用户名: 密码: 验证码:
手持式超站测树仪研制及功能测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林计测是森林经营与管理的重要基础信息采集工作之一,测树仪器是森林计测的基本工具,其测量精度、自动化效率和成本对森林调查工作的效率和数据的质量起决定性作用。目前现有的测树仪器数据采集方式落后、功能单一、效率低、精度差、价格昂贵、内业工作量大,严重制约了森林资源调查工作的发展。因此,迫切需要自动化、数字化、精准、多功能、便携式的测树仪器来促进森林资源信息采集技术的发展。本研究以森林调查抽样和统计原理为理论基础,结合森林计测学、数学、物理学、机械工程、微电子科学、计算机科学等学科,研究森林精准计测原理、模型及实现方法以及森林计测仪器的数字化、微型化、集成化设计,研制手持式测树超站仪样机及其应用系统,并开展试验,进行功能、精度测试研究。旨在实现森林资源调查工作的数字化、信息化、自动化、智能化、一体化,为森林经营和林业现代化提供服务。主要研究结论归纳如下:
     (1)手持式超站测树仪的数字化、微型化、集成化多功能系统设计
     为了实现森林的数字化、多功能、精准计测,提出了数字化、便携式、多功能集成的测树仪器研制理念,并研制了一种手持式超站测树仪,该设备以MEMS (micro-electro-mechanical systems)测角传感器、激光测距传感器、电子罗盘等主要硬件为基础,通过测量距离、倾角、磁方位角3个参数,结合森林计测原理,开发了操作软件,实现了单木测量、样地计测、株数密度测量、电子立体角规测树、林分空间结构中的大小比数、混交度、角尺度等的测量,目前己完成第一代和第二代产品设计,同时开发了与之对应的内业处理软件,可以实现外业数据直接导入内业软件计算,免去了外业数据的纸质记录和二次输入问题。
     (2)基于手持式超站测树仪单木测量模型、原理与功能精度测试
     基于激光测距、倾角测量、方位角测量,提出了树高测量、直径测量、非接触式胸径测量以及单木材积测量模型,将测量模型在手持式超站测树仪实现,并针对各功能开展试验。经试验研究表明,第一代产品测树超站仪相对于全站仪的测高误差在0.28%~1.59%。第二代产品树高测量准确度为20~27cm,精密度为18~27cm。精度范围为:97.37%%~98.33%。CCD直径测量分正直摄影测量和倾斜测量,并与围尺测量值进行比较,该方法胸径测量准确度在1cm以内,精密度3.8mm~6.8mm之间。测量的精度在96.11%~98.44%之间,倾斜测量(正负40。范围)的相对误差在-5.28%~6.26%之间。研究了非接触式胸径测量的两种方法,定点比尺测量方法和移动角规法,两种测量方法虽然精度不理想,但是验证了其模型、原理与实现方法的可行性。提出单木材积测量的原理与方法,并进行了试验,但是,由于胸径测量误差较大,引起了材积测量误差也较大,与全站仪测量误差相比,均偏小。
     (3)样地计测模型与原理研究及功能精度测试
     本文研究的样地计测模型包括闭合导线及标定、样地树木坐标测量、极坐标测树、株数密度测量、林分平均高测量、圆形样地计测及多边形样地计测,并就各项功能开展了试验,验证了各功能的可行性及精度,分别如下:闭合导线及标定导线全长闭合差在1.41%-14.20%之间;面积测量的相对误差在-2.52%-2.32%之间;实现了样地树木坐标测量及样木分布图的自动绘制;极坐标测树功能样地面积测量误差在0.85%-5.51%之间;株数密度测量与人工测量的平均相对误差为3.89%;林分平均高测量相对误差为5.03%;圆形样地计测中,与每木检尺数据对比分析得出:林分密度、林分平均高、平均胸径、蓄积量的相对误差分别为4.32%、-0.71%、-4.07%、-1.25%;多边形样地计测与每木检尺数据对比分析得出:株数密度测量相对误差在-0.76%~-4.34%之间,样地面积测量相对误差在1.19%-2.22%之间,平均树高测量的相对误差在-0.15%~-3.02%之间,平均胸径测量的相对误差在-4.90%~-20.82%之间,蓄积量估测的相对误差在-8.96%~-18.45%之间。
     (4)电子立体角规测树功能及精度验证
     电子立体角规测树实现了角规计数值的自动计数,与传统角规计数方法比较,相对误差在-0.33%~-0.07%之间。在角规点上测量计数木的树高、胸径,实现林分株数密度、平均高、蓄积量的估测,与样地每木检尺数据进行比较分析得出,相对误差分别为-5.84%、9.10%、0.12%。同时,成功解决了临界木的自动判断问题,免去了传统临界木判断方法中皮尺测距的麻烦。
     (5)林分空间结构参数测量模型与原理研究
     提出了一种通过测量参照树和与参照树最邻近木的坐标解算参照树与最邻近木之间的夹角,并根据夹角测量角尺度的方法,同时加入胸径测量,将参照木胸径纳入坐标解算,得到参照木的树心坐标,消除了传统角尺度测量中未考虑参照木胸径引起的角度测量误差。同时实现了混交度测量、大小比数测量,并就林分空间结构中角尺度测量、混交度测量、大小比数测量开展试验,验证了其功能的可行性。
     本研究为森林计测提供了新的便携式实用型多功能技术装备,对提高森林调查水平,促进森林调查内外业一体化、信息化、智能化有一定的作用。研制中采用了“电子化”和“数字化”的设计思想,能够保障数据的电子化存储,外业数据可以通过通讯接口直接导入计算机进行内业计算,以及将多种功能进行集成,对我国多功能电子化测树仪的研制具有引导和借鉴作用。
Forest measuration is one of the important basic information gathering work in forest management and dendrometer, whose mensuration accuracy, automatic efficiency and costs play a decisive role in forestry inventory accuracy data quality, is the basic tool for forest mensuration. The existing dendrometers seriously restrict the development of forest inventory work with its outdated data gathering method, functional singleness, low-efficiency, low-precision, high prices and vast indoor work methods. Therefore, an automatic, digitized, accurate, multifunctional and portable dendrometer is urgently needed to promote the development of forest resource information acquisition technology. This research is based on forest survey sampling and statistical theory, combining with forest mensuration-. mathematics、physics、mechanical engineering、microelectronics science and computer etc. This research studied forest precision mensuration theory, modeling, implementation methods and the design of digitized-microminiaturized and integrated dendrometer. Meanwhile this paper developed the handheld mensuration smart station prototype and its application system. And an experiment was carried out to measure its functionalities and precision. This paper aimed at realizing the digitization, informatization, automation and intelligence, and it provides services for forest management and forest modernization. Main research conclusions can be summarized as following:
     I. Digitized, microminiaturized and integrated multifunction system designs of handheld smart station dendrometers
     Digitized and portable multifunction dendrometer developing idea is put forward to realize the digitized, multifunction, microminiaturized and precision mensuration of forest. And a handheld mensuration smart station dendrometer was developed, whose foundation is MEMS (micro-electro-mechanical systems) angle measurement sensor、laser ranging sensor and electronic compass etc. Operating system is developed through measurement distances、inclination and magnetic azimuth, combined with forest mensuration theory. It realized individual tree mensuration, plot gauging, and number of density mensuration of plants, electronic stereo angle gauge mensuration and Neighborhood Comparison, mingling, uniform angle index mensuration in stand spatial structure. The first and the second generation products have been developed with its indoor processing software, which realizes the direct input of field data into interior work software as to calculate, being free from the problems brought by paper records of field data and second inputs.
     II. Models, theories and accuracy testing for individual tree mensuration based on handheld smart station dendrometers
     Models of tree height mensuration, diameter mensuration, non-contact diameter at breast height and individual tree volume are put forward based on laser ranging, inclination mensuration and azimuth mensuration. Realizing the mensuration model on the handheld smart station dendrometer and the experiments aimed at each functionality were conducted. Experiments showed that the measurement errors of smart station dendrometers to total stations for the first product are between0.28%-1.59%. The mensuration accuracy of the second product is between20-27cm, its degree of precision is between18-27cm and its precision is between97.37%%-98.33%. CCD diameter measurement is divided into right angle photogrammetry and lean measurement and its measurement values were compared with those of diameter tape. The DBH measurement accuracy is within1cm for this method, degree of precision is between3.8mm-6.8mm.Its measurement accuracy is between96.11%~98.44%, relative error of lean measurement (between-40°and+40°)is between-5.28%~6.26%.
     Two methods for non-contact diameter mensuration at breast height were studied-fixed point scale mensuration and mobile angle gauge mensuration, though they aren't ideal in precision, their feasibility of modeling, theory and implementation methods are verified. Individual tree volume measurement theory and method is put forward and experimented, however, its mensuration error is bigger for the mensuration of diameter at breast height, causing the bigger error in volume mensuration. Compared with the error of total station, its error is smaller.
