水稻包穗的遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂交水稻的推广应用为解决我国粮食问题作出了很大贡献,但其生产中所用的不育系均存在包穗现象,严重影响了杂交水稻繁殖制种产量。水稻中包穗现象主要是由最上节间缩短造成的。阐明包穗形成的分子遗传机制,对解决水稻不育系的包穗问题,创造水稻新种质具有重要意义。本研究从数量性状和质量性状两方面对包穗的遗传基础进行研究。主要研究内容和结果如下:
     1.包穗相关性状的QTL定位:在两个环境下种植一个由热带粳稻品种DZ60与籼稻品种H359杂交而建立的重组自交系(RIL)群体,调查最上节间长(UIL)、剑叶鞘长(FLSL)和最上节间长与剑叶鞘长比率(UFR)。利用已构建的分子标记连锁图,对这3个与包穗有关的性状进行QTL定位。共检测到10个QTL,其中3个控制UIL,位于1、4、12号染色体,对表型变异贡献率为3.20%-14.59%;4个控制FLSL,位于1、6、8、12号染色体,对表型变异贡献率为2.59%-20.70%;3个控制UFR,位于4、6、8号染色体,对表型变异贡献率为2.89%-6.00%。qUIL-1与qFLSL-1的位置完全重叠,且效应最大,在不同环境中表达稳定,是一个同时控制UIL和FLSL的主效QTL。对水稻基因组序列的查询结果显示,该QTL所在区间正好包含半矮秆基因sd1,因而推测其效应来自sd1基因。
     2. esp1突变体的遗传分析:利用物理诱变方法从籼稻恢复系早R974中获得了一个包穗突变体,表现为植株变矮、抽穗延迟、最上节间短缩、半包穗、穗型短小、穗粒数减半、二次枝梗数目减少以及部分颖花退化等特征。我们将该突变体命名为esp1。解剖观察发现,esp1最上节间的薄壁细胞纵向平均长度(41.29μm)仅为野生型(59.11μm)的69.85%,说明esp1最上节间中部细胞延伸受阻,使其最上节间伸长不足,是导致包穗的原因。遗传分析表明,esp1受一隐性基因控制,能稳定遗传,不受遗传背景的影响。喷施GA3试验表明,esp1对赤霉素表现钝感。将esp1与粳稻品种日本晴杂交,构建了F2和BC_1F_1群体,将ESP1基因定位在水稻第11号染色体上SSR标记RM26281和GRM40之间,与这两个标记的遗传距离分别为0.29 cM和0.048 cM。根据ESP1所在区域的物理图谱,初步确定突变体esp1在SSR标记GRM88和GRM40之间发生了大约260 kb的缺失。基因预测表明该区域包括52个基因。这些研究结果为克隆ESP1基因奠定了基础。
     3. esp2突变体的遗传分析:从籼稻品种明恢86的组织培养后代中获得了一个包穗突变体,其穗部被剑叶叶鞘完全包裹,最上节间几乎完全退化,而其余各节间长度则没有明显改变。我们将该突变体命名为esp2。解剖观察发现,esp2的最上节间细胞数目大幅减少,细胞生长分化停顿,茎秆空心髓和维管束发育受阻。遗传分析表明,esp2受一隐性基因控制,能稳定遗传,不受遗传背景的影响。显然,ESP2是控制水稻最上节间发育的一个关键基因。基因互作分析表明,就最上节间长度这个性状而言,ESP2对ESP1以及两个最上节间伸长基因(EUI1和EUI2)都表现为隐性上位,双突变体esp1esp2、eui1esp2和eui2esp2皆表现为几乎没有最上节间。这说明ESP2功能的丢失使水稻最上节间无法发育,因而也就无从表现出由ESP1、EUI1和EUI2基因突变所造成的最上节间长度的数量变异。喷施GA3试验表明,esp2与esp1相似,对赤霉素也表现钝感。利用esp2与粳稻品种秀水13杂交的F2群体,将ESP2精细定位在1号染色体短臂末端一个14 kb的区域内。根据水稻基因组序列的注释,该区域内只存在1个完整的基因,亦即一个假定的磷脂酰丝氨酸合成酶(putative phosphatidylserine synthase)基因。DNA测序分析表明,该基因内部插入了一个5287 bp的反转座子序列。因此把该基因作为ESP2的候选基因。实时荧光定量PCR分析结果显示,ESP2候选基因在野生型明恢86的各个时期和各个组织均有表达,且表达量受外源赤霉素的诱导上调。本研究结果为ESP2基因的功能分析奠定了基础。
The successful application of hybrid rice has made great contribution to solving the food problem in China. However, the phenomenon of panicle enclosure exists in all the male sterile (MS) lines used in hybrid rice production. This seriously affects the yields of MS seed reproduction and hybrid seed production. Panicle enclosure in rice is mainly caused by the shortening of uppermost internode. Elucidating the molecular genetic mechanism of panicle enclosure will be helpful for solving the problem of panicle enclosure in MS lines and creating new germplasms in rice. In this study, we investigated the genetic basis of panicle enclosure in rice from the aspects of natural variation and mutants, respectively. The main research contents and results are as follows:
     1. Mapping of QTLs underlying panicle enclosure-related traits: A recombinant inbred line (RIL) population derived from a cross between a tropical japonica rice cultivar DZ60 and an indica rice cultivar H359 was grown under two environments and phenotyped for uppermost internode length (UIL), flag leaf sheath length (FLSL) and UIL-to-FLSL ratio (UFR). Using a molecular marker linkage map constructed previously based on this population, QTL mapping was performed for these three panicle enclosure-related traits. A total of 10 QTLs were detected, of which 3 were for UIL, located on chromosomes 1, 4 and 12, explaining 3.20%-14.59% of the phenotypic variance; 4 were for FLSL, located on chromosomes 1, 6, 8 and 12, explaining 2.59%-20.70% of the phenotypic variance; and 3 were for UFR, located on chromosomes 4, 6 and 8, explaining 2.89%-6.00% of the phenotypic variance. qUIL-1 and qFLSL-1 were mapped at the same position and displayed the largest effects expressed steadily across the environments, suggesting that they are a major QTL underlying UIL and FLSL simultaneously. Searching of the rice genome sequence indicated that the interval of this QTL covers the semidwarf gene sd1. Hence, we guess that the effect of this QTL might come from the sd1 gene.
