用户名: 密码: 验证码:
萨北开发区纯西葡一油层组沉积构成及聚驱解堵增注研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡一油层是大庆油田的主要产层之一,由白垩纪姚家组底部和青山口组顶部地层组成,为河流-三角洲相沉积。目前部分地区实施注聚合物等三次开采,三采后仍有约50%的剩余油赋存地下。通过对储层砂体内部沉积构成的精细研究明确储层非均质特征,从而揭示剩余油分布规律和注聚堵塞机理,在油田开发后期具有重要的理论和现实意义。本文应用高精度层序地层理论和Miall的成因构成分析方法在葡一油层内开展砂体内部构成、剩余油分布规律、注聚堵塞机理及相应的解堵增注措施分析,取得了如下成果:
     1.建立了葡一油层组高精度层序格架,划分出3个四级层序和7-8个五级层序。识别出三角洲平原、三角洲前缘、河流等沉积体系类型,平面编图揭示了四级层序沉积微相和砂体厚度的分布变化。
     2.总结区内的储集砂体包括单一成因砂体和复合砂体,阐述了正韵律、反韵律和复合韵律砂体的沉积特征和物性特征。开展了P12和P13复合砂体内部构形分析。揭示了P12曲流河点坝体侧向加积结构形成的4级界面形态、产状、分布及识别特征。提出P13下切辫状水道形成于沉积基准面下降期,内部以冲刷充填结构为主,并识别出3-5级界面。
     3.从垂向叠置和平面组合上探讨了复合砂体的内部沉积构成和储层非均质特征,划分出主河道带、河道边缘—河口坝带、边缘砂坝—决口—越岸带等砂岩分布区带,指出各带的剩余油分布特征。总结了P12和P13复合砂体内4级界面控制下的隔层分布和剩余油分布模式。
     4.现场分析和室内实验揭示了堵塞物的组成和堵塞过程,探讨了储层非均质性对堵塞的影响,指出正韵律砂体基本不堵塞或近井堵塞,堵塞物以粘土、机械杂质为主,与聚合物干粉质量、配伍比有关;反韵律和复合韵律砂体远井堵塞,堵塞物以无机成核、有机缠绕为主,与渗透率、孔喉半径等有关;平面上区分出渗透率大于500md,300-500md和小于300md的三个带,前者基本不堵塞或近井堵塞,300-500md远井堵塞,小于300md无法通过,易堵塞,指出这三个带与主河道带、河道边缘—河口坝带、边缘砂坝—决口—越岸带具有很好的一致性。
     5.根据不同沉积构成的砂体在聚驱开采中堵塞的特点,提出了相应的解堵增注措施。对于正韵律近井堵塞用HRS新型解堵剂解堵,对于复合韵律远井堵塞,用树脂砂解堵,对于具有复杂隔层分布的厚砂体用压裂后再解堵方法解堵。
Pu-1 oil layer, one of most important productivity layers, composed with lower part of Cretaceous Yaojia Formation and upper part of Qingshankou Formation, is river and delta sedimentary. At present, parts of area has been carried out polymer injection development. After the third development, there is still about 50% remaining oil undevelopment. Through the detailed study of depositional architecture of reservoir sandbody, confirming the heterogeneity characteristic, and revealing the distribution law of remaining oil and the polymer injection blocking mechanism have great significance of theory and practice in later development period. Applying high-resolution sequence stratigraphy theory and Miall's genetic architecture analysis method, the sedimentary architecture of sandbody, remaining oil distribution law, polymer injection blocking mechanism and feasible methods of blockage-removing and stimulation of polymer injection of Pu-1 oil layer have been studied in this paper. There achieved the following results:1. The high-resolution sequence stratigraphy framework of Pu-1 oil layer has been estabilished,and divided 3 4~(th) order sequences and 7-8 5~(th) order sequences. Several sedimentary microfacies have been recognized under the high-resolution sequence stratigraphy framework, such as delta plain, delta front, river and so on. The sedimentary microfacies mapping of 4 order sequence revealled the laterial change of sedimentary microfacies and sandbody thickness.2. we summarized the sandbody types, including singe genetic sandbody and composed sandbody, and expatiated the sedimentary and reservoic characteristic of the normal rhythm, reverse rhythm and composed rhythm sandbody in this paper. The depositional architecture study of Pu-1-2 and Pu-1-3 composed sandbody has also been carried out, and show that the shape, distribution and recognization characteristic of 4~(th) order surface in Miall's genetic architecture unit analysis, which formed of Pu-1-2 mender single point bar laterial superposition. Pu-1-3 incised braided channel formed during the sea-level falling period, and formed erode and filling configuration, by which the 3~(th) or 5~(th) surfaces can be identified.3. According to the vertical superposition of composed sandbody and horizonal heterogeneity of reservoir, there has been divide into 3 different sedimentary belts,