     III. Study of the plot mensuration model, theories and functional precision testing
     The plot mensuration model studied in this paper includes closed traverse calibration, coordinate measuring in the plot, polar coordinate mensuration, number density mensuration of plants, average height mensuration of forest, circle plot gauging and polygon plot measurement gauging. What is more, each function is tested. Verifying the feasibility and precision as follows:total length closing errors of closed traverse and calibration line are between1.41%~14.20%and relative error for area measurement is between-2.52%and2.32%; realization of tree coordinate mensuration in the plot and the automatic drawing of sample tree distribution map; area mensuration error of polar coordinate mensuration function is between0.85%and5.51%.The relative error between number density mensuration of plant and manual measuring is3.89%; the relative error for forest average height is5.03%.It can be draw from the data of tally in the circular plot that the relative error for stand density, stand average height, average DBH and volume is4.32%,-0.71%,-4.07%and-1.25%;as for the polygon plot mensuration, the relative error for number density mensuration of plant is between-0.76%and4.34%,and error of plot area mensuration between1.19%and2.22%, relative error for the DBH between-4.90%and-20.82%, relative error for volume evaluation between-8.96%and-18.45%.
     IV. Mensuration functionalities and functional precision verifying of electronic stereo angle gauges
     Automatic counting of angle gauge counting was realized by electronic stereo angle gauge, whose relative error is between-0.33%and-0.07%compared with traditional angle gauge counting. Tree height, DBH is measured on the angle gauge points, the evaluation of number density of plants, average height and volume in forest is realized. Results compared with the data of field individual measurement shows that the relative error for volume evaluating is-5.84%,9.10%, and0.12%for average height mensuration error. Meanwhile, problems of automatic judgment for f trees in the borderline is resolved, exempt from the trouble of tape ranging in the traditional way of judging borderline trees.
     V. Study on measurement models and principles of stand spatial structure parameters
     A way of calculating the angle between reference trees and their closest tree is put forward by measuring the coordinates between reference trees and their closest tree. Meanwhile, DBH mensuration is add according to the method of intersection angle measuring uniform angle indice. And coordinates in the tree center of the reference tree are obtained, eliminating the angle measurement error caused by the reference tree DBH in traditional angle measuring. Mingling mensuration and uniform angle mensuration are realized, and uniform angle mensuration, mingling mensuration and neighborhood comparison measurement are run in stand spatial structure, verifying it feasibility.
     This research provides a new portable practical multifunction technical equipment for forest mensuration, playing a role in promoting forest inventory level, promoting the integration of field work and indoor work, informatization and intelligentization. The ideal of electronization and digitization is adopted in the development, which can make sure the electronic storage of data. Field data can be directly inputted into the computer and calculated by Serial Communication Interface and multifunction is integrated, offering guidance and lessons for the development of our country's multifunction dendrometers.
引文
[2].陈楚敏.MCCD与CCD. CMOS技术之比较[J].中国安防,2013,(04):39-42.
    [3].陈尔学,李增元,庞勇,等.基于极化合成孔径雷达干涉测量的平均树高提取技术[J].林业科学,2007,43(4):66-70.
    [4].陈金星,张茂震,祁祥斌,等.低功耗树木直径生长记录仪[J].林业机械与木工设备,2013,41(02):34-37.
    [5].陈金星,张茂震,赵平安,等.一种基于拉绳传感器的树木直径记录仪[J].西北林学院学报,2013,28(04):188-192.
    [6].陈树新,王永生,陈飞.实时动态载波相位差分GPS定位精度分析[J].弹箭与制导学报,2002,(03):1-5.
    [7].陈义伟,李春友,张劲松,等.基于多基线近景摄影测量系统的树木形态结构测定技术的研究[J].安徽农业科学,2012,40(8):4628-4630.
    [8].陈颖,隋宏大,冯仲科,等.2种树高测量方法的测量精度对比分析[J].林业调查规划,2009,34(6):1-5.
    [9].达来,袁桂芬.布鲁莱斯测高器野外测树误差的室内修正[J].内蒙古林业调查设计,1998,(S1):68-72.
    [10].大隅真一,北村昌美.森林计测学[M]:东京养贤堂,1977.
    [11].大隅真一BLUME-LEISS测高器[J].日本林学会誌,1957,39(4):146-149.
    [12].大隅真一.森林计测学讲义[M].东京:东京养贤堂,1989.
