria which was mutated by 0.6% diethyl sulfate (DES) for 15 min and was 31.03% higher than that of the control, the phosphorus ore leached rate was 21.45% after 14 d by the bacteria which was mutated by 1.0% hydroxylamine and was 33.31% higher than that of the control, the rate of phosphorus ore leached was 24.86% after 14 d by the bacteria which was multiple mutated by microwave and different concentrations of nitrous acid and was 28.14% higher than that of the control, DES-mutated bacteria were then muti-mutated with different concentrations of hydroxylamine, but the phosphorus ore leached rate of multiple mutated C1 was lower than the control.Strain C1 reached adsorption equilibrium on the mineral surface after 40 min and the maximum adsorbing capacity was 41.48%. The phosphorus ore leached rate by strain C1 is 25.71% which was higher than 9.89% by chemical leaching method after 21 d. A certain amount of glycin, lysine and glutamic acid rather than leucine in the medium could improve phosphorus ore leached rate. The optimal dosage of glycin, lysine and glutamic acid was 0.5 g/L, 0.5 g/L and 1 g/L respectively and the phosphorus ore leached rate was about 24.07%、12.03%、7.6% higher than the control, but the effect of lysine and glutamic acid were not obvious.A certain amount of glucose rather than arabinose in the medium could improve phosphorus ore leached rate. The optimal dosage of glucose was 0.5 g/L and the phosphorus ore leached rate was about 15.54% higher than the control.
引文
[1]刘俊,龚文琪,申求实,等.低品位磷矿的生物浸出研究[J].金属矿山,2008,(7):54-57.
    [2]杨敖,杨利萍.磷矿的选矿[J].矿产综合利用,1997,(6):13-16.
    [3]周吉奎,钮因健.硫化矿生物冶金研究进展[J].金属矿山,2005,(4):25-29.
    [4]王涛,钟辉,王洋.微生物浸矿研究进展[J].内蒙古石油化工,2007,33(9):13-15.
    [5]邓强,韩伟.微生物浸矿技术在选铜工业中的应用[J].矿业快报,2007,23(3):24-26.
    [6] Colmer A R,Hinkel M E.The role of microorganisms in acid mining drainage,a preliminary report[J].Science,1947,106(2751):253-256.
    [7]张卫民,王焰新.低品位硫化铜矿微生物强化浸出的研究进展[J].2006,(1):25-28.
    [8]马玉聪.细菌浸出法在矿物工程中的应用[J].金属矿山,1994,(8):42-44.
    [9]王恩德.环境资源中的微生物技术[M].北京:冶金工业出版社,1997:101.
    [10] Murr L E.Theory and practice of copper sulphide leaching in dumps and in-situ[J].Miner Science Engineering,1980,12(3):121-123.
    [11]黎维中,彭晓华.德兴铜矿废石堆浸方法优化研究与实践[J].湿法冶金,1993,(1):29-33.
    [12]李宏煦,邱冠周,胡岳华,等.大宝山废矿堆铜矿细菌浸出铜的研究[J].矿产综合利用,2000,(5):31-33.
    [13]阮仁满,温健康.紫金山铜矿细菌浸出研究[J].有色金属,2000,52(4):159-162.
    [14]田晓娟,杜德平,王艳,等.解磷菌分离及其对内蒙古布龙图低品位磷矿利用研究[J].地球学报,2007,28(4):377-381.
    [15]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,(3):7-11.
    [16]邓恩建,杨朝晖,曾光明,等.氧化亚铁硫杆菌的研究概况[J].黄金科学技术,2005,13(5):9-12.
    [17] Templle K L, Colmer A R.The autotrophic oxidation of iron by a new bacterium thiobacillus ferrooxidans[J].Journal of Bacteriolgy,1951,(61):605-611.
    [18]王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法[J].环境科学学报,2005,25(10):1418-1420.
    [19]姜国芳,刘亚洁,乐长高.氧化硫硫杆菌的研究进展[J].生物学杂志,2005,22(1):11-13.
    [20]田克立,林建群,刘相梅.大肠杆菌磷酸果糖激酶基因在极端嗜酸性氧化硫硫杆菌中的表达[J].微生物学报,2003,43(5):592-597.
    [21]郭亚飞,廖梦霞,邓天龙,等.硫化矿物浸矿专属菌的研究进展[J].四川有色金属, 2007,(3):7-13.
    [22]李小燕,张卫民,高曙光,等.微生物浸矿技术在处理低品位铜矿中的现状及发展趋势[J].中国矿业,2007,16(7):91-93.
    [23] Gomez E,Blazquez M L,Ballester A,et al.Study By SEM and EDS of Chalcopyrite Bioleaching Using A New Themophilic Bacteria[J]. Minerals Engineering, 1996, 9(9): 985-999.
    [24]诸葛健,沈微.工业微生物育种学[M].北京:化学工业出版社:2006.
    [25]金志华,林建平,梅乐和.工业微生物遗传育种学原理与应用[M].北京:化学工业出版社:2006.
