以不同原料制备锂离子电池复合正极材料LiFePO_4/C的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石结构LiFePO_4具有原料丰富、无毒、热稳定性强、循环性能好、理论容量高(170mAh·g~(-1))等优点,能很好的符合信息社会对新型能源的需求和环保的需要,是新一代商品化锂离子电池正极材料中的有力竞争者。但其固有的晶体结构和元素组成,造成材料振实密度低、导电性能差、电化学活性低。这些性能亟待改善。
     本文系统研究了不同铁源和碳源对合成LiFePO_4/C材料性能的影响;探索新原料新工艺合成LiFePO_4/C,以突破国外制备工艺的专利垄断;选取具有代表性的离子,研究了Li位和Fe位掺杂对LiFePO_4材料的晶体结构和电化学性能的影响;对LiFePO_4/C电极进行表面碳包覆改性进一步提高了电极的倍率性能;采用CV和EIS研究了LiFePO_4/C电极在较高温度下的电化学行为,为进一步开辟提高材料电化学性能的途径提供理论参考。
     以Fe_2O_3为铁源,详细考察了合成温度对LiFePO_4/C材料晶体性能、碳含量、振实密度和电化学性能的影响。较FeC_2O_4·2H_2O,采用Fe_2O_3合成了振实密度更高电化学性能优良的LiFePO_4/C材料。研究了不同球磨分散介质对LiFePO_4/C的充放电容量和振实密度的影响。较乙醇和水,采用丙酮作为球磨分散介质制备了充放电容量和平台以及循环和倍率性能更优、振实密度更高的LiFePO_4/C材料。
     首次提出以Fe_2O_3和NH_4H_2PO_4为原料一步固相法制备Fe_2P_2O_7的工艺。以Fe_2P_2O_7和Li_2CO_3为原料制备的LiFePO_4保持了较好的颗粒形貌和均匀的粒度分布。在不额外加入还原剂的情况下实现了Fe~(3+)→Fe~(2+):Fe_2O_3→Fe_2P_2O_7→LiFePO_4。以丙酮代替乙醇作球磨分散介质合成了性能优良的LiFePO_4/C材料。
     以还原铁粉、LiFePO_4和葡萄糖为原料,经球磨机械活化后高温下制备了LiFePO_4/C正极材料。700℃是合成LiFePO_4的最佳温度。具有纳米级一次粒径的软团聚LiFePO_4/C粉末材料表现出了较好的电化学性能。
     大部分有机碳前驱体的无氧热解碳呈蓬松状态,在LiFePO_4/C材料颗粒间形成有效的导电连接。采用均苯四甲酸酐、柠檬酸和蔗糖可制备电化学性能优良的LiFePO_4/C材料。单独以石墨或乙炔黑对LiFePO_4进行包覆/掺杂对提高材料的电化学性能有限。
     研究了LiFePO_4的Li位和Fe位掺杂对材料电化学性能的影响。一定浓度的Mg~(2+)和Ca~(2+)的Li位掺杂均可以不同程度改善LiFePO_4/C的倍率性能。Co~(2+)、Ni~(2+)和Mn~(2+)的Fe位掺杂对LiFePO_4/C电化学性能的影响取决于掺杂浓度。首次发现了正磷酸盐中Co~(3+)/Co~(2+)和Ni~(3+)/Ni~(2+)电对在较低电位下的电化学活性。LiFe_(0.94)Co_(0.06)PO_4/C和LiFe_(0.94)Ni_(0.06)PO_4/C电极的CV曲线在4.0V左右出现了Co~(3+)/Co~(2+)和Ni~(3+)/Ni~(2+)电对的氧化还原峰。
     提出了碳包覆修饰LiFePO_4/C电极以提高其电化学性能:大幅度提高了电极充放电容量和倍率性能;分别降低和提高了Fe~(3+) /Fe~(2+)电对氧化和还原电位;减小了电极过程电荷转移阻抗。
     分别采用CV和EIS研究了LiFePO_4/C在较高温度下的电化学性能。结果均表明:提高LiFePO_4/C电极的工作温度,可以增加电极的Li~+扩散系数,增大电极的可逆性,有利于活性材料充放电容量的发挥,提高电极的深度充放能力。
With the merits of abundant raw materials, non-toxicity, good thermal stability, excellent charge/discharge cycle ability and high theoretical capacity (170mAh·g~(-1)), olivine-structured LiFePO_4 can meet the needs of both demand of new energy-consuming information society and environmental protection. LiFePO_4 has become one of the most promising contenders among the new generation of commercial cathode materials. Its intrinsic crystal structure and elemental composition, however, result in properties of low tap density, poor electronic conductivity and electrochemical inertness, which urgently needed to be improved.
     In the paper, the impacts of different iron sources and carbon precursors on the properties of LiFePO_4/C material were studied systematically: the tap density of LiFePO_4/C was enhanced with improved technological conditions; new raw materials and new techniques were explored for synthesis of LiFePO_4/C in order to bypass the monopoly of foreign patents; doping effects of representative ions on both Li and Fe sites on the crystal structure and electrochemical properties of LiFePO_4 were investigated; the rate performance of LiFePO_4/C electrode was further improved by coating the electrode surface with carbon; CV and EIS were used to investigate the electrochemical behavior of LiFePO_4/C electrode at higher working temperatures, which provided a theoretical reference for opening up a method to further improve material's electrochemical performance.
     Using Fe_2O_3 as the iron source, the influences of synthesis temperature on the crystal property, carbon content, tap density and electrochemical performance of LiFePO_4/C were investigated in detail. LiFePO_4/C material of high tap density and excellent electrochemical performance was prepared when using Fe_2O_3, compared to FeC_2O_4·2H_2O as an iron source. The effects of different ball-milling dispersive media on charge/discharge capacity and tap density of LiFePO_4/C were studied. Compared to ethanol and water, using acetone as dispersive medium, LiFePO_4/C cathode material of better charge/discharge capacity and plateau, better cycling and rate performance and higher tap density was synthesized.