    [13]].董乃钧.测树工具误差的检验方法[J].林业资源管理,1976,(01):27-29.
    [14].董希斌,王光夫.方形样地与多边形样地的森林资源调查的精度分析[J].森林采运科学,1991,(02):22-25.
    [15].董小安.GeoXT手持GPS差分接收机的实测与精度分析[J].青海石油,2010,(02):32-34.
    [16].窦立君.基于组件的林分空间结构测试系统研建及应用[D]:南京林业大学,2009.
    [17].冯仲科,景海涛,周科亮,等.全站仪测算材积的原理及精度分析[J].北京林业大学学报,2003,25(3):60-63.
    [18].冯仲科,罗旭,马钦彦,等.基于三维激光扫描成像系统的树冠生物量研究[J].北京林业大学学报,2007,29(S2):52-56.
    [19].冯仲科,殷嘉俭,贾建华,等.数字近景摄影测量用于森林固定样地测树的研究[J].北京林业大学学报,2001,(6).
    [20].冯仲科.精准林业[M].北京:中国林业出版社,2004.
    [21].付甜.基于机载激光雷达的亚热带森林参数估测[D]:安徽农业大学,2010.
    [22].高星伟,李毓麟,葛茂荣.GPS/GLONASS相位差分的数据处理方法[J].测绘科学,2004,(02):22-24.
    [23].关毓秀.测树学[M].北京:中国林业出版社,1987.
    [24].郭保生,何瑞珍,张敬冬,等.全站仪在立木材积测定中的应用研究[J].中国农学通报,2006,22(4):149-151.
    [25].郭秀荣,吴春峰.基于三维激光扫描仪的立木材积测定方法研究[J].现代科学仪器,2013,(04): 132-134.
    [26].郝月兰,张会儒,唐守正.基于空间结构优化的采伐木确定方法研究[J].西北林学院学报,2012,(05):163-168.
    [27].何朝亮,张帮贵,曹川,等.全站仪在森林资源调查中测量不同形状样地的效率比较[J].现代园艺,2012,(22):5.
    [28].何诚.森林精准计测关键技术研究[D]:北京林业大学,2013.
    [29].胡为林,周麟.介绍一种测定树高的新方法[J].华东森林经理,1992,(01):23-25.
    [30].胡艳波,惠刚盈,戚继忠,等.吉林蛟河天然红松阔叶林的空间结构分析[J].林业科学研究,2003,(05):523-530.
    [31].华网坤.林分速测镜的设计及应用[R]:中国林业科学院,1963.
    [32].黄光裕.高效测树高的方法[J].湖南林业科技,1990,(4):49-50.
    [33].惠刚盈,K. V. Gadow,胡艳波.林分空间结构参数角尺度的标准角选择[J].林业科学研究,2004,(06):687-692.
    [34].惠刚盈,胡艳波,赵中华,等.基于交角的林木竞争指数[J].林业科学,2013,(06):68-73.
    [35].惠刚盈,胡艳波,赵中华.基于相邻木关系的树种分隔程度空间测度方法[J].北京林业大学学报,2008,30(4):131-134.
    [36].惠刚盈,胡艳波,赵中华.再论“结构化森林经营”[J].世界林业研究,2009,(01):14-19.
    [37].惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究,2001,(01):23-27.
    [38].惠刚盈.基于相邻木关系的林分空间结构参数应用研究[J].北京林业大学学报,2013,(04):1-9.
    [39].贾秀红,郑小贤.长白山过伐林区云冷杉针阔混交林空间结构分析[J].华中农业大学学报,2006,(04):436-440.
    [40].姜国斌,于中华.测定树高的有效方法—角杆法[J].辽宁林业科技,1990,(1):24-26.
    [41].姜文军,那海豹.对控制样地调查采用圆形调查方法优越性的讨论[J].林业勘察设计,2004,(2):42.
    [42].巨文珍,王新杰,孙玉军.基于林分疏密度的不同尺度方形样地与美国FIA圆形样地聚类分析[J].东北林业大学学报,2010,(5):44-47.
    [43].雷相东,洪玲霞,陆元昌,等.国家级森林资源清查地面样地设计[J].世界林业研究,2008,21(4):35-40.
    [44].李冰,曾连荪.GPS定位信息提取及应用[J].电子设计工程,2012,(12):72-74.
    [45].李丹,庞勇,岳彩荣,等.基于TL5数据的单木胸径和树高提取研究[J].北京林业大学学报,2012,34(4):79-86.