     2. Genetic analysis of mutant esp1: A panicle enclosure mutant was obtained from the progeny of an indica rice restorer line Zao-R974 after irradiation mutagenesis. The mutant displayed the characteristics of reduced plant height, delayed heading, shortened uppermost internode, partial enclosure of panicle, shorter panicle, 50% fewer grains per panicle, decreased number of secondary branches and degeneration of partial spikelets. We named the mutant as esp1 (enclosed shorter panicle 1). Anatomical observation indicated that the average longitudinal length of parenchyma cells in esp1 uppermost internode (41.29μm) was only 69.85% of that of the wild-type (59.11μm), suggesting that the extension of cells in esp1 uppermost internode was cumbered, leading to less elongated uppermost internode and thus causing panicle enclosure. Genetic analysis showed that the mutant phenotype was controlled by a recessive gene, which was regularly inherited and unaffected by genetic background. GA3 spraying experiment indicated that esp1 is insensitive to gibberellin. Using the F2 and BC1 populations of a cross between esp1 and the japonica cultivar Nipponbare, we fine mapped ESP1 to a region between SSR markers RM26281 and GRM40 on chromosome 11, with genetic distances of 0.29 cM and 0.048 cM to the two markers, respectively. According to the physical map of the region covering ESP1, it was suggested that there was a 260-kb deletion between markers RM26281 and GRM40 in the mutant genome. According to the rice genome sequence annotation, there are 52 genes in this region. These results will facilitate the cloning of ESP1 gene.
     3. Genetic analysis of mutant esp2: A mutant of panicle enclosure was acquired from the tissue culture progeny of indica rice cultivar Minghui-86. In the mutant, panicles were entirely enclosed by flag leaf sheaths and the uppermost internode was almost completely degenerated, but the other internodes did not have obvious changes in length. We named the mutant as esp2 (enclosed shorter panicle 2). Anatomical observation revealed that in the uppermost internode of esp2 the number of cells was dramatically reduced, the growth and differentiation of the cells was stopped, and the development of stem pith cavity and vascular bundles was arrested. Genetic analysis indicated that the mutant phenotype was controlled by a recessive gene, which could be steadily inherited and was not affected by genetic background. Apparently, ESP2 is a key gene for the development of uppermost internode in rice. Gene interaction analysis showed that in regard to the trait of uppermost internode length, ESP2 has recessive epistasis over ESP1 and two uppermost internode elongation genes (EUI1 and EUI2). The double mutants of esp1esp2, eui1esp2 and eui2esp2 all hardly have visible uppermost internode. GA3 spraying experiment indicated that esp2 is also insensitive to gibberellin like esp1. Using an F2 population of a cross between esp2 and a japonica rice cultivar Xiushui-13, we fine mapped ESP2 to a 14-kb region on the end of the short arm of chromosome 1. According to the rice genome sequence annotation, only one intact gene exists in this region, namely, a putative phosphatidylserine synthase gene. Sequencing analysis on the mutant and the wild type indicated that this gene was inserted by a 5287-bp retrotransposon sequence. Hence, we took this gene as the candidate of ESP2. Quantitative RT-PCR analysis indicated that the ESP2 candidate gene is expressed in various growth stages and tissues in the wild-type Minhui-86, and the expression is enhanced by exogenous GA3. The results of this study will facilitate functional analysis of ESP2 gene.