     In the paper, one-step solid state reaction was for the first time put forward to prepare Fe_2P_2O_7 using Fe_2O_3 and NH_4H_2PO_4 as raw materials. Fe_2P_2O_7 and Li_2CO_3 were employed to synthesize LiFePO_4 which exhibited good particle morphology and even size distribution. Fe~(3+)→Fe~(2+) was realized with no extra addition of reducing agent: Fe_2O_3→Fe_2P_2O_7→LiFePO_4. LiFePO_4/C of good property was synthesized by using acetone instead of ethanol as dispersive medium.
     Reduced iron, LiH_2PO_4 and glucose were mechanically activated by ball-milling and LiFePO_4/C cathode material was prepared at high temperature. 700℃was the optimum synthesis temperature. With nano-sized primary articles, LiFePO_4/C powder material showed a good electrochemical performance.
     Most carbon from oxygen free pyrolysis of organic precursors exhibited a fluey morphology and formed an effective conducting connection between LiFePO_4/C particles. LiFePO_4/C of good electrochemical properties could be prepared using pyromellitic anhydride, citric acid and sucrose as carbon precursor respectively. Little improvement in electrochemical performance could be obtained by modifying LiFePO_4 with using only graphite or acetylene black.
     The doping effects of Li and Fe site on the electrochemical properties of LiFePO_4 were investigated. Electrochemical performance of LiFePO_4 could be enhanced to different extent by Mg~(2+) and Ca~(2+) doping on Li site with a certain concentration. The influences of Fe site doping by Co~(2+), Ni~(2+) and Mn~(2+) depended on doping concentration. The electrochemical activity at lower potential of Co~(3+)/Co~(2+) and Ni~(3+)/Ni~(2+) redox couples in orthophosphate was for the first time discovered in the paper. 4V redox peaks for Co~(3+)/Co~(2+) and Ni~(3+)/Ni~(2+) were revealed on the CV curves for LiFe_(0.94)Co_(0.06)PO_4/C and LiFe_(0.94)Ni_(0.06)PO_4/C electrode.
     Electrochemical properties of LiFePO_4/C electrode were improved by carbon coating modification: discharge capacity and rate ability weregreatly enhanced; oxidation and reduction voltages for Fe~(3+) /Fe~(2+) couple were decreased and increased respectively; charge transfer impedance was greatly reduced.
     The electrochemical properties of LiFePO_4/C at higher temperatures were examined with CV and EIS. Results indicated diffusion coefficient for Li~+ and irreversibility for LiFePO_4 electrode were raised by increasing working temperature. Higher temperature could benefit exertion of charge/discharge capacity and raise the depth of charge and discharge.
引文
[1] Peter G. Bruce. Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ionics, 2008, 179(21-26): 752-760
    [2] 李萍,李琪,徐宏志等.锂离子二次电池正极材料锰酸锂的研究进展.无机盐工业,2008,40(1):1-4
    [3] Hirotoshi Yamada, Yuko Watanabe, Isamu Moriguchi, et al. Rate capability of lithium intercalation into nano-porous graphitized carbons. Solid State Ionics, 2008,179(27-32): 1706-1709
    [4] Martin Winter, Ralph J. Brodd. What Are batteries, fuel cells, and supercapacitors?. Chem. Rev., 2004,104(10): 4245-4269
    [5] 杜国栋,努丽燕娜,冯真真等.LiNi_(0.5)Mn_(1.5)O_(4-x)F_x高电压电极高温保存下的电化学行为.物理化学学报,2008,24(1):165-170
    [6] Andrew Ritchie, Wilmont Howard. Recent developments and likely advances in lithium-ion batteries. Journal of Power Sources, 2006, 162(2): 809-812
    [7] Masataka Wakihara. Recent development in lithium ion batteries. Material Science and Engineering, 2001, 33(4): 109-134
    [8] 关鲁雄.化学基本操作与物质制备实验.长沙:中南大学出版社,2002.374
    [9] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(15): 359-367
    [10] M. Stanley Whittingham. Lithium Batteries and Cathode Materials. Chem. Rev., 2004, 104(10): 4271-4301
    [11] L. Kosidowski, A. V. Powell, J. Mayers. The kinetic energy of lithium in LiTiS_2 as determined by neutron Compton scattering. Physica B: Condensed Matter, 1997, 241-243(1-4): 335-337
    [12] Jolanta (?)wiatowska-Mrowiecka, Frantz Martin, Vincent Maurice, et al. The distribution of lithium intercalated in V_2O_5 thin films studied by XPS and ToF-SIMS. Electrochimica Acta, 2008, 53(12): 4257-4266
    [13] Jungbae Lee, Jae-Myung Lee, Sukeun Yoon, et al. Electrochemical characteristics of manganese oxide/carbon composite as a cathode material for Li/MnO_2 secondary batteries. Journal of Power Sources, 2008,183(1): 325-329
    [14] Ramdas B. Khomane, Amit C Agrawal, B.D. Kulkarni. Preparation and electrochemical characterization of lithium cobalt oxide nanoparticles by modified sol-gel method. Materials Research Bulletin, 2008, 43(8-9): 2497-2503