    [46].李建华,董金伟,王利.利用“斜距法”测算树高的探讨[J].山东林业科技,2002,(1):30-31.
    [47].李建华.测量学[M].上海:上海交大出版社,2008.
    [48].李建华.基于三角原理的森林测高器研制与应用[D]:山东农业大学,2011.
    [49].李建军.广东湛江红树林生态系统空间结构优化研究[D]:中南林业科技大学,2010.
    [50].李立存,张淑芬,邢艳秋.全站仪和测高仪在树高测定上的比较分析[J].森林工程,2011,(4):38-41.
    [51].李明泽,范文义,张元元.基于全数字摄影测量的林分立木高度量测[J].北京林业大学学报,2009,(2):74-79.
    [52].李铣,孙贵新.对GPS载波相位差分电文格式的研究[J].中国科技信息,2005,(18):70.
    [53].廖彩霞,吴瑶,衣得萍,等.林分空间结构的研究[J].林业科技情报,2007,(02):40-41.
    [54].廖彩霞.樟子松人工林空间结构的研究[D]:东北林业大学,2007.
    [55].嶺一三.简易测高器の数种に就て[J].日本林学会誌,1940,22(2):100-104.
    [56].刘发林,曾思齐,鄢前飞,等.数字式多功能测树仪的研制[J].中南林业科技大学学报,2012,32(4):41-44.
    [57].刘发林,吕勇,曾思齐.森林测树仪器使用现状与研究展望[J].林业资源管理,2011,(01):96-99.
    [58].刘文桢,赵中华,惠刚盈,等.小陇山油松天然林结构特征[J].林业科学研究,2011,(04):437-442.
    [59].罗旭,冯仲科,邓向瑞,等.三维激光扫描成像系统在森林计测中的应用[J].北京林业大学学报,2007,29(S2):82-87.
    [60].罗旭.基于三维激光扫描测绘系统的森林计测学研究[D]:北京林业大学,2006.
    [61].吕林昭.长白山落叶松人工天然混交林空间格局研究[J].内蒙古林业调查设计,2007a,(03):57-62.
    [62].吕林昭.长白山人工天然混交林结构动态研究[D]:北京林业大学,2007b.
    [63].麻生诚.麻生式测高器[J].林学会杂誌,1928,10(8):446-451.
    [64].孟宪宇.测树学.北京:中国林业出版社,2006:230-236.
    [65].孟宪宇.测树学[M].北京:中国林业出版社,1996.
    [66].潘启明,曾志龙,赵立民,等.基于AT89S51单片机的树高测量仪的设计[J].机电产品开发与创新,2010,23(4):49-51.
    [67].庞勇,李增元,陈尔学,等.激光雷达技术及其在林业上的应用[J].林业科学,2005,41(3):129-136.
    [68].祁祥斌,张茂震,陈金星,等.基于MSP430F149的低功耗测树仪[J].机电工程,2012,29(03):282-285.
    [69].宋小春,康宜华,武新军,等.基于数字图像处理的林木自动测量系统研究[J].计算机工程与设计,2005,26(5):1187-1189.
    [70].宋新民.“任意多边形样地”在平原农区森林资源连续清查中的运用[J].林业资源管理,1995,(01):77-80.
    [71].隋宏大.树高测量综合技术比较研究[D]:北京林业大学,2009.
    [72]孙建军,雷相东,洪玲霞,等.通用森林样地调查统计分析系统设计与开发[J].计算机技术与发展,2009,19(8):193-196.
    [73].万祥,张孟阳,张爽娜.高动态“北斗”双频载波相位差分工程化方法[J].航天器工程,2010,(04):47-54.
    [74].王剑,周国民.基于激光扫描仪的树干三维重建方法研究[J].微计算机信息,2009,25(24):228-230.
    [75].王剑.手持GPS差分测量误差分析及应用[J].水力采煤与管道运输,2012,(01):87-88.
    [76].王平.基于机载LiDAR数据和航空像片的单木参数提取研究[D]:东北林业大学,2012.
    [77].王涛,龚建华,张利辉,等.基于机载激光雷达点云数据提取林木参数方法研究[J].测绘科学,2010,35(6):47-49.
    [78].魏占才,王文斗,苏杰南.森林调查技术[M].北京:中国林业出版社,2006.
    [79].吴春峰,陆怀民,郭秀荣,等.利用三维激光扫描系统测量立木材积的方法[J].森林工程, 2009,25(03):71-72.