    [26]宫磊,徐晓军.物理诱变氧化亚铁硫杆菌及浸出低品位黄铜矿的研究[J].金属矿山,2005,(8):39-41.
    [27]申秋实,龚文琪,王恩文,等.微波诱变嗜酸氧化硫硫杆菌浸出低品位磷矿[J].武汉理工大学学报,2008,30(11):29-32.
    [28]徐晓军,宫磊,赵丙辰,等.氧化亚铁硫杆菌的亚硝酸化学诱变及对黄铜矿的生物浸出[J].有色金属(选矿部分),2004,(6):20-23.
    [29]徐晓军,宫磊,孟云生,等.硫杆菌的化学诱变及对低品位黄铜矿的浸出[J].金属矿山,2004,(8):42-44.
    [30]贺筱蓉,李永泉,赵小立,等.原生质体诱变选育去甲基金霉素高产菌[J].杭州大学学报,1997,24(2):170-177.
    [31] Wu Z C,Wang F X,Chen S H, et al. Study of Selection with Copper Vapor Laser Followed by Lithium Chloride Treatment in Streptomyces rimousus[J]. ACTA LASER BIOLOGY SINICA, 1997, 6(2):1068-1070.
    [32] Goldstein A H.Bacterial solubilization of mineral phosphates: historical perspective and future prospects[J].American Journal of Alternative Agriculture,1986 (1) : 51-57.
    [33] Rogers R D, Wolfram J H. Biological separation of phosphate from ore[J].Mineral Bio-processing proceeding Conference,1993,77(1): 137-140.
    [34]林启美,王华,赵小蓉,等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学通报,2001,28(2):26-30.
    [35]晏露,伍开亮,高姣姣,等.硫酸和氧化亚铁硫杆菌浸出低品位磷矿[J].武汉化工学院学报,2005,28(4):4-6.
    [36] Chi R,Xiao C,Gao H.Bioleaching of phosphorous from rock phosphate containing pyrites by Acidithiobacillus ferrooxidans[J].Minerals Engineering,2006, (19): 979-981.
    [37]龚文琪,陈伟,张晓峥,等.氧化亚铁硫杆菌的分离培养及其浸磷效果[J].过程工程学报,2007,7(3):584-585.
    [38]龚文琪,边勋,陈伟,等.氧化硫硫杆菌的培养特性及低品位磷矿浸出[J].武汉理工大学学报,2007,29(5):53-57.
    [39]罗立群,高志,孙洁.难选铁矿石微生物脱磷技术[J].金属矿山,2008,(8):58-61.
    [40]何良菊,胡芳仁,魏德洲.梅山高磷铁矿石微生物脱磷研究[J].矿冶,2000,9(1):31-35.
    [41] Delvasto P,Valverde A,Ballester A,et al.Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore[J].Hydrometallurgy,2008,92(3):124-129.
    [42]陈仁义,柏琴.中国锰矿资源现状及锰矿勘查设想[J].中国锰业,2004,22(2):1-4.
    [43]张萍萍,田学达,张小云,等.一种黑曲霉对高磷锰矿脱磷的研究[J].矿业研究与开发,2006,26(5):42-44.
    [44]梅健,陶秀祥,刘金燕,等.生物脱硫中氧化亚铁硫杆菌对亚铁离子氧化的研究进展[J].煤炭工程,2008,(5):85-87.
    [45]赖庆柯,张永奎,梁克中.氧化亚铁硫杆菌及其硫氧化机理[J].微生物学杂志,2007,27(6):81-84.
    [46]何正国,李雅芹,周培瑾.氧化亚铁硫杆菌的铁和硫氧化系统及其分子遗传学[J].微生物学报,2000,40(5):563-566.
    [47] Suzuki I.Sulfur-Oxidizing Enzymes[J].Methods in Enzymology,1994,(243): 455-462.
    [48] Schaeffer W I,Holbert P E, Umbreit W W. Attachment of Thiobacillus ferrooxidans to sulfur crystals[J].Journal Bacteriology,1963,(85):137.
    [49] Poglazova M N, Mitskevich I N, Kuzhinovsky V A. A spectrofluorimetric method for the determination of total bacterial counts in Environmental samples[J].Journal of Microbiological Methods,1996,24(3):211-218.
    [50] Xia L X, Liu X X, Zeng J, et al.Mechanism of enhanced bioleaching effciency of Acidithiobacillus ferrooxidans after adaption with chalcopyrite[J].Hydrometallurgy, 2008, 92(3-4):95-101.
    [51]傅建华,邱冠周,胡岳华.浸矿细菌表面性质研究[J].金属矿山,2004,(9):19-23.
    [52] Mousavi S M, Yaghmaei S, Vossoughi M,et al.Bacterial leaching of low-grade ZnS concentrate using in digenous mesophilic and thermophilic strains[J].Hydrometallurgy,2007, 85(1):59-65.
    [53] Brierly C L.Thermophilic microorganism in extraction of metals from ores [J].Development in Industrial Microbiology, 1977,(18):273.
    [54]王中海,周源,钟洪鸣,等.微生物浸矿技术发展现状[J].金属矿山,2007,(8):4-6.