    [15] Zhanxu Yang, Wensheng Yang, David G. Evans, et al. Enhanced overcharge behavior and thermal stability of commercial LiCoO_2 by coating with a novel material. Electrochemistry Communications, 2008,10(8): 1136-1139
    [16] Nina Kosova, Evgeniya Devyatkina, Arseny Slobodyuk, et al. Surface chemistry study of LiCoO_2 coated with alumina. Solid State Ionics, 2008, 179(27-32): 1745-1749
    [17] 陈扬,周振君,童昀等.锂离子电池正极材料的研究进展与展望.稀有金属与硬质合金,2007,35(3):54-57
    [18] 曹艳军,龙翔云,程云峰.锂离子电池正极材料的研究现状和展望.化学技术与开发,2007,36(3):16-18
    [19] Izumi Taniguchi, Norifumi Fukuda, Muxina Konarova. Synthesis of spherical LiMn_2O_4 microparticles by a combination of spray pyrolysis and drying method. Powder Technology, 2008, 181 (3): 228-236
    [20] 万传云.尖晶石LiMn_2O_4容量衰减的原因及性能改进.电池,2007,37(6):463-465
    [21] Janina Molenda, Mariusz Ziemnicki, Jacek Marzec, et al. Electrochemical and high temperature physicochemical properties of orthorhombic LiMnO_2. Journal of Power Sources, 2007, 173(2): 707-711
    [22] Shixi ZHAO, Hanxing LIU, Qiang LI, et al. Synthesis and structure transformation of orthorhombic LiMnO_2 cathode materials by sol-gel method. Journal of Material Science and Technology, 2004, 20(1): 46-48
    [23] 梁莉,李琪,乔庆东等.锂离子电池正极材料镍酸锂研究进展.无机盐工业,2007,39(9):9-11
    [24] Bok-HeeKim, Jong-HwanKim, Ik-HyunKwon, et al. Electrochemical properties of LiNiO_2 cathode material synthesized by the emulsion method. Ceramics International, 2007, 33(5): 837-841
    [25] Hyung-Wook Ha, Kyung Hee Jeong, Keon Kim. Effect of titanium substitution in layered LiNiO_2 cathode material prepared by molten-salt synthesis. Journal of Power Sources, 2006,161(1): 606-611
    [26] J. Kim, B.H. Kim, Y.H. Baik, et al. Effect of (Al, Mg) substitution in LiNiO_2 electrode for lithium batteries. Journal of Power Sources, 2006, 158(1): 641-645
    [27] Jiang Fan. Studies of 18650 cylindrical cells made with doped LiNiO_2 positive electrodes for military applications. Journal of Power Sources, 2004, 138(1-2):288-293
    [28] Cheol-Jin Kim, In-Sup Ahn, Kwon-Koo Cho, et al. Characteristics of LiNiO_2 thin films synthesized by Li diffusion on the surface oxidized epitaxial layer of Ni-alloy. Journal of Alloys and Compounds, 2008, 449(1-2): 335-338
    [29] 唐爱东,王海燕,黄可龙等.锂离子电池正极材料层状Li-Ni-Co-Mn-O的研究.化学进展,2007,19(9):1313-1321
    [30] Kisuk Kang, Ying Shirley Meng, Julien Breger, et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 2006, 311(5763): 977-980
    [31] 何雨石,裴力,马紫峰.层状结构Li[Ni,Co,Mn]O_2正极材料制备与改性研究进展.化工进展,2007,26(3):337-344
    [32] 吴海燕,王剑华,李斌.锂离子电池正极材料LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2的研究进展.材料导报,2007,21(S4):299-302
    [33] 李宇展,任慢慢,吴青端等.锂离子蓄电池钒系正极材料的研究进展.电源技术,2005,29(2):124-127
    [34] A. Gies, B. Pecquenard, A. Benayad, et al. Effect of silver co-sputtering on V_2O_5 thin films for lithium microbatteries. Thin Solid Films, 2008, 516(21): 7271-7281
    [35] Yu Chen, Heng Liu, Wang-Ling Ye. Preparation and electrochemical properties of submicron spherical V_2O_5 as cathode material for lithium ion batteries. Scripta Materialia, 2008, 59(3): 372-375
    [36] Jin Kawakita, Takashi Miura, Tomiya Kishi. Lithium insertion into Li_4V_3O_8. Solid State Ionics, 1999, 120(1-4): 109-116
    [37] 刘国强,徐宁,曾潮流等.锂离子蓄电池钒系正极材料的研究进展.电源技术,2002,26(2):114-118
    [38] (?)rjan Bergstr(?)m, Torbj(?)rn Gustafsson, John O. Thomas. Lithium insertion into V_6O_(13) studied by deformation electron density refinement of single-crystal X-ray data. Solid State Ionics, 1998, 110(3-4): 179-186
    [39] Suqin Liu, Shicai Li, Kelong Huang, et al. Effect of Doping Ti~(4+) on the structure and performances of Li_3V_2(PO_4)_3. Acta Physico-Chimica Sinica, 2007, 23(4): 537-542
    [40] S. C. Lim, J. T. Vaughey, W. T. A. Harrison, et al. Redox transformations of simple vanadium phosphates: the synthesis of ε-VOPO_4. Solid State Ionics, 1996, 84(3-4): 219-226
    [41] Y.S. Lee, S. Sato, Y.K. Sun, et al. A new type of orthorhombic LiFeO_2 with advanced battery performance and its structural change during cycling. Journal of Power Sources, 2003, 119-121: 285-289
    [42] Atsushi Funabiki, Hideo Yasuda, Masanori Yamachi. Low-crystalline β-FeOOH and vanadium ferrite for positive active materials of lithium secondary cells. Journal of Power Sources, 2003,119-121: 290-294
    [43] K. Zaghib, C. M. Julien. Structure and electrochemistry of FePO_4·2H_2O hydrate. Journal of Power Sources, 2005,142(1-2): 279-284
    [44] 曹传宝,唐义会,廖波.锂离子电池正极材料FePO_4.人工晶体学报,2007,36(5):1062-1068
    [45] Young-Sik Hong, Yong Joon Park, Kwang Sun Ryu, et al. Crystalline Fe_3PO_7 as an electrode material for lithium secondary batteries. Solid State Ionics, 2003, 156(1-2): 27-33
    [46] C. V. Ramana, A. Ait-Salah, S. Utsunomiya, et al. Spectroscopic and chemical imaging analysis of lithium iron triphosphate. J. Phys. Chem. C, 2007, 111(2): 1049-1054