    [80].吴春峰,陆怀民,郭秀荣,等.三维激光扫描系统在测树中的应用[J].林业机械与木工设备,2008,25(3):48-49.
    [8 1].吴富桢.测树学[M].北京:中国林业出版社,1992:9-56.
    [82].吴连军,徐国力,魏玉艳,等.超站仪技术在树木测量中的应用研究[J].测绘与空间地理信息,2012,35(11):60-62.
    [83].相占杰.任意多边形面积的计算方法及程序设计[J].河北林业科技,1986,(01):35-36.
    [84].绦田六郎.CHRISTEN式测高器の新しい利用法[J].日本林学会誌,1961,43(1):27.
    [85].谢而盖也夫Ji H.,华敬灿.测学树[M].北京:中国林业出版社,1954.
    [86].谢鸿宇,温志庆,钟世锦,等.无棱镜全站仪测量树高及树冠的方法研究[J].中南林业科技大学学报,2011,31(11):53-58.
    [87].熊妮娜,王佳,罗旭,等.一种基于三维激光扫描系统测量树冠体积方法的研究——以油松为例[J].北京林业大学学报,2007,29(S2):61-65.
    [88].徐海,惠刚盈,胡艳波,等.天然红松阔叶林不同径阶林木的空间分布特征分析[J].林业科学研究,2006,(06):687-691.
    [89].徐伟恒,冯仲科,苏志芳,等.手持式数字化多功能电子测树枪的研制与试验[J].农业工程学报,2013,29(03):90-99.
    [90].徐伟恒,冯仲科,苏志芳,等.一种基于三维激光点云数据的单木树冠投影面积和树冠体积自动提取算法[J].光谱学与光谱分析,2014,(02):465-471.
    [91].鄢前飞.林业数字式测高测距仪的研制[J].中南林业科技大学学报,2007,(05):66-70.
    [92].闫伟,马岩.基于激光测距的树高测量方法研究[J].林业机械与木工设备,2012,(2):30-32.
    [93].杨杰,张凡.高精度GPS差分定位技术比较研究[J].移动通信,2014,(02):54-58.
    [94].杨丝涵,岳德鹏,冯仲科,等.多边形样地法的最优株数选取[J].东北林业大学学报,2013,(12):26-29.
    [95].尹丽丽,李志鹏.定高树径测量仪的研究[J].林业机械与木工设备,2006,34(1):22-23,28.
    [96].尹艳豹.基于机载激光雷达测量的森林资源调查因子联立估计研究[D]:中国林业科学研究院,2010.
    [97].袁凤军,崔凯,廖声熙,等.滇中云南松天然林空间结构特征[J].西南农业学报,2013,(03):1223-1226.
    [98].曾伟生.杉木相容性立木材积表系列模型研建[J].林业科学研究,2014,27(1):6-10.
    [99].张九宴,刘晖,黄其欢.常用GPS载波相位差分电文格式分析与比较[J].测绘信息与工程,2003,(05):29-30.
    [100].张连金,惠刚盈,孙长忠.不同林分密度指标的比较研究[J].福建林学院学报,2011,(03):257-261.
    [101].张青,李永慈,唐守正.基于仿射重构的树高测量[J].计算机工程与应用,2005,41(31):21-22.
    [102].张硕,王嘉伟,石双龙.基于GPS的校园巡航定位系统模型设计[J].企业导报,2012,(24):275-276.
    [103].张向华,陆载涵,宋小春.图像测量技术在森林调查中的应用[J].湖北工学院学报,2004,19(1):36-38.
    [104].张彦林,冯仲科,杨伯钢,等.LIDAR技术在林业调查中的应用研究[J].林业资源管理,2007,(6):73-77.
    [105].赵旦.基于激光雷达和高光谱遥感的森林单木关键参数提取[D]:中国林业科学研究院,2012.
    [106].赵德惠,邹泽纯.森林测算知识[M].北京:中国林业出版社,1987.
    [107].赵芳,韦雪花,高祥,等.三维激光扫描系统在建立单株立木材积模型中的研究[J].山东农业大学学报:自然科学版,2013,44(2):231-238.
    [108].赵志礼,孟庆辉,张松涛,等.基于单片机的GPS定位信息处理[J].电子测试,2009,(10):45-48.
    [109]].赵中华,惠刚盈,袁士云,等.小陇山锐齿栎天然林空间结构特征[J].林业科学,2009,(03):1-6.
