高分辨率层序地层学在开发早期储层描述与建模中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以吐哈盆地台北凹陷红台-疙瘩台油气田为例,针对陆相辫状河三角洲相变快、多物源、砂体连通性差的地质特点,提出了一套开发早期将高分辨率层序地层学与储层描述和建模技术相结合的研究思路和方法。在高分辨率层序地层学研究的基础上,强调了“等时对比,分级控制”的原则,集中研究了中期和短期基准面旋回的沉积特征和控制因素。中期旋回控制了亚相的分布规律,短期旋回决定了砂体的成因类型。前者决定了储层结构及砂体的空间叠置,后者影响了砂体层内非均质性及其展布。
    本文首先以地震、测井和地质资料为基础,将研究层段中侏罗统三间房组和西山窑组中上部划分为4 个中期基准面旋回,继而在中期旋回格架内系统地研究了沉积相类型、特征和演化规律,并首次提出了沉积物体积分配系数的概念,对该系数的地质意义进行了分析。研究层段属于湖盆短轴方向缓坡带河控型粗粒辫状河三角洲沉积,分为疙瘩台和红台两个三角洲沉积体,物源分别来自西南和东南两个方向。构造、气候和物源供给控制了三角洲的发育及其特征。缓坡带地形高差小、物源供给不充分,河口作用以摩擦作用为主,因而导致本区河口坝不发育,而三角洲平原辫状分流河道和三角洲前缘水下分流河道是主要的储集砂体类型。
    其次,应用岩芯观察和测井相分析的方法,确定了中期旋回内不同A/S 值条件下短期旋回的叠置特征与沉积序列,划分了41 个短期旋回(小层)。从成岩作用和沉积作用入手,分析了相对优质储层的垂向分布规律和控制因素。压实作用是造成宏观上储层物性随埋深增加而变差的原因;沉积作用则是导致砂体层内非均质性的根本原因。随着A/S 值的变化,在中期旋回格架内,储层结构类型和砂体层内非均质性特征的变化具有相应的规律。本区A/S 值的变化主要受沉积物供给量变化控制。
    最后,应用等时相控随机模拟方法建立了三维可视化的储层地质模型。采用截断高斯方法建立了三维亚相地质模型,反映了本区三角洲沉积体的演化规律;采用标点过程建立了以分流河道为目标的微相地质模型,以此为基础建立了参数模型。本论文的研究为油田开发方案设计提供了重要的地质科学依据。
This paper is focused on the application of high-resolution sequence stratigraphy in the reservoir characterization and modeling at the early stage of development in Hongtai-Gedatai gas and oil field, Turpan Basin, northwestern China. In the application of high-resolution sequence stratigraphy, the sedimentary features and the controlling factors were analyzed in mid-term base-level cycles and in short-term base-level cycles. The mid-term base-level cycles controlled the distribution of subfacies and thus controlled the reservoir architecture; while the short-term base level cycles controlled the microfacies type of sand bodies and thus the heterogeneities inside sand bodies.
    Base on seismic, logging and geological data, four mid-term base-level cycles were distinguished from Middle-upper Xishanyao Formation and Sanjianfang Formation of the middle Jurassic, inside which the types, characters and evaluation pattern of sedimentary facies were analyzed. The concept of Coefficient of Sediment Volume Partitioning (CSVP) was put forward and used in the analysis of provenance. According to the research, the target formations were belonged to tow channel-controlled coarse-grain braided river deltas on the southern gentle slope of Turpan Basin. The provenance of Hongtai delta was from the southeast, Gedatai from the southwest. The evaluation of delta was divided into two stages, retrogradation and progradation, which was controlled by structure, climate and sediment supply. Owing to the gentle slope and the insufficiency of sediment supply, mouth bars were developed not very well. The main microfacies were braided distributary channels on delta plain and subaqueous distributary channel on delta front.
    Inside the mid-term base-level cycles, 41 short-term cycles (members) were distinguished on the basis of stack patterns and sedimentary sequences under different A/S. There were tow types of reservoir architecture, labyrinth and jig-saw puzzle. Digenesis was the main factor which caused the macroscopic variance of reservoir quality; while sedimentation was the reason for microscopic heterogeneities inside sand bodies. The change of reservoir architecture and the microscopic heterogeneities of sand bodies were correlative with the change of A/S. The decrease of sediment supply is the primary reason for the change of A/S value.
    Finally, isochronal facies-restrained stochastic modeling method is used to build up the 3-D reservoir model. Truncated Gaussian field simulation was used in the modeling of subfacies geologic model. Marked point process was used in the modeling of microfacies. 3-D reservoir parameter model was built up on the basis of microfacies model.
    This research provides an important geological basis for oilfield development management.