引文
陈建民,顾世梁,汤述翥,等.水稻隐性高秆突变的遗传研究[J].扬州大学学报(自然科学版), 1998, 1(3): 36-41
    邓华凤,何强,舒服,等.中国杂交粳稻研究现状与对策[J].杂交水稻, 2006, 21(1): 1-6
    董凤高,熊振民,闵绍楷,等.应用赤霉素对水稻矮秆资源进行苗期鉴别的研究[J].南京农业大学学报, 1992, 15(3): 13-19
    段远霖,吴为人,张丹凤,等.水稻幼穗分化受阻突变体lhd的遗传分析与基因定位[J].科学通报, 2003, 8(15): 1662-1665
    傅达奇,李正国.植物激素乙烯[J].北方园艺, 2001, 139 (4): 33
    盖钧镒.作物育种学各论[M].中国农业出版社, 1998, 27-29
    谷福林,翟虎渠,万建民,等.水稻矮秆性状研究及矮源育种利用[J].江苏农业学报, 2003, 19(1): 48-54
    何祖华,李德葆.不同生育期水稻株高基因对GA3的敏感性及对内源激素含量的调节[J].植物生理学通讯, 1994, 30(3): 170-174.
    何祖华,申宗坦.水稻长节间基因对GA-3敏感性和不育系改良[J].作物学报, 1994, 20(2): 161-167
    贺安娜,梁满中,肖辉海,等.隐性长穗颈光温敏核不育水稻花粉育性与抽穗性状的相关性研究[J].作物学报, 2006, 32(9): 1311-1315
    侯雷平,李梅兰.油菜素内醋(BR)促进植物生长机理研究进展[J].植物学通报,2001, 18(5): 560-566
    黄荣华,杨仁崔,梁康迳,等.高秆隐性恢复系eR127在杂交稻配组上的应用研究初报[J].福建农业学报, 16(1): 5-7
    季兰,杨淑琴,马洪丽,等.长穗颈(eui)水稻上部节间伸长与植物激素的关系[J].应用与环境生物学报, 2005, 11(6): 660-664
    匡勇,夏石头,匡逢春.脱落酸(ABA)对植物生长发育的促进效应[J].湖南农业科学, 2009, (1): 33-35,36
    李安详,李慈厚,丁克信,等.杂交制种稻粒黑粉病的综合防治[J].江苏农业科学, 1995, 4: 34-36.
    李和标,孙立华,邹江石,等.水稻隐性高秆广亲和种质02428h的鉴定与研究[J].江苏农业学报, 1992, 8(3): 48-50
    李西明,马良勇,朱旭东,等.不同矮源基因水稻对赤霉素和多效唑的敏感性[J] .福建农林大学学报(自然科学版), 2005, 34(1): 5-10
    李欣,顾铭洪,梁国华.水稻半矮秆基因sd-t的染色体定位研究[J].遗传学报,2001, 28(1): 33-40
    李毓,杨仁崔,章清杞,等.水稻eui基因对不育系若干农艺性状的影响[J].核农学报, 2004, 18(5): 344-348
    梁康迳,王乃元,杨仁崔.水稻穗伸出度的遗传及其在育种上的应用[J].福建农学院学报, 1992, 21(4): 380-385
    廖昌礼,倪克鱼,刘远坤,等.高秆隐性水稻Grlc的遗传与利用研究I. Grlc及其测交F1的株高特征和秆型[J].西南农业学报, 1988, 1(1): 43-46
    林鸿宣,闵绍凯,熊振民.四个云南矮秆稻种的遗传研究[J].浙江农业大学学报, 1988, 14(1): 53-57
    林鸿宣,熊振民,俞桂林.矮生性水稻对赤霉素反应的初步研究[J].中国水稻科学, 1991, 5(1): 13-18
    林鸿宣,庄杰云,钱惠荣,等.水稻株高及其构成因素数量性状基因座位的分子标记定位[J].作物学报, 1996, 22(3) : 257-267
    刘桂富,卢永根,王国昌,等.水稻产量、株高及其相关性状的QTLs定位[J].华南农业大学学报, 1998, l9(3): 5-9
    刘红娟,刘洋,刘琳.脱落酸对植物抗逆性影响的研究进展[J].生物技术通报,2008, (6): 7-9