    that is major channel belt, channel margin and mouth bar belt and marginal sand bar-flooding fan -flooding plain belt, and discussed the different remaining oil distribution characteristic. The interlayer distribution and remaining oil distribution model controlled by 4* order surface of Pu-1-2 and Pu-1-3 composed sandbody have been summarized in this paper.4. The fieldwork and laboratory experience revealed the composition and the blocking process. The relationship of reservoir heterogeneity and blocking has been discussed. The result show that normal rhythm sandbody is hardly blocked or near blocked, the blocking mainly is mud and mechanical fabric, that is connected with the polymer power quality and mix rate. The reverse rhythm and composed sandbody is far blocked, the blocking is mainly inorganic inside and organic arrounding, that is connected with porosity and permeability. There can be divided 3 permeability distribution belts, that are over 500md, 300-500md and lower 300md. There is hardly blocking or nearly blocked in the over 500md belt, there is easy far blocked in the 3OO-5OOmd belt, and there is easy blocked in the lower 300md belt. These belts are almost consistent well to the main channel belt, channel margin-mouth bar belt and marginal sand bar-flooding fan-flooding plain belt5. According to the different blocking characteristic of different depositional architecture in polymer injection development, the feasible methods of blockage-removing and stimulation of polymer injection have been brought in this paper. Applying HRS new type blockage to normal rhythm nearly blocking sandbody, applying colophony sand to composed and far blocking sandbody, and applying crush and blockage to complex interlay thick sandbody.
引文
[1] Fiber optic temperature monitoring optimizes water injection, well production,/World Oil -2003, 224(11). -39~40, 42
    [2] Microseismic monitoring of borehole fluid injection: data modeling and inversion for hydraulic oroperties of rocks/Geophysics. -2003, 68(2). -685~689
    [3] 张文昭.松辽盆地油气勘探成果与潜力分析,大庆石油地质与开发[J].1997,16(3):1-3.
    [4] Multi-disciplinary study of the heavy oil reservoir in the Armatella field, Sicily/Pet. Geoscience. -2003, 9(3). -265~276
    [5] Logistic approach in using an array of reservoir simulation and probabilistic models in developing a giant oil reservoir with supper-permeability and natural fracture: SPE 77566/SPE Ann. Tech. Conf. Exhib.: 2002. 05. 06: San Antonio
    [6] Lin Chengyan et al., The distribution law of remaining oil in the fluvial sandstone reservoir with high water-cut -An example from the Zhong—1 district in Gudao oil field[J]. Scientia Geologica Sinica, 1998, 7 (3): 395-401.
    [7] Visualization technology speeds field development//Offshore. -2003, 63(12). -42, 44~45
    [8] 高叔玲,刘春梅,赵清萍,利用精细地质研究成果优化聚驱井位部署,大庆石油地质与开发,2002,V.21(4)
    [9] 高维衣,陈清奎,周伟东等,孤东油田七区中注聚特征及影响因素分析,江汉石油学院学报,2003,V25.Suppl.B.
