萨北过渡带精细构造解释及储层预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萨北开发区过渡带位于大庆长垣萨尔图背斜构造的东北部,构造趋势西南高东北低,发育的萨、葡油层属同一水动力系统,断层较少。随着油层埋藏逐渐加深,过渡带地区的一条带到四条带,葡II组、葡I组、萨III组、萨II组油层逐渐进入油水同层,砂岩、有效厚度逐渐减小。该区块于1989年投入开发,采用斜线性注水井网,边缘井均为采出井,目前已进入特高含水开发阶段,措施挖潜难度和储量接替压力越来越大,同时由于多年注水开发,过渡带四条带外边缘油水分布发生改变,现有的地质认识已不能满足油田开发的需要。
     本论文的研究思路是以萨北开发区构造背景为基础,综合分析和合理利用地质资料、测井资料、地震剖面,建立一套真实可信的储层地震地质层位模型,划分地层层序,并利用地震属性和蚂蚁体追踪技术对工区内构造和微幅构造进行精细解释,分析微幅构造和小断层对油水分布的影响;在层序单元划分和界面特征研究的基础上,通过密井网控制下的小层——微相对比剖面,研究沉积微相和砂体的几何形态和分布规律;利用地层切片和地震属性分析技术,按照“单井—剖面—平面”的顺序,勾画出砂体的平面分布范围,利用密井网测井资料对砂体进行精细解剖,研究砂体的接触关系及连通状况。在以上研究基础上,分析萨北开发区过渡带地区的成藏条件和油水分布情况,为油田后期开发调整提供技术依据。
     论文经过研究取得以下主要成果:
     1、通过大量的分析研究,在区域性湖泛面、三级层序界面、体系域界面、四级层序界面的约束下,建立了研究区高精度的等时对比格架,识别出萨零组油层9个五级层序构造界面。
     2、通过井-震结合进行了精细构造研究,编制了四级、五级层序界面构造图,揭示了研究区的构造、微幅构造特征。指出研究区位于由北转向东倾的转折带翼部,为一地层变陡带,形成向北东方向凸出的微幅鼻状构造。
     3、应用各种属性、蚂蚁体算法,追踪了小断层,揭示小断裂的分布规律。研究区的小断层大部分在常规方法下不易识别,发育较少,多呈北西向展布。这些断层可形成小型的断背斜构造,对成藏具有一定的影响。
     4、通过大量单井、连井高精度层序格架和沉积相分析,识别出河流三角洲和浊积体系,划分了分流河道、水下分流河道、河口坝、前缘席状砂坝、远端坝、决口水道和决口三角洲、浊积水道、席状浊积扇朵(上叠扇)等沉积微相类型,揭示了各小层沉积相的平面分布和演化。应用地震属性及反演等方法开展了浊积沉积相和砂分散体系的研究,对过渡带的浊积储层发育模式和分布规律进行深入探讨并进行了预测,揭示了浊积体系的沉积微相和砂体的分布规律。
     5、通过对该区成藏条件和有利相带的研究,基本阐明了油水界面的分布特征,并提出和预测了潜在的构造-地层圈闭的分布,认为过渡带应发育有砂岩上倾尖灭和砂岩油气藏。
Sabei transition area is situated in northeast of Saertu arch structure of Daqing oilfieldand structural surface is tend to be higher in the southwest and lower in the northeast. The oillayer, Sertu and Putaohua, belong to the same hydrodynamic system and faults are lessdeveloped in this area. As reservoir depth increases, oil layers in Portuguese I group, II group,Sa III group and II group turn into oil-water layers gradually with decreases in sandstone andeffective thickness. This block is put into development in1989, using slash injection wellpattern with edge wells as production wells. Now the block is entered into ultra-high water cutdevelopment stage, difficulty in potential tapping and reserve replacement increases gradually.At the same time, years of water flooding development has caused changes in oil-waterdistribution of outer edges of the fourth belt in transition area, thus the existing geologicalunderstanding is not competent for oilfield development.