    刘建昌,严宗卜,曹绍书.赤霉素(GA3)鉴定水稻新矮源效果研究[J].贵州农业科学, 1997, 25(6): 3-7
    刘庄,罗丽娟.水稻矮秆鞘包穗突变体茎的形态解剖学研究[J].中国农业学通报, 2006, 22(12): 409-412
    卢永根.我国早籼稻矮生性基因源的表型表现和遗传传递的研究[J].遗传学报, 1979, 6(3): 311-321
    马洪丽,张书标,卢勤,等.水稻长穗颈高秆突变体协青早eBl的遗传分析及其eui1(t)定位[J].农业生物技术学报, 2004, l2(1): 43-48
    马玉银,李磊,李育红,等.一个新的水稻隐性高秆突变体的遗传分析和基因定位[J].中国农业科学, 2008, 41(12): 3967-3973
    明峰正夫.稻に於ける矮性の遺傳に就て.日本学术协会报告, 1925
    潘瑞炽.赤霉素的生物合成、代谢和作用机理.余叔问,汤章城主编,植物生理与分子生物学(第二版)[M].北京:科学出版社, 1998: 439-457
    彭金荣.赤霉素与植物发育.见:许智宏,刘春明主编,植物发育的分子机理[M].北京:科学出版社, 1997, 162-171
    钱前,程式华.水稻遗传学和功能基因组学[M].北京:科学出版社, 2005: 49-50
    乔保建,朱晓彪,王盈盈,等.不同生长环境下水稻穗抽出度三个相关性状QTL定位研究[J].作物学报, 2008, 34(3): 389-396
    申宗坦,吕子同,李壬生.选育早熟矮杆水稻类型中一些性状的遗传分析[J].作物学报, 1965, 4(4): 17-19
    申宗坦,杨长登,何祖华.消除籼型野败不育系包颈现象的研究[J].中国水稻科学, 1987, 1(2): 95-99
    宋平,曹显祖,关永宏.水稻基因GA敏感性的酶学基础[J].江苏农学院报,1994, 15(4): 10-13
    宋平,高红胜,曹显祖,等.不同釉稻品种的矮生性与内源ABA水平及其结合蛋白的关系[J].西北植物学报, 1998, 18(3): 380-385
    宋平,周燮.水稻节间伸长生长的机制[J].植物学通报, 2000, 17(1): 46-51
    孙宗修,程式华.杂交水稻育种[M].中国农业科技出版社, 1994: 36-40
    谈心,马欣荣.赤霉素生物合成途径及其相关研究进展[J].应用与环境生物学报, 2008, (4): 571-575
    谭震波,沈利爽,况浩池,等.水稻上部节间长度等数量性状基因的定位及其遗传效应分析[J].遗传学报, 1996, 23(6): 439-446
    田大成.杂交水稻制种中异交结实影响因素及控制技术的研究[D].南京:南京农业大学博士学位论文, 1993: 67-70
    王红红,李凯荣,侯华伟.油菜素内醋提高植物抗逆性的研究进展[J].干旱地区农业研究, 2005, 23(3): 213-219
    王伟平.水稻包穗突变体M893的形态、生理及遗传特性研究[D].湖南农业大学博士学位论文, 2010
    王灶安主编.植物显微技术[M].北京:农业出版社, 1992
    吴汉林,宋智萍.两系杂交稻制种技术初步研究[J].杂交水稻, 1989, l: 32-35
    吴昆.水稻矮秆包穗突变体dsp1的遗传分析与基因定位[D].硕士学位论文,扬州:扬州大学, 2009: 39-42
    吴让祥.矮败型早籼协青早不育系的选育[J].杂交水稻, 1986, (4): 9-13
    吴世弼,张琦华.水稻诱变获得隐性高秆突变体[J].福建省农科院学报, 1988, 3(1): 41-45
    吴玉良,何祖华,董继新,等.水稻株高基因eui的初步定位[J].中国水稻科学, 1998, 12(2): 119-120
    肖辉海,钟卫华,梁满中,等.温度对隐性长穗颈温敏不育水稻eui基因表达的影响[J].中国农业科学, 2005, 38(2): 222-227
    肖辉海.水稻长穗颈隐性高秆突变体穗颈节间的细胞学观察[J].西北植物学报, 2008, 36(1): 131-136.