    [10] 邬侠,孙尚如,胡勇,卢祥国,聚合物驱后剩余油分布物理模拟实验研究,大庆石油地质与开发,2003,V。22 (5)
    [11] A new approach for reservoir characterization: SPE 78710/Aminian K...//SPE Eastern Regional Metting: 2002. 10. 23: Lexington
    [12] Conditional stochastic moment equations for uncertainty analysis of flow in heterogeneous reservoirs: SPE 965/Li L.//SPE Reservoir Simulation Symp.: 2003. 02. 03: Houston
    [13] Development and application of improved reservoir characterization for optimizing screen less fracturing in the gas condensate Jauf reservoir, Saudi Arabia: SPE 77601
    [14] 刘益兵,沙宗伦,辛宇宏,聚合物驱优化布井及其适应性研究,大庆石油地质与开发,2002,V。21 (4)
    [15] 吴赞校,石志成,丁川,于宏宇,聚合物驱综合调整方法研究与探讨,国外油田工程,2001,V.17 (6)
    [16] Reliable and cost effective reservoir characterization of thin, layered and heterogeneous reservoir: case study: SPE 80441//SPE Asia Pacific Oil Gas Conf. Exhib.: 2003. 04. 15: Jakarta
    [17] Control of facies architecture in the Brent group, Strathspery field, UK North Sea: implication for reservoir characterization/Pet. Geoscience. -2003, 9(3). -209~220
    [18] 张占松,储层非均质渗透率预测在分析剩余油富集区中的应用,中国海上油气地质,V11 (2)
    [19] Hear C L, Ebank W J Jr, Tye R Set al. 1984. Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming[J]. JPT., 36: 1335~1344
    [20] 陈元,储层横向相变对剩余油分布的影响,油气采收率技术,V5 (1)
    [21] 李长山,大庆油田北部河流相储层沉积微相与水淹特征,现代地质,2000,V14 (2)
    [22] 魏纪德,杜庆龙,林春明等.大庆油田剩余油的影响因素及分布[J].石油与天然气地质,2001,22(1):57-59。
    [23] Visualization trends in oil and gas//Hart's E&P. -2004, 77(1). -42~43
    [24] 肖武,断块油藏剩余油分布的地质研究方法探讨,油气地质与采收率,2004,V11(1):P.58~60
    [25] 林畅松,张燕梅,刘景彦,庞保成.地学前缘,高精度层序地层学与储层预测[J].地学前缘,2000,7(3):111-117.
    [26] Aitken, J. F. & Howell, J. A. High resolution sequence stratigraphy: innovations, applications and future prospects. In: Howell, J. A. & Aitken, J. F (ed.), High resolution sequence stratigraphy: innovations and applications[A], Geological Society Special Publication, 1996, 104: 1-9.
    [27] 李思田,潘元林,陆永潮等,断陷湖盆隐蔽油气藏预测及勘探的关键技术—高精度地震探测基础上的层序地层学研究,地球科学,2002,27(5):593-598
    [28] Sloss, L. L., 1963, Sequences in the cratonic interior of North America: Geological Society of America Bulletin, v. 64, p. 93-113
    [29] Brown, L. F., and Fisher, W. L., Seismic--stratigraphic interpretation of depositional systems: examples from Brazil rift and pull--apart basins, in Payton, C. E, ed., Seismic Stratigraphy--Applications to Hydrocarbon Exploration: American Association of Petroleum Geologists Memoir 26, 1977: 213—248
    [30] Van Wagoner J C, Mitchum R M, Campion K M and Rahmanion V D. Siliciclastic sequence stratigraphy in well, cores and outcrops-concept for high-resolution correlation of times and facies. AAPG Methods in Exploration Series, 1990, 7: 1-55
    [31] Jervey M T. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In: Wilgus C K, et al. ed. Sea-level Changes: an integrated approach. Soc. Econ. Palaeontol. Mineral. Spec. Publ. 1992, 42: 47-69
    [32] Galloway W E. Genetic stratigraphic sequence in basin analysis--architecture and genetics of flooding surface bounded depositional units. AAPG Bulletin, 1989, 73 (1): 126—142
    [33] 李思田.层序地层分析与海平面变化研究——进展与争论,1992,11(4):23—30
    [34] 顾家裕,范士芝,层序地层学回顾与展望,海相油气地质,2001,6(4):15-25
    [35] 林畅松,刘景彦,张英志等.构造活动盆地的层序地层与构造地层分析——以中国中、新生代构造活动湖盆分析为例.地学前缘,2005,12(4):365-374
    [36] 邹光富,陈永明,夏彤,层序地层学在区调地质调查中的应用,2003,23(1):1-4
    [37] 徐强,姜烨,董伟良等,中国层序地层研究现状和发展方向,2003,21(1):155-167
    [38] Vail P R, Mitchum R M. Seismic stratigraphy and global changes in sea level, Part 1: overview [A]. Payton C E, ed. Seismic Stratigraphy-Application to Hydrocarbon Exploration [C]. America Association of Petroleum Geologists, Memoir, 1977, 26: 51—212
    [39] Haq B. U., Hardenbol J., and Vail P. R., 1987, Chronology of fluctutaing sea levels since the Triassic: Science, v. 235: 1156-1167
    [40] Posamentier H W, Jervey M T, Vial P R;徐怀大等译.全球性海平面升降对沉积 作用的控制Ⅰ概念构架.见(In):徐怀大等.层序地层学原理—海平面变化综和分析.北京:石油工业出版社(M).1993,138—154
    [41] Vail P R, Aude mard F, Bowman S A, et al. The stratigraphic signatures to tectonics, eustasy and sedimentation: an overview. In: Einsele, ed. Cycles and events in stratigraphy. Berlin Heidelberg: Springer—Verlag, 1991: 615—659
    [42] Embry A F. Transgressive-regressive (T-R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago, Can. J. Earth. Sci. 1993, 30: 301-320.