    [47] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates. Journal of Electrochemical Society, 1997,144(5): 1609-1613
    [48] A. K. Padhi, K.S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of Electrochemical Society, 1997,144(4): 1188-1194
    [49] Anna S. Andersson, John O. Thomas, Beata Kalska, et al. Thermal stability of LiFePO_4-based cathodes. Electrochemical and Solid-State Letters, 2000, 3(2): 66-68
    [50] 傅原.锂离子正极材料LiFePO_4.新材料产业,2003,10:13-16
    [51] http://www.stl-energy.com.cn/news_detail.asp?id=45
    [52] 张亚利,高立军,吁霁.锂离子电池正极材料LiFePO_4的研究进展.材料导报,2007,21(S3):303-305
    [53] Swoyer J L, Barker J, Saidi M Y. Lithium iron(Ⅱ) phospho-olivines prepared by a novel carbothermal reduction method. Electrochemical and Solid-State Letters,2003, 6(3): A53-A55
    [54] 韩恩山,冯智辉,魏子海等.共沉淀法合成磷酸铁锂掺碳复合正极材料.无机盐工业,2008,40(1):22-25
    [55] 杨蓉,赵铭姝,杜宝中.共沉淀法制备正及材料LiFePO_4的研究进展.稀有金属材料与工程,2007,36(S2):631-634
    [56] G. Arnold, J. Garche, R. Hemmer, et al. Fine-particle lithium iron phosphate LiFePO_4 synthesized by a new low-cost aqueous precipitation technique. Journal of Power Sources, 2003, 119-121: 247-251
    [57] 雷敏,应皆荣,姜长印等.高密度球形LiFePO_4的合成及性能.电源技术,2006,130(1):11-13
    [58] Shoufeng Yang, Peter Y. Zavalij, M. Stanley Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Communications, 2001, 3 (9): 505-508
    [59] R. Dominko, J. M. Goupil, M. Bele, et al. Impact of LiFePO_4/C composites porosity on their electrochemical performance. Journal of The Electrochemical Society, 2005,152(5): A858-A863
    [60] S.L. Bewlay, K. Konstantinov, G.X. Wang, et al. Conductivity improvements to spray-produced LiFePO_4 by addition of a carbon source. Materials Letters, 2004,58(11): 1788-1791
    [61] 张燕,李湘祁,汤德平.微波法合成有序介孔分子筛的研究进展.化工时刊,2007,21(11):71-74
    [62] K.S. Park, J.T. Son, H.T. Chung, et al. Synthesis of LiFePO_4 by co-precipitation and microwave heating. Electrochemistry Communications, 2003, 5(10): 839-842
    [63] Tae-Hyung Cho, Hoon-Taek Chung. Synthesis of olivine-type LiFePO_4 by emulsion-drying method. Journal of Power Sources, 2004, 133 (2): 272-276
    [64] Tomonari Takeuchi, Mitsuharu Tabuchi, Akiko Nakashima, et al. Preparation of dense LiFePO_4/C composite positive electrodes using spark-plasma-sintering process. Journal of Power Sources, 2005, 146(1-2): 575-579
    [65] 唐致远,阮艳莉.新型锂离子电池正极材料的研究进展.化工进展,2004,23(8):801-805
    [66] 邱敬文,曹笃盟,刘文胜.锂离子电池正极新材料LiFePO_4的研究进展.粉末冶金材料科学与工程,2005,10(6):331-335
    [67] Pier Paolo Prosini, Daniela Zane, Mauro Pasquali. Improved electrochemical performance of a LiFePO_4-based composite cathode. Electrochimica Acta, 2001,46(23): 3517-3523
    [68] Jingsi Yang ,Jun John Xu. Nonaqueous sol-gel synthesis of high-performance LiFePO_4. Electrochemical and Solid-State Letters, 2004,7(12):A515-A518
    [69] F. Croce, A. D' Epifanio, J. Hassiun. A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode. Electrochemical and Solid-State Letters, 2002, 5(3): A47-A50
    [70] 刘善科,董全峰,孙世刚.锂离子电池正极材料LiFePO_4研究进展.电源技术,2006,130(5):424-428
    [71] K. S. Park, J. T. Son, H.T. Chung, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO_4. Solid State Communications, 2004, 129(5): 311-314
    [72] 胡成林,代建清,戴永年.锂离子电池正极材料磷酸铁锂研究进展.无机盐工业,2007,39(4):8-11
    [73] 陈晗,薄红志,范长岭.锂离子电池正极材料LiFePO_4的研究进展.电池工业,2006,11(5):345-349
    [74] Chung, S. Y., Bloking, J. T., Chiang,Y. M., et al. Electronically conductive phospho-olivines as lithium storage electrodes. Nature, 2002,1(2): 123-128
    [75] Michael Thackeray. An unexpected conductor. Nature, 2002, 1(2), 81-82
    [76] G. X. Wang, S. Bewlay, S. A. Needham, et al. Synthesis and Characterization of LiFePO_4 and LiTi_(0.01)Fe_(0.99)PO_4 Cathode Materials. Journal of The Electrochemical Society, 2006, 153(1): A25-A31
    [77] P. S. Herle, B. Ellis, N. Coombs, et al. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature, 2004, 3: 147-152
    [78] Tsung-Hsien Teng, Mu-Rong Yang, She-hung Wu, et al. Electrochemical properties of LiFe_(0.9)Mg_(0.1)PO_4/carbon cathode materials prepared by ultrasonic spray pyrolysis. Solid State Communications, 2007,142(7): 389-392
    [79] 赵新兵,谢健.新型锂离子电池正极材料LiFePO_4的研究进展.机械工程学报,2007,43(1):69-76
    [80] 周宗子,朱刚.磷酸铁锂材料及其动力电池产业化现状及前景.船电技术,2007,27(4):257-260
    [81] http://yywlhx.mer3721.com/Template_01/?WebID = 88&Display = Content& DisplayInfoID = 4016
    [82] I. Belharouak, C. Johnson, K. Amine. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO_4. Electrochemistry Communications, 2005,7(10):983-988
    [83] 彭秧锡,陈启元,刘士军等.机械化学与机械活化量热学的研究进展.材料研究与应用,2007,1(31):61-164