    徐树华.水稻“红莲-华矮15”不育系及其保持系的花粉发育细胞形态等观察[J].武汉大学学报(自然科学版), 1979, (2): 1-6
    杨仁崔,张书标,黄荣华,等.高秆隐性杂交稻(e-杂交稻)的育种技术[J].中国农业科学, 2002, 35(3): 233-237
    杨蜀岚,马洪丽,张书标,等.水稻长穗颈高秆隐性基因eui2的分子标记和定位[J].福建农业大学学报, 2002, 3 l(4): 480-483
    杨蜀岚,杨仁崔,曲雪萍,等.水稻长穗颈高秆隐性基因eui2的遗传及其微卫星分析[J].植物学报, 200l, 43(1): 67-71
    尹昌喜.细胞质雄性不育系水稻的包穗激素调控[D].南京农业大学博士论文, 2007
    袁高峰,汪俏梅.赤霉素信号转导研究进展[J].细胞生物学杂志, 2003, 25(2): 90-94
    袁隆平.杂交水稻学[M].北京:中国农业出版社, 2002: 247-255
    张桂莲,张分云,杨烨,等.水稻不育系包颈特性及穗颈节间形态解剖结构的研究[J].湖南农业大学学报(自然科学版),2010:36(1):1-4.
    张惠廉.籼稻品种间杂交选育不育系的研究, II雄性不育株的稳定[J].湖南农业科学, 1983, (4): 1-4
    张杰,周国彬.籼型三系不育系选育研究现状及对策[J].中国种业, 2006, 10: 11-13.
    张瑞祥,刘海平,张红林,等.籼型长穗颈不育系K17eA选育[J].江西农业大学学报, 2002, 24(3): 307-311
    张书标,杨仁崔,黄荣华,等.水稻eui基因及其e-杂交稻研究进展[J].西南农业学报, 2005, 18(5): 669-674
    郑家团,胡万星,谢华安,等.籼型水稻光温敏不育系包颈长度与育性的相关性研究[J].浙江农业大学学报, 1998, 24(6): 627-630
    周开达. D型杂交水稻的选育与利用[J].杂交水稻, 1987, (1):11-16
    朱斌成.施用"920"对杂交水稻制种父母本农艺性状的影响[J].江西农业科技, 1988, 6: 4-6
    朱宏波,方宣钧,杨仁崔,等.水稻长穗颈基因eui2(t)共分离SSR标记的获得[J].中国农业科学, 2004, 37(3): 456-459
    朱克明.水稻包穗基因SHP6的遗传与定位[D].硕士学位论文,扬州:扬州大学, 2006, 23-35
    朱旭东,张晓惠,钱前,等.高秆突变体Mh-1的株高遗传研究[J].遗传学报, 2000, 27(4): 3ll-316
    Ashikari M., Wu J., Yano M., et a1. Rice gibberellin, insensitive dwarf mutant gene Dwarf 1 encodes theα-subunit of GTP-binding protein[J].Proc National Acad Sciences USA, 1999, 96(18): 10284-10289 Bleeeker A..B., Sehuette J.L., Kende H.. Anatomical analysis of growth and developmental pattems in the intenode of deepwater rice [J]. Planta, 1986, 169: 490-497
    Bryant S.D., Lane F.E.. Indole-3-acetic acid oxidase from peas [J]. Plant Physiol, 1979, 63: 696-699
    Butany W.T., Bhattacharyy R.K., Daiya L.R.. Inheritance of dwarf character in rice and its interrelationship with the occurrence of anthocyanin pigment in variousplantpart[J]. Indian J Genet Breed, 1959, 19(1): 64-72
    Chang T.T., Li C.C.. Genetics and breeding [J]. Rice: production and utilization. 1980: 87-146
    Choi Y.H., Yoshizawa K., Kobayashi M., et al. Distribution of endogenous gibber-pins invegetative shoots of rice [J]. Plant Cell Physiol, 1995, 36(6): 997-1001
    Churchill G.A., Doerge R.W.. Empirical threshold values for quantitative trait mapping [J]. Genetics, 1994, 138: 963-971
    Clouse S.D., Daniel M.Z., Baker M.E.. Effect of brassinolide on gene expression in elongating soybean epicotyls [J]. Plant Physiol, 1992, 100: 1377-1383
    Rayle D.L., Cleland R.E..The acid growth theory of auxin-induced cell elongation is alive and well [J]. Plant Physiol, 1992, 99:1271-1274
    Das A.K., Cohen P.T., Barford D..The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein-protein interactions [J]. EMBO J. 1998, 17: l192-ll99
    Davies P.J. Plant hormones: physiology, biochemistry and molecular biology [M]. Idioma: En. P. imprenta: Dordrecht, The Netherlands, Kluwer Academic Publishers, 1995
    Fry S.C. Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship [J]. Plant Physiol, 1989, 75: 532-536
    Gubler F., Raventos D., Keys M., et al. Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone [J]. Plant J., 1999, 17: 1-9
    He H., Serraj R., Yang Q.. Changes in OSXTH gene expression, ABA content, and peduncle elongation in rice subjected to drought at the reproductive stage [J]. Acta Physiol Plant, 2009, 31: 749-756
    He Z.H.,Li D.B..Relations of plant height genes to the sensitivity of GA3 and to the regulation of endogenous in different rice growth stages [J]. Plant Physiol, 1994, 30:170-174
    Heu M.H., Shretha G.. Genetic analysis of sheathed paniele in a nepalese rice cultivarGamadi [A], In: Rice Gene-tics Symposium[C], IRRI, Manila, Philippines, 1986, 317-322
    Hoffmann-Benrting S., Kende H.. On the role of abscisic acid and gibberellin in the regulation of growth in rice [J]. Plant Physiol, l992, 99:1156-1161