    [43] 林畅松,潘元林,肖建新等,构造坡折带—断陷盆地层序分析和油气预测的重要概念,地球科学,2000,25,(3):260-265。
    [44] Van Wagoner J C., Jones Cliver R, High frequency sequence--stratigraphy and facies architecture of the Sego Sandstone in the Book Cliffs of western Colorado and eastern Utah. In: Sequence stratigraphy applications to shelf sandstone reservoirs;outcrop to subsurface examples;AAPG field conference, September 21--28, 1991: 1—10
    [45] Posamentier H W, Jervey M T et al., Eustatic controls on clastic deposition Ⅰ-Conceptual frameworks in: Sea-level changes: an interpreted approch. Spec. Publ. Soc. Ecan. Paleont. Miner. 1988, 42: 104-114
    [46] Cross T A. Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, Western Interior, U. S. A. In: Wilgaus C K, et al. Sea-level changes: An intergrated approach. SEPM Special Pubication, 42, 1988. 371-380.
    [47] 邓宏文,美国层序地层研究中的新学派—高分辨率层序地层学,石油与天然气地质,1995,16 (2):89-97.
    [48] 林畅松,刘景彦,刘丽军,张韬,李喜臣.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276-281.
    [49] Alejandro Escalona, Paul Mann. Sequence-stratigraphic analysis of Eocene clastic foreland basin deposits in central Lake Maracaibo using high-resolution well correlation and 3-D seismic data. AAPG Bulletin, Apr 2006;90: 581-623
    [50] A new approach for reservoir characterization: SPE 78710/Aminian K...//SPE Eastern Regional Metting: 2002. 10. 23: Lexington
    [51] 王红亮,邓宏文,孙德君,准噶尔盆地南缘层序地层特征与有利含气区带预测,石油实验地质,2000,22 (4):336-340
    [52] 刘景彦,林畅松,李喜臣等,库车坳陷古近系库姆格列木组高精度层序地层分析及其油气勘探意义,地球学报,2003,Vol.24(5):429-434。
    [53] 渠永宏,隋新光,刘颖萍,主国涛,江淮友.储层的表征技术—北一区断东西块高分辨率层序地层分析[J].大庆石油地质与开发,2003,22(5):15-18.
    [54] 杜庆龙,王元庆等.不同规模地质体剩余油的形成与分布研究[J].石油勘探与开发,2004,31(1):95-99.
    [55] 刘建民,河流成因储层剩余油分布规律及控制因素探讨,油气采收率技术,2000,V7 (1)
    [56] 马世忠.决口水道沉积模式及其砂体内剩余油形成与富集[J].大庆石油地质与开发,2000,19 (6):20-22.
    [57] 王元庆,杜庆龙,刘志胜等.三角洲前缘相储层沉积特征及剩余油分布研究[J].大 庆石油地质与开发,2002,21 (5):27-29.
    [58] Miall A D. Architectural- element analysis: A new method of facies analysis applied to fluvial deposits [J]. Earth Science Review, 1985, 22(2): 261-308.
    [59] Miall A D. Reservoir heterogeneities in fluvial sandstones: Lesson from outcrop studies [J]. AAPG Bulltin. 1988, 72 (6): 687-697.
    [60] 李思田,林畅松,解习农,杨士恭,焦养泉.大型陆相盆地层序地层研究—以鄂尔多斯中生代盆地为例[J].地学前缘,1995,2(3-4):133-148.
    [61] Lin Changsong, Li Sitian, Li Zhen. Facies architecture, stratigraphic sequences and coal occurrence in the Late Carboniferous and Early Permian Delta Complexes of the North Huabei Basin, China[A], Oti N, Postma G Geology of Deltas[C]. Rotterdam, Netherland: A Balkema, Pubishers, 1995, 97-125.