    [84] 吴昭俏,郑育英,黄慧民等.机械力活化固相化学反应法制备纳米粉体的机理研究.中国粉体技术,2007,3:26-31,35
    [85] Jan L. Allen, T. Richard Jow, Jeffrey Wolfenstine. Kinetic study of the electrochemical FePO_4 to LiFePO_4 phase transition. Chem. Mater, 2007, 19(8):2108-2111
    [86] A. S. Andersson, J. O. Thomas. The source of first-cycle capacity loss in LiFePO_4. Journal of Power Sources, 2001, 97-98: 498-502
    [87] Daniela Zane a, Maria Carewskab, Silvera Scaccia, et al. Factor affecting rate performance of undoped LiFePO_4. Electrochimica Acta, 2004, 49(25): 4259-4271
    [88] Pankaj Arorat, Ralph E. White. Capacity fade mechanisms and side reactions in lithium-ion batteries. Journal of The Electrochemical Society, 1998, 145(10): 3647-3667
    [89] Kathryn Striebel, Joongpyo Shiml, Azucena Sierra, et al. The development of low cost LiFePO_4-based high power lithium-ion batteries. Journal of Power Sources, 2005, 146(1-2): 33-38
    [90] N. Ravet, M. Gauthier, K. Zaghib, et al. Mechanism of the Fe~(3+) reduction at low temperature for LiFePO_4 synthesis from a polymeric additive. Chem. Mater., 2007, 19(10): 2595-2602
    [91] HU Guo-rong, GAO Xu-guang, PENG Zhong-dong, et al. Influence of Ti~(4+) doping on electrochemical properties of LiFePO_4/C cathode material for lithium-ion batteries. Transactions of Nonferrous Metals Society of China, 2007, 17:293-300
    [92] Minna Hurtta, Ilkka Pitkanen, Juha Knuutinen. Melting behaviour of D-sucrose, D-glucose and D-fructose. Carbohydrate Research, 2004, 339(13): 2267-2273
    [93] F. Orst. Kinetic study on the thermal decomposition of glucose and fructose. Journal of Thermal Analysis, 1973, 5(2-3): 329-335
    [94] 陈学军,赵新兵,曹高劭.一步固相法合成Nb掺杂LiFePO_4/C及其电化学性能.中国有色金属学报,2006,16(10):1665-1671
    [95] Hui Liu, Jingying Xie, Ke Wang. Synthesis and characterization of LiFePO_4/(C+Fe_2P) composite cathodes. Solid State Ionics, 2008, 179(27-32): 1768-1771
    [96] WU Da-xiong, WU Xi-jun, LU Yan-fei, et al. Synthesis and room temperature conductivity of nano-LaF_3 bulk material. Transactions of Nonferrous Metals Society of China, 2006, 16: 828-832
    [97] 王零森.特种陶瓷.长沙:中南工业大学出版社,2000.50
    [98] Toledo R, Santos D R dos, Faria R T Jr, et al. Gas release during clay firing and evolution of ceramic properties. Applied Clay Science, 2004, 27(3-4):151-157
    [99] K. Edstrom, T. Gustafsson, J.O. Thomas. The cathode-electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004, 50(2-3): 397-40
    [100] 胡成林,代建清,戴永年等.Ti离子掺杂对LiFePO_4材料性能的影响.材料导报,2007,21(7):147-149
    [101] A. Singhal, G. Skandan, G. Amatucci, et al. Nanostructured electrodes for next generation rechargeable electrochemical devices. Journal of Power Sources, 2004, 129(1): 38-44
    [102] 倪江锋,周恒辉,陈继涛.等金属氧化物掺杂改善LiFePO_4电化学性能.无机化学学报,2005,21(4):472-476
    [103] 谢志刚.锂离子电池正极材料LiFePO_4电化学性能.应用化学,2007,24(2):238-240
    [104] 阮艳莉,唐志远.Zr~(4+)离子掺杂对LiFePO_4结构及电化学性能的影响.电化学,2006,12(3):315-318
    [105] Han CHEN, Wen-zhi YU, Shao-chang HAN, et al. Preparation and electrochemical properties of LiFePO_4/C composite with network structure for lithium ion batteries. Transactions of Nonferrous Metals Society of China, 2007,17(5): 951-956
    [106] Hui Liu, Yi Feng, Zenghui Wang, et al. A PVB-based rheological phase approach to nano-LiFePO_4/C composite cathodes. Powder Technology, 2008, 184(3): 313-317
    [107] Luo Shaohua, Tang Zilong, Lu Junbiao, et al. Synthesis and performance of carbon-modified LiFePO_4 using an in situ PVA pyrolysis procedure. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,2007,14(6): 562-567
    [108] Dong-Han Kim, Jaekook Kim. Synthesis of LiFePO_4 nanoparticles and their electrochemical properties. Journal of Physics and Chemistry of Solids, 2007, 68(5-6): 734-737
    [109] Bo-Jun Shen, Jeng-Shin Ma, Hung-Chun Wu, et al. Microwave-mediated hydrothermal synthesis and electrochemical properties of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 powders. Materials Letters, 2008, 62(25): 4075-4077
    [110] Yasuhiro Fujii, Hiroshi Miura, Naoto Suzuki, et al. Structural and electrochemical properties of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2: calcination temperature dependence. Journal of Power Sources, 2007, 171(2): 894-903
    [111] Hua-jun GUO, Ru-fu LIANG, Xin-hai LI, et al. Effect of calcination temperature on characteristics of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode for lithium ion batteries. Transactions of Nonferrous Metals Society of China, 2007, 17(6):1307-1311
    [112] 王海燕,唐爱东,黄可龙等.LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料的制备与倍率性能研究.无机化学学报,2008,124(4):593-599
    [113] Jun-chao Zheng, Xin-hai Li, Zhi-xing Wang, et al. LiFePO_4 with enhanced performance synthesized by a novel synthetic route. Journal of Power Sources, 2008, 184(2): 574-577