引文
[1] Aitken J F et al. High resolution sequence stratigraphy: innovations, applications, and future prospects. In: How ell J A & Aitken J F (eds. ) High resolution sequence stratigraphy: Innovations and Application. Geological Society Special Publication, 1996, (104):1~9.
    [2] Cross T A. 2000. Stratigraphic contrals on reservoir attributes in continental strata, Earth Science Frontiers. Vol. 7, No. 4, 322~350 .
    [3] Cross T A. Application of high resolution sequence stratigraphy to reservoir analysis [A]. Subsurface Reservoir Characterization from Outcrop Observations Proceedings of the 7th E&P R search Conference Paris, Tecchni, 1993. 11~33.
    [4] Cross T. A Stratigraphic Architecture, Correlation Concepts, Volumetric Partioning, Facies Differentiation, and Reservoir Compartmentalization from the Perspective of High Resolutiong Sequence Stratigraphy. Research report of the genetic stratigrphy research group, DGGE, CSM, 1994: 28~41.
    [5] Cross, T. A., 1993, Applications of High~Resolution Sequence Stratigraphy in Petroleum Exploration and Production    [6] Cross, T. A., 1994, Applications of high~resolution sequence stratigraphy to reservoir analysis: The Interstate Oil and Gas Compact Commission 1993 Annual Bulletin, p. 24~39.
    [7] Cross, T. A., and Lessenger, M. A., 1998, Sediment volume partitioning; rationale for stratigraphic model evaluation and high~resolution stratigraphic correlation, in F. M. Gradstein, K. O. Sandvik, and N. J. Milton, eds., Sequence Sequence Stratigraphy    [8] Cross, T. A., and Raynolds, R. G., 1993, Illustration of Correlation Techniques, Facies Prediction and Reservoir Compartment Identification through Genetic Stratigraphy     [9] Cross, T. A.,1991,Field~scale reservoir characterization, in L. W. Lake, H. B. Carroll, Jr., and T. C. Wesson, eds. Reservoir Characterization II: Academic Press, Orlando, Florida, P. 493~497.
    [10] O. Dubrule. Introducing more geology in stochastic Reservoir Modeling. In A. Soares, editor, Geostatistics~Troia, volume 1, pages 351~370. Kluwer, 1993.
    [11] Reading H G. 1996. Sedimentary Environments: Processes, Facies and Stratigraphy, Blackwell Science, 688p.
    [12] 陈波, 李孝军. 油田开发阶段砂岩储集层横向对比及预测方法. 石油勘探与开发, 2000, 27(1): 95~97.
    [13] 陈建达, 李莉. 高分辨率层序地层学在油田开发中的应用. 江汉石油职工大学学报, 2002, 15, (3): 15~17.
    [14] 陈新军, 黄仁平, 刘月兰. 油藏模拟中的层序地层学. 断块油气田, 2000, 7(6): 5~7.
    [15] 邓宏文, 王洪亮, Cross T A. 等. 高分辨率层序学—原理及应用. 北京: 地质出版社,2002.
    [16] 杜春彦, 郑荣才. 陕北长6 油层组短期基准面旋回与储层非均质性的关系. 成都理工学院学报, 1999, 26(1): 17~22.
    [17] 何义中, 郑荣才, 吴朝容, 等. 湖泊三角洲研究的回顾与展望. 岩相古地理, 1999, 19(3): 40~43.
    [18] 侯中健, 陈洪德, 田景春, 等. 苏里格气田盒8 段高分辨率层序结构特征. 成都理工大学学报(自然科学版), 2004, 31(1): 46~52.
    [19] 胡向阳, 熊琦华, 吴胜和, 等. 标点过程随机模拟方法在沉积微相研究中的应用. 石油大学学报(自然科学版), 2002, 26(2): 19~22.
    [20] 季卫华, 焦立新, 王仲杰, 等. 吐哈盆地小草湖次凹天然气成藏条件及勘探方向分析. 天然气地球科学, 2004, 15(3): 266~271.
    [21] 李斌. 台北凹陷小草湖次凹油气成藏特点及有利区带. 新疆石油地质, 2002, 23(5): 394~396.
    [22] 李文厚, 柳益群, 冯乔, 等. 吐哈盆地沉积环境对生储盖层形成的控制作用. 西北地质, 1997, 18(1): 22~28.
    [23] 李文厚, 柳益群, 冯乔, 等. 吐哈盆地侏罗系沉积相带与砂体的展布特征. 石油实验地质, 1997, 19(2): 168~172.
    [24] 刘建民. 沉积结构单元在油藏研究中的应用. 北京: 石油工业出版社, 2003.
    [25] 刘林玉, 柳益群, 李文厚, 等. 吐哈盆地台北凹陷三角洲沉积与成岩作用. 石油与天然气地质, 2002, 23(4): 402~405.