    [62] Lemons D R;Chan M A. Facies architecture and sequence stratigraphy of fine-grained lacustrine deltas along the eastern margin of Late Pleistocene Lake Bonneville, Northern Utah and Southern Idaho. AAPG Bulletin, 1999, 83(4): 635-665
    [63] Olsen T, Steel R, Hgseth K, et al. Sequencial architecture in a fluvial succession: Sequence Stratigraphy in the Upper Cretaceous Mesaverde Group, Prince Canyon, Utath. Journal of Sedimentary Research, 1995, 65(2): 265-280
    [64] Galloway W E. Silicicalstic slope and base-of-slope depositional systems: component facies, stratigraphic architecture, and classification. AAPG Bulletin, 1998, 82 (4): 569—595
    [65] F. N. Sadooni, A. S. Alsharhan. Stratigraphy, lithofacies distribution, and petroleum potential of the Triassic strata of the northern Arabian plate. AAPG Bulletin, Apt 2004;88: 515-538
    [66] Lin C S, Li S T, Wan Y X, et al. Depositional systems, sequence stratigraphy and basin filling evolution of Erlian fault lacustrine basin, Northeast China. in: Liu B, Li S, eds. Basin analysis, global sedimentary geology and sedimentology, Proceedings of the 30th IGC. Utrecht: VSP International Science Publishers, 1997: 163—175
    [67] Lin Changsong, Yang Qi and Li Sitian, Structural and depositional patterns of the Tertiary Baise basin, Guang Xi Autonomous Region (Southeastern China): a predictive model for fossil fuel exploration, in P. Anadon, L1. Cabrera and K. kelts, ed.," Lacustrine Facies Analysis", Spec. Publs Int. Ass. Sediment., Blackwell, 1991, 13 (3): 75—92
    [68] 魏魁生,非海相层序地层学—以松辽盆地为例,北京:地质出版社,1996:57-76。
    [69] 魏魁生,徐怀大等.松辽盆地白垩系高分辨率层序地层格架,石油与天然气地质,1997,18(1):7—14.
    [70] 薛良清.层序地层分析在裂谷盆地油气勘探中的应用,石油学报,2000,21 (5):7-11
    [71] 王嗣敏,刘招君等.陆相盆地层序地层形成机制分析—以松辽盆地为例,长春科技大学学报,2000,30(2):139—144
    [72] 李思田,程守田,杨士恭等,鄂尔多斯盆地东北部层序地层及沉积体系分析——侏罗系富煤单元的形成、分布及预测基础,地质出版社,1992:194-185
    [73] 赵翰卿.储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨[J].大庆石油地质与开发,2002,21 (6):16-18.
    [74] Guangming Ti D O Ogbe, Hatzignatiou D G. 1995. Use of flow units as a tool for reservoir description: A case study. SPE Formation Evaluation, 10: 122~128
    [75] 李宝芳,李祯,林畅松等.鄂尔多斯盆地中部下中侏罗统沉积体系和层序地层,地质出版社,1995,p.137
    [76] 张永庆,北一区断东西块葡一组油藏精细描述及预测,大庆石油地质与开发,V22 (1)
    [77] 马世忠,单砂体三维地质模型基础上的优势渗透率分析方法,大庆石油学院院报,2000,V24 (3)
    [78] 柳成志,萨尔图油田中区西部PⅠ油层组精细地质与剩余油分布,大庆石油学院院报,2002,V26 (4)
    [79] 焦养泉,李思田.陆相盆地露头储层地质建模研究与概念体系[J].石油实验地质,1998,20 (4):346-353.
    [80] 廖广志,牛金刚,邵振波,陈鹏,大庆油田工业化聚合物驱效果及主要做法,大庆石油地质与开发,2004,V。23 (2).
    [81] 刘连福,李继庆,宋辉,牛广侠,对聚合物驱单井效果评价的几点认识,大庆石油地质与开发,2002,V。21 (4)
    [82] 高岩,王庆平,周宗明,注聚合物速度对提高原油采收率的影响,油气地质与采收率,2001,V.8 (2)
    [83] 吴文祥,刘洋,聚合物驱后岩心孔隙结构变化特性研究,油田化学,2002,V.19 (3)
    [84] 周志军,宋考平,闫亚茹等,聚合物驱驱替特征模型的建立及其应用,大庆石油学院学报,2002,V.26 (1)
    [85] 袁文翠,赵建发,倪红梅,肖勇军,聚合物驱综合调整优化系统的设计与实现,大庆石油学院学报,2002,V.26 (3)
    [86] 李沽,隋新光,吴艳菊等,萨中葡Ⅰ组储层微型构造及其应用,大庆石油学院学报,2003,V.27 (1)
    [87] 汪伟英,注水井解堵增注技术综述,钻采工艺,1995,18(4):35-37。
    [88] 刘吉余,李伯虎,王子文等,萨尔图油田中区西部注聚合物试验区沉积微相研究,大庆石油学院学报,1996,20 (2)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700