    Inouhe M., Nevins D.J. Inhibition of auxin-induced cell elongation of maize coleoptiles by antibodies specific for cell wall glucanases [J]. Plant Physiol, 1991, 96: 426-431
    Itoh H., Ueguchi-Tanaka M., Kawaide H., et al. The gene encoding tobacoo gibberellin 3-hydroxylase is expressed at the site of GA action during stem elongation and flower development [J]. Plant J., 1999, 20: 15-24
    Kamijima O. Considerations on the mechanism of expression of dwarf genes in rice plant [J]. Breed, 1981, 31: 302-315
    Kende H., Knasp E., Cho H.T. Deep water rice: a model piant to study sterm elongation [J]. Plant physiol, 1998, 118: 1105-1110
    Kidd P. Phosphatidylserine: Membrane nutrient for memory. A clinical and mechanistic assessment [J].Altern Med Rev., 1996, 1(2): 70-84
    Kinoshita T.. Report of the committee on gene symbolization, nomenclature and linkage groups [J]. Rice Genet Newsl, 1986, 3: 3-11
    Kochhar S., Kochhar V.K., Singh S.P., et al. Differential rooting and sprouting behaviour of two Jatropha species and associated physiological and biochemical changes [J]. Cuff Sci, 2005, 89: 936-939
    Kumar I. and Singh T. A rapid methodfor identifying different dwarfing genes in rice [J]. Rice Genet Newsl, 1984, 1: 134-135
    Lander E.S., Green P., Abrahamson J., et al. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics, 1987, 1: 174-181
    Leiros I., McSweeney S., Hough E.. The reaction mechanism of phospholipase D from Streptomyces sp. Strain PMF. Snapshots along the reaction pathway reveal a pentacoordinate reaction intermediate and an unexpected final product [J]. Mol Biol, 2004, 339(4): 805-820
    Li W., Tang D., Wu W. A molecular linkage map of rice based on an indica×indica recombinant inbred population [J]. Chinese J Rice Sci, 2000, 14(2): 71-78
    Li Z.B., Xiao Y.H., Zhu Y.G., et al.. WA-type CMS rice. In: Li Z.B. et al. The study and practice of hybrid rice [M]. Shanghai science and technology press, China, 1982: 143-150
    Librojo L. and Khush G.S. Chromosomal location of some mutant genes through the use of primary trisomics in rice [J]. In Rice Genetics, Manila, IRRI, 1986, 249-255
    Lu Z.M., Hong D.L. Advances in hybrid rice seed production techniques. In: Editor, Amarjit S, Basra. Heterosis and hybrid seed production in agronomic crops [M]. New York: Food products press-an imprint of the Haworth press, Inc. 1999, 65-79
    Luo A.D., Qian Q.,Yin H.F., et al. Encoding a putative cytochrome P450 monooxygenase regulates the intenodes elongation by modulating GA responses in rice [J]. Plant Cell Physiol, 2006, 47(2):181-191
    Ma H.L., Ji L., Zhu H.B., et al. Fine mapping and in silico isolation of the EUI1 gene controlling upper internode elongation in rice [J]. Molecular Biology, 2006, 60: 87-94
    Mac-lachlan G.A., Pilet P.E. Plant growth regulation [M]. Springer-Verlag, Berlin, 1977, 1-20
    Maekawa M., Inukai T. Genes linked with d-2 in rice [J]. Japan J Breed, 1992, 42 (2): 212-213
    Maekawa M.. Allelism test for the genes responsible for sheathed panicle [J]. Rice Genet Newsl, 1986, 3: 62-63
    Maekawa M. and Kita F.. Interaction of eui gene for the elongation of uppermost intenode and some genes for elongation of intenode [J]. Japan J Breed, 1983, 33(1): 124-125
    McCouch S.R., Cho Y.G., Yano M., et al. Report on QTL nomenclature [J]. Rice Genet Newsl, 1997, 14: ll-l3
    Metraux J.P., Kende H. The role of ethylene in the growth response of submergeddeep water rice [J]. Plant Physiol, 1983, 72: 441-446
    Michelmore R.W., Paran I., Kesseli R.V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations [J]. Proc National Acad Sciences USA, 1991, 88(21): 9828-9832
    Mills V.M., Todd G.W. Effects of water sress on the indoleacetic acid oxidase activity in wheat leaves [J]. Plant Physiol, 1973, 51:1145-1146