    [26] 刘玉林, 陈刚, 魏国彪, 等. 吐哈盆地台北凹陷储集层岩石学特征. 西北地质科学, 1999, 20(1):23~26.
    [27] 柳梅青, 陈亦军, 郑荣才. 川西新场气田蓬莱镇组陆相地层高分辨率层序地层学研究. 沉积学报, 2000, 18(1):50~56.
    [28] 罗平, 裘怿楠, 贾爱林, 等. 中国油气储层地质研究面临的挑战和发展方向. 沉积学报, 2003, 21(1):142~147.
    [29] 穆龙新. 油藏描述的阶段性及特点. 石油学报, 2000, 21(5):103~108.
    [30] 裘怿楠, 贾爱玲. 储层地质模型10 年. 石油学报. 2000, 21(4):101~104.
    [31] 裘怿楠, 薛叔浩, 应凤祥. 中国陆相油气储集层. 北京: 石油工业出版社, 1997.
    [32] 童崇光. 新疆构造演化与吐哈盆地油气地质特征. 成都理工学院学报, 1999, 26(1):8~13.
    [33] 王雄兆, 高锦麟. 吐哈盆地台北凹陷区域构造格架特征. 新疆石油地质, 1994, 15(3):201~ 207.
    [34] 王振奇, 张昌民, 张尚锋, 等. 油气储层的层次划分和对比技术. 石油与天然气地质, 2002, 23(1):70~75.
    [35] 吴胜和, 马晓芬, 王仲林. 温米油田开发阶段高分辨率层序地层学研究. 石油学报, 1999, 9(25): 33~38.
    [36] 吴胜和, 王仲林. 温米油田中侏罗统低伽马泥岩的湖泛成因及层序地层学意义. 新疆石油地质, 1999, 20(4): 365~366.
    [37] 吴胜和, 金振奎, 黄沧钿, 等. 储层建模. 北京: 石油工业出版社, 1999.
    [38] 吴胜和, 张一伟, 李恕军, 等. 提高储层随机建模精度的地质约束原则. 石油大学学报(自然科学版), 2001, 25(1):55~58.
    [39] 吴因业, 薛叔浩, 应凤祥, 等. 吐哈盆地台北凹陷侏罗系储层沉积特征研究. 新疆石油地质, 1994, 15(2):116~125.
    [40] 吴因业. 吐哈盆地侏罗系含煤沉积层序特征研究. 石油勘探与开发, 1995, 22(5):35~39
    [41] 肖玉茹, 何峰煜. 高分辨层序地层学在储层预测中的应用. 石油实验地质, 2003, 25(2):169~173.
    [42] 许广明, 徐怀大, 孔祥言. 高分辨率层序地层学在油藏数值模拟中的应用. 石油与天然气地质, 1999, 20(2): 115~119.
    [43] 姚光庆, 马正, 赵彦超, 等. 浅水三角洲分流河道砂体储层特征. 石油学报, 1995, 16(1):26~31.
    [44] 尹太举. 高分辨率层序地层学及其在濮城油田开发中的应用: [博士学位论文]. 北京: 中国地质大学, 2002.
    [45] 于兴河, 李剑锋. 碎屑岩系储层地质建模及计算机模拟. 北京: 地质出版社, 1996.
    [46] 于兴河, 王德发, 孙志华. 湖泊辫状河三角洲岩相、层序特征及储层地质模型——内蒙古岱海湖现代三角洲沉积考察. 沉积学报, 1995, 13(1): 48~58.
    [47] 于兴河, 王德发, 郑浚茂, 等. 湖泊辫状河三角洲砂体特征及砂体展布模型——内蒙古岱海湖现代三角洲沉积考察. 石油学报, 1994, 15(1): 26~37.
    [48] 于兴河, 王德发. 陆相断陷盆地三角洲相构形要素及其储层地质模型. 地质论评, 1997, 43(3): 225~231.
    [49] 于兴河, 郑浚茂, 宋立衡, 等. 断陷盆地三角洲砂体的沉积作用与储层的层内非均质性特点. 地球科学-中国地质大学学报, 1997, 22(1): 51~56.
    [50] 于兴河. 碎屑岩系油气储层沉积学. 北京: 石油工业出版社, 2002.
    [51] 袁明生, 牛仁杰, 焦立新, 等. 吐哈盆地前陆冲断带地质特征及勘探成果. 新疆石油地质, 2002, 23(5)376~379.
    [52] 张昌民. 储层研究中的层次分析法. 石油与天然地质, 1992, 13(3):344~350.
    [53] 张世焕, 王志勇, 张朝富. 吐哈盆地煤系烃源岩特征与油气分布关系初探. 新疆石油地质,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700