    [114] Hirokazu Okawa, Junpei Yabuki, Youhei Kawamura, et al. Synthesis of FePO_4 cathode material for lithium ion batteries by a sonochemical method. Materials Research Bulletin, 2008,43(5): 1203-1208
    [115] Yanbin Xu, Yingjun Lu, Ping Yin, et al. A versatile method for preparing FePO_4. Journal of Materials Processing Technology, 2008, 204(1-3): 513-519
    [116] Wang-jun Cui, Hai-jing Liu, Cong-xiao Wang, et al. Highly ordered three-dimensional macroporous FePO_4 as cathode materials for lithium-ion batteries. Electrochemistry Communications, 2008,10(10): 1587-1589
    [117] Jun-chao Zheng, Xin-hai Li, Zhi-xing Wang, et al. LiFePO_4 with enhanced performance synthesized by a novel synthetic route. Journal of Power Sources, 2008, 184(2): 574-577
    [118] L.N. Wang, Z.G. Zhang, K.L. Zhang. A simple, cheap soft synthesis routine for LiFePO_4 using iron(Ⅲ) raw material. Journal of Power Sources, 2007, 167(1): 200-205
    [119] 李军,赖桂棠,黄慧民.高比能LiFePO_4的制备及性能研究.电化学,2007,13(4):403-406
    [120] Wei Li, Jian Gao, Jierong Ying, et al. Preparation and characterization of LiFePO_4 from a novel precursor of NH_4FePO_4·H_2O. Journal of The Electrochemical Society, 2006, 153(9): F194-F198
    [121] Mamoru Ai, Kyoji Ohdan. Effects of differences in the structures of iron phosphates on the catalytic action in the oxidative dehydrogenation of lactic acid to pyruvic acid. Applied Catalysis A: General, 1997,165(1-2): 461-465
    [122] James E. Miller, Mary M. Gonzales, Lindsey Evans, et al. Oxidative dehydrogenation of ethane over iron phosphate catalysts. Applied Catalysis A: General, 2002, 231(1-2): 281-292
    [123] 丁彤等.中国化工产品大全(第三版,上卷).北京:化学工业出版社,2005.488
    [124] Hoggins J T, Swinnea J S, Steinfink H. Crystal structure of Fe_2P_2O_7. Journal of Solid State Chemistry, 1983,47(3): 278-283
    [125] Parada C, Perles J, Saez-puche R, et al. Crystal growth, structure, and magnetic properties of a new polymorph of Fe_2P_2O_7. Chem. Mater, 2003, 15(17): 3347-3351
    [126] Mamoru. Ai, Kyoji. Ohdan. Effects of the method of preparing iron orthophosphate catalyst on the structure and the catalytic activity. Applied Catalysis A: General, 1999,180(1-2): 47-52
    [127] E. Muneyama, A. Kunishige, K. Ohdan, et al. Reduction and reoxidation of iron phosphate and its catalytic activity for oxidative dehydrogenation of isobutyric acid. Journal of Catalysis, 1996, 158(2): 378-384
    [128] 申泮文,曾爱东.无机化学丛书(第九卷).北京:科学出版社,1996.215
    [129] 温庆祥.多孔硅.硅酸盐和振荡现象.中国科学(A辑),2000,30(5):440-444
    [130] Charles Delacourt, Philippe Poizot, Jean-marie Tarascon, et al. The existence of a temperature-driven solid solution in Li_xFePO_4 for 0≤x≤1. Nature, 2005, 4(3): 254-260
    [131] P. Nagaraju, Ch. Srilakshmi, Nayeem Pasha, et al. Effect of P/Fe ratio on the structure and ammoxidation functionality of Fe-P-O catalysts. Applied Catalysis A: General, 2008, 334(1-2): 10-19
    [132] 严宣申.无机化学丛书(第四卷).北京:科学出版社,1998.325
    [133] 严宣申.无机化学丛书(第四卷).北京:科学出版社,1998.309
    [134] Christopher M. Burba, Roger Freeh. Roman and FTIR spectroscipic study of Li_xFePO_4(0≤x≤1). Journal of The Electrochemical Society, 2004, 151(7): A1032-A1038
    [135] Christopher M. Burba, Roger Frech. Local structure in the Li-ion battery cathode material Li_x(Mn_yFe_(1-y))PO_4 for 0≤x≤1 and y=0.0, 0.5 and 1.0. Journal of Solid State Chemistry, 2007, 180(6): 1816-1825
    [136] A. Ait Salah, A. Mauger, K. Zaghib, et al. Reduction Fe~(3+) of impurities in LiFePO_4 from pyrolysis of organic precursor used for carbon deposition. Journal of The Electrochemical Society, 2006, 153(9): A1692-A1701
    [137] Hui Liu, Jingying Xie, Ke Wang. Synthesis and characterization of nano-LiFePOVcarbon composite cathodes from 2-methoxyethanol-water system. Journal of Alloys and Compounds, 2008, 459(1-2): 521-525
    [138] Jae-Kwang Kim, Jae-Won Choi, Ghanshyam S. Chauhan, et al. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochimica Acta, 2008, 53(28): 8258-8264
    [139] Dragana Jugovi(?), Miodrag Mitri(?), Nikola Cvjeti(?)anin, et al. Synthesis and characterization of LiFePO_4/C composite obtained by sonochemical method. Solid State Ionics, 2008, 179(11-12): 415-419
    [140] Jae-Kwang Kim, Gouri Cheruvally, Jae-Won Choi, et al. Effect of mechanical activation process parameters on the properties of LiFePO_4 cathode material. Journal of Power Sources, 2007, 166(1): 211-218
    [141] 沈泮文,曾爱冬.无机化学丛书(第九卷).北京:科学出版社,1996.218
    [142] 帅英,张少明,路承杰.机械力化学研究进展及其展望.新技术新工艺,2006,11:21-24