    Monna L., Kitazawa N., Yoshino R., et al. Positional cloning of rice semidwarfing gene, sd-1: rice of green revolution geneencodes a mutant enzyme involved in gibberellin synthesis [J]. DNA Res, 2002, 9(1): 11-7
    Morikawa H., Kitamura S., Senda M.. Effect of auxin on changes in the oriented structure ofwall polysaccharides in response to mechanical extension in oat coleoptile cell walls [J]. Plant Cell Physiol , 1978, 19: 1553-1556
    Mussig C.. Brassinosteroid-promoted growth [J]. Plant Biol, 2005, 7: 110-117
    Ogi Y., Kato H., Maruyama K., et al. The effects on the culm length and their agronomic characters caused by semidwarfing genes at the sd-1 locus in rice [J]. Japan J Breeding, 1993, 43: 267-275
    Oikawa T., Yoshida H., Kawata M.. A role of OsGA20oxl, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice [J]. Plant Mol Biol, 2004, 55: 687-700
    Okuno K., Kawai T.. Variations of internode length and other characters induced long-culm mutants of rice [J]. Japan J Breeding, 1978, 28(3): 242-250
    Olszewski N.,Sun T.P.,Gubler F.. Gibberellin signaling: biosynthesis, catabolism, and response pathways [J]. Plant Cell, 2002, 861-880
    Pamel E.R., Rangswani G.N. Ayyallggar G.N.R.. The inheritance of characterin rice [J].Agri India Bot Ser, 1922, 11: 185-208
    Pandey D., Pathak R.K.. Effects of rootstocks, ABA and phenolic compounds on the rooting of apple cuttings [J]. Propagation Hort, 1981, 13: 105-110
    Potter I. and Fry S.C. Xyloglucan endotransglycosylase activity in pea internodes. Effects of applied gibberellic acid [J]. Plant Physiol, 1993, 103(1): 235-41.
    Raskin I., Kende H. Role of gibberellin in the growth response of submerged deep water rice [J]. Plant Physiol, 1984, 76: 947-950
    Richards D.E., King K.E., Ait-ali T., et al. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling [J]. Plant Mol Biol, 2001, 52: 67-88
    Romano C.P., Cooper M.L., Klee H.J. Uncoupling auxin and ethylene effects in transgenic tobacco and arabidopis plants [J]. Plant Cell, 1993, 5: 181-189
    Ross E.K. and Mandy M.R. Parameters of filament elongation in ipomoea nil (Convolvulaceae) [J]. Amer J. Bot, 1987, 74(4): 510-516
    Ross J.J., Murfel I.C., Reid J.B. Gilbberellin Mutants [J]. Plant Physiol, 1997, 100: 550-560
    Ross J.J.. Effects of auxin transport inhibitor on gibberellins in pea [J]. Plant Growth Regul, 1998, 17: 141-146
    Ross J.J., O'Neill D.P., Wolbang C.M., et al. Auxin-gibberellin interactions and their role in plant growth [J]. Plant Growth Regul .2002, 20: 346-353
    Rumi T., Nacki S., Susurral K. Brassinolide-induced elongation of inner tissues of segments of squash hypocotyls [J]. Plant Cell Physiol, 1994, 35(7): 1103-1106
    Rutger J.N., Camahan H.L. A fourth genetic element to facilitate hybrid cereal productions recessive tall in rice [J]. Crop Sci, 1981, 21: 373-376
    Rutger J.N., Inheritance of semidwarf and other useful mutant genes in rice [J]. In: Rice Genetics, Manila: IRRI, 1986, 261-271
    Sakurai N., Masuda Y.. Auxin-induced extension, cell wall loosening and changes in the wall polysaccharide content of barley coleoptile segments [J]. Plant Cell Physiol, 1978, 19: 1225-1233
    Sasaki A., Ashikari M., Ueguchi-tanaka M., et al. Green revolution: a mutant synthesis gibberellion gene in rice [J]. Nature, 2002, 416: 701-702
    Sasaki A., Itoh H., Gomi K., et al. Accumulation of phosphorylated repressor for gibberelion signaling in all F-box mutant [J]. Sience, 2003, 299:1896-1898
    Shrestha G.L. Gene location for“Gamadiness”in rice (Oryza sativa L.) [J]. Korean Japan Crop Science. 1984, 29: 128-135
    Spielmeyer W., Ellis M.H., Chandler R.M. Semidwarf (sd-1) "green revolution" rice, contains a defective gibberellin 20-oxidase gene [J].Proc National Acad Sciences USA, 2002, 99(13): 9043-9048
    Suge H., Tokairin H. Plant response to wind as affeeted by genetic backgrounds in rice plants [J]. Japan Crop Sci, 1982, 51(3): 380- 385