    [55]张广积,方兆珩.生物氧化浸矿机理和动力学.国外金属矿选矿,2000,37(6):17-20.
    [56] Hutchins S R. Microoganisms in Reclamation of Metals[J].Annual Review of Microbiology,1986,40(3):311-336.
    [57] Zhang J H,Zhang X,NiY Q,et al.Bioleaching of arsenic from medicinal realgar by pure and mixed cultures[J].Process Biochemistry,2007,(42):1265-1271.
    [58]张在海,邱冠周,胡岳华,等.氧化亚铁硫杆菌的菌落分离研究[J].矿产综合利用,2001(1):19-22.
    [59]温烨明,王清萍,林鸿雁,等.污泥中氧化硫硫杆菌的分离及其应用效果[J].环境污染与防治,2009,31(7),52-55.
    [60] Bengrine A,Guiliani N,Appia-ayme C,et al. Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC33020 strain[J].Biochimica et Biophysica Acta,1998,(1443):99-112.
    [61]陈新征,吴兆亮,赵静波,等.化学诱变法选育D-核糖高产菌株工艺研究[J].微生物学杂志,2005,25(2):107-109.
    [62]陈明莲.微生物对黄铜矿表面性质的影响及其吸附机制研究[D].长沙:中南大学矿物加工工程,2009.
    [63] Garcia O J, Bigham J M ,Tuovinen O H. Oxidation of galena by Thiobacillu sferrooxidans and Thiobacillus thiooxidans[J].Can.J.Microbiol, 1995(41):508-514.
    [64] Jiang L H, Zhao S L, Zhu J H. Fast destination of P2O5 in Melamine phosphate[J]. Chemical Engineer, 2001, 85(40):50-51.
    [65] Solisio C, Lodi A, Veglio F. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans[J].Waste Managment,2001,(22):667-675.
    [66]李广悦,刘玉龙,王永东,等.一株新的氧化亚铁硫杆菌菌株的筛选及其生长特性的研究[J].南华大学学报,2007,21(1):7-13.
    [67]王炜铭,王英刚,王林芳,等.氧化亚铁硫杆菌最佳生长条件的初步探索[J].有色矿冶,2004,20(5):54-56.
    [68]孙先锋,郭爱莲,朱宏莉,等.氧化亚铁硫杆菌的分离及其生长条件的研究[J].西北大学学报,2000,30(2):143-146.
    [69]姜涛,金勇士,李骞,等.氧化亚铁硫杆菌浸出铁矿石脱磷技术[J].中国有色金属学报,2007,17(10):1718-1722.
    [70] Kingma J G, Silver M. Autotrophic growth of thiobacillus acidophilus in the presence of a surface–active agent, Tween-80[J]. Applied and Environmental Microbiology, 1979, 38(5): 795-799.
    [71]刘程,李江华,刘博.表面活性剂应用手册[M].北京:化学工业出版社,2004:36.
    [72]龚文琪,张晓峥,刘艳菊,等.表面活性剂对嗜酸氧化硫硫杆菌浸磷的影响[J].中南大学学报,2007,38(1): 60-64.
    [73]张兴,王少丽,丁玉,等.营养条件对氧化亚铁硫杆菌生长和脱硫的影响[J].中国矿业大学学报,2005,34(6):725-729.
    [74] Third K A, Cord-Ruwisch R, Watling H R.The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching[J]. Hydrometallurgy, 2000,(57):225-233.
    [75]郑宇,邸进申,刘艳华,等.氧化亚铁硫杆菌培养过程中沉淀的研究[J].生物技术,2005,15(2):66-69.
    [76]吕凤霞,陆兆新,别小妹,等.枯草杆菌纤溶酶高产菌株的物理化学诱变[J].食品科学,2005,26(9):134-137.
    [77] Katsioit M,Tsakiridis P E, Agatzini-Leonardoua S , et al. Examination of the jarosite-alunite precipitate addition in the raw meal for the production of Portland and sulfoaluminate-based cement clinkers[J].Mineral processing,2005,(76):217-224.
    [78] Busscher H J, Weerkamp A H.Specific and Non-Specific Intereactions in Bacterial Adhesion to Solid Substrate[J].FEMS Microbiology letters,1987, (46):165-173.
    [79] Wong J W C, Xiang L, Gu X Y,et al. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source[J].Chemosphere, 2004,(55):101-107.
    [80]邹燕,徐文彬,宾丽英,等.两种优势菌浸矿机理及动力学研究概况[J].矿业工程,2007,5(4):65-68.
    [81] Shrihari, Modak J M,Kumar R,et al.Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans[J]. Hydrometallurgy,1995, 38 (2): 175-187.
    [82]张广积,方兆珩.氧化亚铁硫杆菌浸出镍黄铁矿机理的初步分析[J].过程工程学报,2001,1(4):374-377.
    [83] He Z G, Gao F L, Zhong H, et al.Effects of L-cysteine on Ni-Cu sulfide and marmatite bioleaching by Acidithiobacillu scaldus[J].Bioresource Technology, 2009,( 100): 1383-1387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700