    [110].智长贵,范文义.空间前方交会中外方位元素误差对测量立木高度的影响[J].东北林业大学学报,2007,35(6):86-87,91.
    [111].中国国家林业局.国家森林资源连续清查技术规定[S],2003:2003-12.
    [112].周红敏,惠刚盈,赵中华,等.林分空间结构分析中样地边界木的处理方法[J].林业科学,2009,(02):1-5.
    [113].周红敏.样方法在森林空间结构参数调查中的应用[D]:中国林业科学研究院,2009.
    [114].周淑芳.基于机载LiDAR与航空像片的单木树高提取研究[D]:东北林业大学,2007.
    [115].邹云龙,高峰,陈洪洁,等.基于计算机与彩色图像的树高测量[J].绿色科技,2013,(10):224-225.
    [116].A W S, Q U Z. Software development for real-time ultrasonic mapping of tree canopy size[J]. Computers and Electronics in Agriculture,2005,47:25-40.
    [117].Ab H S, Se H. Electronic measuring tape[P].2008-11-18. url.
    [118].Adrian I H, Frederic M, Leban J. A digital photographic method for 3D reconstruction of standing tree shape[J]. Annals of forest science,2007,64:631-637.
    [119].Anthonie Van Laar AA. Forest Mensuration[M]. Netherlands:Springer,2007:78-243.
    [120].Avery T E,Burkhart H. Forest Measurements[M]. New York:McGraw-Hill,1983:331.
    [121].Bitterlich W. Die Winkelzahlprobe[J]. Forstwissenschaftliches Centralblatt,1952,71(7-8): 215-225.
    [122].Bitterlich W. The angle count method[J]. Allgemeine Forst,1947,(58):94-96.
    [123].Bragg, C. D. An Improved Tree Height Measurement Technique Tested on Mature Southern Pines[J]. Southern Journal of Applied Forestry,2008,32(1):38-43.
    [124].Clark N. An assessment of the utility of a non-metric digital cam-era for measuring standing trees[D]:Virginia Polytechnic Institute andState University,1998.
    [125].D. M D, K. I, F. B J. Using a large-angle gauge to select trees for measurement in variable plot sampling[J]. Canadian Journal of Forest Research,2004,34(4):840-845.
    [126].Danson F M, Hetherington D, Morsdorf F, et al. Forest canopy gap fraction from terrestrial laser scanning[J]. Geoscience and Remote Sensing Letters, IEEE,2007,4(1):153-160.
    [127].David D M, Kim I, John F B. Using a large-angle gauge to select trees for measurement in variable plot sampling[J]. Canadian Journal of Forest Research,2004,34(4):840-845.
    [128].David M D, Geoffrey M D. The use of precision dendrometers in research on daily stem size and wood property variation:Areview[J]. Dendrochronologia,2009,(27):159-172.
    [129].Fan Z, Gao J, Zeng D, et al. Three-dimensional (3D) structure model and its parameters for poplar shelterbelts[J]. Science China Earth Sciences,2010,53(10):1513-1526.
    [130].Fisher J I, Hurtt G C, Thomas R Q, et al. Clustered disturbances lead to bias in large-scale estimates based on forest sample plots[J]. Ecology Letters,2008,11(6):554-563.
    [131].Gabor B, Geza K. Algorithms for stem mapping by means of terrestrial laser scanning[J]. Acta Silvatica et Lignaria Hungarica,2009,5(1):119-130.
    [132].Gaffrey D. S B F M. Terrestrial single image photogrammetry for measuring standing trees, as applied in the Dobroc virgin forest[J]. J. For. Sci.,2001,(47):75-87.
    [133].Gorte B, Pfeifer N. Structuring laser-scanned trees using 3D mathematical morphology[J]. International Archives of Photogrammetry and Remote Sensing,2004,35(B5):929-933.
    [134].Hall R C. A Vernier Tree-Growth Band[J]. Journal of Forestry,1944,42(10):742-743.
    [135].Husch B, Beers T W, Kershaw J A. Forest mensuration[M]. Hoboken:Wiley,2003.
    [136].Husch B, Miller I C, Beers T W. Forest Mensuration[M]. New York:John Wiley & Sons,1982.
    [137].Iost R D H A. From points to numbers:a database-driven approach to convert terrestrial LiDAR point clouds to tree volumes[J]. European Journal of Forest Research,2012,131(6):1857-1867.
    [138].Jaakkola A, Hyyppa J, Kukko A, et al. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2010,65: 514-522.