    Takeda K. Internode elongation and dwarfism in some gramineous plants [J]. Gamma Field Sym, 1977, 17: 1-18
    Taniska T., Takemori M., Yabu T. Two useful semidwarfing genes in a short-culm mutant line HS90 of rice (Oryza sativa L.) [J]. Breeding Science, 1994, 44: 397-403
    Tetsuo O., Masaji K., Kiyohide K., et al. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice [J]. Plant Mol Biol, 2004, 55(5): 687-700
    Thornton T., Krepel L., Hart G., et al. Genetic and biochemical analysis of Arabidopsis SPY [J]. Plant Biotechnology and in-vitro Biology in the 21st Century, Kluwer, New York, 1999, 445-448
    Tsai K.H. Detection of a new semi-dwarfing gene, sd-8(t) [J]. Rice Genet Newsl, 1994, 11:80-83
    Uozu S., Tanaka-Ueguchi M., Kitano H., et a1. Characterization of XET-related genes of rice [J]. Plant Physiol, 2000, 122(3): 853-860
    Virmani S.S., Dalmacio R.D., Lopez M.T. EUI gene for elongated uppermost internode transferred to indica rice [J]. Rice Res Newsl, 1988, 13(6): 6-9
    Wakabayashi K., Sakurai N., Kuraishi S. Differential effect of auxin on molecular weight distributions of xyloglucans in cell walls of outer and inner tissues from segments of darkgrown squash (Cucurbita maxima duch.) hypocotyls [J]. Plant Physiol, 1991, 95: 1070-1076
    Wolbang C.M., Chandler P.M., Smith J.J., et al. Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems [J]. Plant Physiol, 2004, 134: 769-776
    Wolbang C.M., Ross J.J. Auxin promotes gibberellin biosynthesis in decapitatedtobacco plants [J]. Planta, 2001, 214: 153-157
    Xiong L.Z., Liu K.D., Dai X.K., et al. Identification of genetic factors controlling domestication related traits of rice using an F2 population of a cross between Oryza sativa and O.rufipogon [J]. Theoretical and Applied Genetics, 1999, 98: 243-25l
    Xu Y.H., Zhu Y.Y., Zhou H.C., et al. Identification of a 98-kb DNA segment containing the rice Eui gene controlling uppermost intenode elongation, and construction of a TAC transgene sublibrary [J]. Mol Genet Genomics, 2004, 272(2): 149-155
    Yamaguchi S., Smith M.W., Brown R.G., et al. Phytochrome regulation and differential expression of gibberellin 3 beta-hydroxylase genes in germinating Arabidopsis seeds [J]. Plant Cell, 1998, 10: 2115-2126
    Yamamoto T., Taguchi-Shiobara F.,Ukai Y., et al. Mapping quantitative trait loci for days-to-heading,and culm, panicle and internode length in a BC1F3 population using an elite rice variety, Koshihikari, as the recurrent parent[J]. Breeding Science, 2001, 5l: 63-7l
    Yang J., Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects [J]. Theoretical and Applied Genetics, 2005, 110(7): 1268-1274
    Yang R.C., Yang S.L., Zhang Q.Q., et al. A new gene for elongated uppermost intenode [J]. Rice Genet Newsl, 1999, 16: 41-43
    Yang T., Davies P.J., Reid J.B. Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-gown peas [J]. Plant Physiol, 1996, 110: 1029-1034
    Yarnarnuro C., Thara Y., Wu X., et al. Loss of function of a rice brassinosterioid insentive homolog prevents internode elongation and bending of the lamina joint [J]. Plant Cell, 2000, 191(2): 1591-1606
    Zhi H., Ueguchi-Tanaka M., Umemura K., et al. A rice brassinos-teroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of Cytochrome P450 [J]. Plant Cell, 2003, 15: 2900-2910
    Zhi H., Ueguchi-Tanaka M., Shimizu-Sato S., et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem [J]. Plant J., 2002, 32(4): 495-508
    Zhu H B. Fine mapping and cloning of rice EUI2(t) gene controlling upper most internode elongation[D]. Doctor Dissertation.Fu Zhou: Fujian Agriculture and Forestry University, 2003
    Zhu Y.Y., Nomura T., Xu Y.H., et al. Elongated uppermost internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice [J]. Plant Cell, 2006, 18: 442-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700