    [143] Akira Kuwahara, Shinya Suzuki, Masaru Miyayama. High-rate properties of LiFePO_4/carbon composites as cathode materials for lithium-ion batteries. Ceramics International, 2008, 34(4): 863-866
    [144] A.A.M. Prince, S. Mylswamy, T.S. Chan, et al. Investigation of Fe valence in LiFePO_4 by M(?)ssbauer and XANES spectroscopic techniques. Solid State Communications, 2004, 132(7): 455-458
    [145] Silvera Scaccia, Maria Carewska, Pawel Wisniewski, et al. Morphological investigation of sub-micron FePO_4 and LiFePO_4 particles for rechargeable lithium batteries. Materials Research Bulletin, 2003, 38(7): 1155-1163
    [146] 杨华明.搅拌磨超细粉碎及机械化学的研究:[博士学位论文].长沙:中南工业大学,1998.59-60
    [147] Jae-Kwang Kim, Jae-Won Choi, Gouri Cheruvally, et al. A modified mechanical activation synthesis for carbon-coated LiFePO_4 cathode in lithium batteries. Materials Letters, 2007, 61(18): 3822-3825
    [148] Sang Jun Kwon, Cheol Woo Kim, Woon Tae Jeong, et al. Synthesis and electrochemical properties of olivine LiFePO_4 as a cathode material prepared by mechanical alloying. Journal of Power Sources, 2004,137(1): 93-99
    [149] N. Kosova, E. Devyatkina. On mechanochemical preparation of materials with enhanced characteristics for lithium batteries. Solid State Ionics, 2004,172(1-4): 181-184
    [150] Jae-Kwang Kim, Jae-Won Choi, Ghanshyam S. Chauhan, et al. Enhancement of electrochemical performance of lithium iron phosphate bycontrolled sol-gel synthesis. Electrochimica Acta, 2008, 53(28): 8258-8264
    [151] S. Franger, C. Benoit, C. Bourbon, et al. Chemistry and electrochemistry of composite LiFePO_4 materials for secondary lithium batteries. Journal of Physics and Chemistry of Solids, 2006, 67(5-6): 1338-1342
    [152] Jae-Kwang Kima, Gouri Cheruvallya, Jou-Hyeon Ann, et al. Electrochemical properties of LiFePO_4/C composite cathode material: carbon coating by the precursor method and direct addition. Journal of Physics and Chemistry of Solids, 2008, 69(5-6): 1257-1260
    [153] Marca M. Doeff, Yaoqin Hu, Frank McLarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO_4. Electrochemical and Solid-State Letters, 2003, 6(10): A207-A209
    [154] Yaoqin Hu, Marca M. Doeff, Robert Kostecki, et al. Electrochemical performance of sol-gel synthesized LiFePO_4 in lithium batteries. Journal of The Electrochemical Society, 2004,151(8): A1279-A1285
    [155] 唐致远,阮艳莉.不同碳源对LiFePO_4/C复合正极材料性能的影响.化学学报,2005,63(16):1500-1504
    [156] Ho Chul Shin, Sung Bin Park, Ho Jang, et al. Rate performance and structural change of Cr-doped LiFePO_4/C during cycling. Electrochimica Acta, 2008, 53(27): 7946-7951
    [157] G. X. Wang, Steve Bewlay, Jane Yao. Characterization of LiM_xFe_(1-x)PO_4 (M=Mg, Zr, Ti) cathode materials prepared by the sol-gel method. Electrochemical and Solid-State Letters, 2004, 7 (12): A503-A506
    [158] Nathalie Ravet, Ali Abouimrane, Michel Armand, et al. From our readers: on the electronic conductivity of phospho-olivines as lithium storage electrodes. Nature, 2003, 2(11): 702-703
    [159] M. Saiful Islam, Daniel J. Driscoll, Craig A. J. Fisher, et al. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO_4 olivine-type battery material. Chem. Mater., 2005, 17(20), 5085-5092
    [160] C. Delacourt, C. Wurm, L. Laffont, et al. Electrochemical and electrical properties of Nb- and/or C-containing LiFePO_4 composites. Solid State Ionics, 2006, 177(3-4): 333-341
    [161] 卢俊彪,唐子龙,张中太.镁离子掺杂对LiFePO_4/C材料电池性能的影响.物理化学学报,2005,21(3):319-323
    [162] Jian Hong, Chunsheng Wang, Uday Kasavajjula. Kinetic behavior of LiFeMgPO_4 cathode material for Li-ion batteries. Journal of Power Sources, 2006, 162(2): 1289-1296
    [163] J A 迪安.蓝氏化学手册.北京:科学出版社,1991.118-123
    [164] Atsuo Yamada, Sai-Cheong Chung. Crystal chemistry of the olivine-type Li(Mn_yFe_(1-y))PO_4 and (Mn_yFe_(1-y))PO_4 as possible 4V cathode materials for lithium batteries. Journal of The Electrochemical Society, 2001, 148(8): A960-A967
    [165] Atsuo Yamada, Yoshihiro Kudo, Kuang-Yu Liu. Phase diagram of Li(Mn_yFe_(1-y))PO_4 (0≤x, y≤1). Journal of The Electrochemical Society, 2001, 148(10): A1153-A1158
    [166] Tatsuya Nakamura, Kiyotaka Sakumoto, Mitsuru Okamoto, et al. Electrochemical study on Mn~(2+)-substitution in LiFePO_4 olivine compound. Journal of Power Sources, 2007, 174(2): 435-441
    [167] D. Morgan, A. Van der Ven, G. Ceder. Li conductivity in Li_xFePO_4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochemical and Solid Letters, 2004, 7(2): A30-A32
    [168] Shoufeng Yang, Yanning Song, Peter Y. Zavalij, et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochemistry Communications, 2002,4(3): 239-244
    [169] 黄映恒,文衍宣,郑绵平等.锂离子电池正极材料LiNi_xFe_(1-x)PO_4的制备及其性能.桂林工学院学报,2005,25(3):326-329