    [139].Jonathan P D, Erle C E. Remote Sensing of Vegetation Structure Using Computer Vision[J]. Remote Sensing,2010,(2):1157-1176.
    [140].Kennel R. Die Genauigkeit von Kluppung und Umfangsmessung nach einem Vergleichsversuch[J]. Forstw.Cbl,1959,78:78-243.
    [141].Kimura T, Geya Y, Terada Y, et al. Development of a mobile magnetic resonance imaging system for outdoor tree measurements[J]. REVIEW OF SCIENTIFIC INSTRUMENTS,2011,053704(82).
    [142].Kwak D, Lee W, Lee J, et al. Detection of individual trees and estimation of tree height using LiDAR data[J]. Journal of Forest Research,2007,12(6):425-434.
    [143].Larjavaara M, Muller-Landau H C. Measuring tree height:a quantitative comparison of two common field methods in a moist tropical forest[J]. Methods in Ecology and Evolution,2013,4(9): 793-801.
    [144].Louis D, Daniel H. Modelling day-to-day stem diameter variation and annual growth of balsam fir (Abies balsamea (L.) Mill.) from daily climate[J]. Forest Ecology and Management,2011,262: 863-872.
    [145].Lovell J L, Jupp D L B, Newnham G J, et al. Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66:46-55.
    [146].Millera D R, Quineb C P, Hadley W. An investigation of the potential of digital photogrammetry to provide measurements of forest characteristics and abiotic damage[J]. Forest Ecology and Management,2000,135:279-288.
    [147].Moorthy I, Miller J R, Hu B, et al. Retrieving crown leaf area index from an individual tree using ground-based lidar data[J], Canadian Journal of Remote Sensing,2008,34(3):320-332.
    [148].Muller R. Der Hohenmesser Blume-LeiB[J]. Forstarchiv,1935,1:269-273.
    [149].Nikon Vision Co. L. Forestry 550[EB/OL]. http://www.nikon.com/products/sportoptics/lineup/laser/f550
    [150].Nilsson M. Estimation of tree heights and stand volume using an airborne lidar system[J], Remote Sensing of Environment,1996,56(1):1-7.
    [151].Sevanto S, Holtta T, Hirsikko A, et al. Determination of thermal expansion of green wood and the accuracy of tree stem diameter variation measurements[J]. BOREAL ENVIRONMENT RESEARCH, 2005,24(10):437-445.
    [152].Simonse M, Aschof T, Spiecker H, et al. Automatic determination of forest inventory parameters using terrestrial laserscanning[C]. In Proceedings of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests,2003.
    [153].Spurr H S. Forest Inventory[M]. New York:Ronald,1952:333-370.
    [154].Sulkava M, Akinen H M, Ojd P N, et al. Automatic detection of onset and cessation of tree stem radius increase using dendrometer data and CUSUM charts [C]. Proceedings of the 2nd European Symposium on Time Series Prediction (ESTSP08),2008.
    [155].Van Laar AAA. Forest Mensuration[J]. Netherlands:Springer,2007:78-243.
    [156].Van Stan J T, Jarvis M T, Levia D F. An Automated Instrument for the Measurement of Bark Microrelief[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2010, 59(2):491-493.
    [157].Von K A H, M A, von K G. The Crown Window -a simple device for measuring tree crowns Das Kronenfenster-ein einfaches MeBlgerat zur Ermittlung von Kronendimensionen[J]. Forstw,2000,119: 43-50.
    [158].Waguchi Y. Accuracy and precision of crown profile, volume, and surface areameasurements of 29-year-old Japanese cypress trees using a Spiegel relascope[J]. The Japanese Forestry Society and Springer-Verlag Tokyo,2004,(9):173-176.
    [159].Wezyk P, Koziol K, Glista M, et al. Terrestrial laser scanning versus traditional forest inventory First results from the polish forests[J]. IAPRS,2007,3(36):424-429.
    [160].Williams M S, Bechtold W A, Labau V J. Five Instruments for Measuring Tree Height:An Evaluation[J]. Southern Journal of Applied Forestry,1994,18(2):76-82.
    [161].Xu, Weiheng, Su Z, Feng Z, et al. Comparison of conventional measurement and LiDAR-based measurement for crown structures[J]. Computers and Electronics in Agriculture,2013,98:242-251.
    [162].Yan F, Ullah M R, Gong Y, et al. Use of a no prism total station for field measurements in Pinus tabulaeformis Carr. stands in China[J]. biosystems engineering,2012,113:259-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700