    [170] 杨蓉,宋晓平,姚秉华等.正极材料磷酸亚铁锂的共沉淀合成和Mn~(2+)掺杂的研究.西安理工大学学报,2006,22(1):82-84
    [171] Tatsuya Nakamura, Yoshiki Miwa, Mitsuharu Tabuchi, et al. Structural and surface modifications of LiFePO_4 olivine particles and their electrochemical properties. Journal of The Electrochemical Society, 2006, 153(6): A1108-A1114
    [172] 王恩通,刘根庆,任引哲.锂离子电池正极材料LiFePO_4在Fe位掺杂的研究进 展.化学研究, 2007,18(1): 93-97
    [173] Fei Zhou, Matteo Cococcioni, Kisuk Kang, et al. The Li intercalation potential of LiMPO_4 and LiMSiO_4 olivines with M = Fe, Mn, Co, Ni. Electrochemistry Communications, 2004,6(11): 1144-1148
    [174] J. Wolfenstine. Ni~(3+)/Ni~(2+) redox potential in LiNiPO_4. Journal of Power Sources, 2005,142(1-2): 389-390
    [175] J. Wolfenstine, J. Allen. LiNiPO_4-LiCoPO_4 solid solutions as cathodes. Journal of Power Sources, 2004, 136(1): 150-153
    [176] N. Penazzi, M. Arrabito, M. Piana, et al. Mixed lithium phosphates as cathode materials for Li-Ion cells. Journal of the European Ceramic Society, 2004, 24(6): 1381-1384
    [177] Deyu Wang, Zhaoxiang Wang, Xuejie Huang, et al. Continuous solid solutions LiFe_(1-x)Co_xPO_4 and its electrochemical performance. Journal of Power Sources, 2005,146(1-2): 580-583
    [178] Robert Dominko, Miran Gaberscek, Jernej Drofenik, et al. The role of carbon black distribution in cathodes for Li ion batteries. Journal of Power Sources, 2003,119-121:770-773
    [179] Ali Eftekhari. Electrochemical deposition and modification of LiFePO_4 for the preparation of cathode with enhanced battery performance. Journal of The Electrochemical Society, 2004, 151(11): A1816-A1819
    [180] 阮艳莉,唐致远.Mg~(2+)掺杂对LiFePO_4结构及电化学性能的影响.中国有色金属学报,2005,15(9):1416-1420
    [181] H. Liu, C. Li, H.P. Zhang , et al. Kinetic study on LiFePO_4/C nanocomposites synthesized by solid state technique. Journal of Power Sources, 2006, 159(1): 717-720
    [182] 杨书延,刘玉霞,尹艳红等.镁离子掺杂对LiFePO_4/C电化学性能和结构的影响.无机材料学报,2007,22(4):627-630
    [183] Kang xu. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev, 2004,104(10), 4303-4417
    [184] Wentao Li, Brett L. Lucht. Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries. Journal of Power Sources, 2007,168(1): 258-264
    [185] S.R. Das, S.B. Majumder, R.S. Katiyar. Kinetic analysis of the Li~+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films. Journal of Power Sources, 2005, 139(1-2): 261-268
    [186] 曲涛,田彦文,翟玉春.采用PITT与EIS技术测定锂离子电池正极材料LiFePO_4中锂离子扩散系数.中国有色金属学报,2007,17(8):1255-1259
    [187] Pier Paolo Prosini. Modeling the voltage profile for LiFePO_4. Journal of The Electrochemical Society, 2005, 152(10): A1925-A1929
    [188] Denis Y. W. Yu, Christopher Fietzek, Wolfgang Weydanz, et al. Study of LiFePO_4 by cyclic voltammetry. Journal of The Electrochemical Society, 2007, 154(4):A253-A257
    [189] Dagao Zhuang, Xinbing Zhao, Jian Xie, et al. One-step solid-state synthesis and electrochemical performance of Nb-doped LiFePO_4/C. Acta Physico-Chimica Sinica, 2006, 22(7): 840-844
    [190] Fei Gao, Zhiyuan Tang. Kinetic behavior of LiFePO_4/C cathode material for lithium-ion batteries. Electrochimica Acta, 2008, 53(15): 5071-5075
    [191] M. G. S. R. Thomas, P. G. Bruce, J. B. Goodenough, et al. AC impedance analysis of polycrystalline insertion electrodes: application to Li_(1-x)CoO_2. Journal of The Electrochemical Society, 1985, 132(7): 1521-1528
    [192] Shuai Yuan, Shengshui Hu. Characterization and electrochemical studies of Nafion/nano-TiO_2 film modified electrodes. Electrochimica Acta, 2004, 49(25): 4287-4293
    [193] Mou Cheng Li, Li Li Jiang, Wen Qi Zhang, et al. Electrochemical corrosion behavior of nanocrystalline zinc coating in 3.5% NaCl solutions. Journal of Solid State Electrochemistry, 2007, 11(9): 1319-1325
    [194] 张亚利,孙典亭,郭国霖等.电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则.高等学校化学学报,2000,21(7):1086-1092
    [195] 米常焕,曹高劭,赵新兵.碳包覆LiFePO_4的一步固相法制备及高温电化学性能.无机化学学报,2005,21(4):556-560
    [196] P. Suresh, A.K. Shukla, N. Munichandraiah.Temperature dependence studies of a.c. impedance of lithium-ion cells. Journal of Applied Electrochemistry, 2002, 32(3): 267-273
    [197] H. Liu, C. Li, H.P. Zhang, L.J. Fu, et al. Kinetic study on LiFePO_4/C nanocomposites synthesized by solid state technique. Journal of Power Sources, 2006,159(1): 717-720
    [198] K. Amine, J. Liu, I. Belharouak. High-temperature storage and cycling of C-LiFePO_4/graphite Li-ion cells. Electrochemistry Communications, 2005, 7(7): 669-673
    [199] Nick Iltchev, Yike Chen, Shigeto Okada, et al. LiFePO_4 storage at room and elevated temperatures. Journal of Power Sources, 2003,119-121: 749-754

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700