     The research is based on the tectonic background of Sabei development area, usingcomprehensive analysis and rational utilization of geological data, well logging data andseismic profile to establish a set of credible reservoir seismic-geology horizon model, carryout stratigraphic division; proceed fine interpretation on region structure and micro-structureusing seismic attributes and ant tracking technology; analyze the influences of micro-structureand small faults on oil-water distribution; based on sequence division and interfacecharacteristics, carry out researches on sedimentary microfacies and sand body geometry anddistribution through sublayer-microfacies contrast profiles under the dense well patterncontrol; block out sand body distribution range in plane by using formation sections andseismic attributes analysis technology in accordance with the sequence of " singlewell-section-plane "; take fine interpretation of sand body, including contact relation andconnectivity status by using dense well pattern logging data. Based on above study, reservoirformation conditions and oil-water distribution in transition zones of Sabei development areais analyzed and the achievements can provide technical basis for later oilfield developmentand adjustment.
     Main achievements of the research:
     1. Established high-precision isochronous correlation framework of study area andidentified9tectonic interfaces of the fifth-order sequence of Saling reservoir under therestraints of regional flooding surface, third-sequence surface, system domain surface,fourth-order and fifth-order sequence surfaces.
     2. Carried out fine construction through well-seismic correlation, generalized interfacestructure map of fourth-order and fifth-order sequence, revealed structure and micro-structurecharacteristics of study area. Recognized the study area is located in the wing of transitionzone, which bended from north to east. The transition zone is a layer of steep belt with aconfiguration of micro-nosing structure protruding to northeast.
     3. Proceed small faults tracking and revealed their distribution characteristics by usingvarious attributes and ant algorithm. These small fractures are less developed, mostly innorth-west direction and difficult to identify in conventional methods. These faults can formsmall faulted anticline, which has certain effects on reservoir formation.
     4. Identified river delta system and turbidite system, divided sedimentary microfaciessuch as distributary channel, underwater distributary channel, mouth bar, frontal sheet sanddam, dam, distal crevasse channel and crevasse delta, turbidite channels, mat form turbiditefan flower (superimposed fan), revealed sedimentary facies distribution in plane and evolutionin each layer. With the application of seismic attributes and inversion, turbidite sedimentaryfacies and sand body distribution system has been studied, carried out in-depth study andprediction on development mode and distribution rules of turbidite reservoir in transition area,and described distribution characteristics of sedimentary microfacies and sand body in theturbidite system.
     5. Clarified oil-water interfaces distribution through study on reservoir conditions andprofitable facies, and predicted potential structural-stratigraphic trap distribution. It isconsidered that sandstone up dip pitchout and sandstone reservoirs are developed in thetransition area.
引文
[1]李彦芳,李国惠,辛仁臣.松辽盆地头台地区薄层砂岩储层研究[M].北京:石油工业出版社,1993.3-41.
    [2]隋军,赵翰卿,吕晓光.大庆油田河流-三角洲相储层研究[M].北京:石油工业出版社,2000.23-52.
    [3] Lin Changsong,Li Sitian,Li Zhen. Facies architecture,stratigraphic sequences and coaloccurrence in the Late Carboniferous and Early Permian Delta Complexes of the NorthHuabei Basin,China[A],Oti N,Postma G. Geology of Deltas[C]. Rotterdam,Netherland:A Balkema,Pubishers,1995.97-125.
    [4]林畅松,张燕梅,刘景彦等.高精度层序地层学与储层预测[J].地学前缘,2000,7(3):111-117.
    [5]林畅松,刘景彦,刘丽军等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276-281.
    [6] Lambias J J.A model for tectonic control of lacustrine stratigraphic sequences incontinental rift basins[G].Katz B J.Lacustrine basin exploration.AAPG Memoir50,1991:137-149.
    [7]张英志,林畅松,马利民等.大庆油田葡一油层组高精度层序格架内储集砂体的沉积构成及其对油田开发的意义[J].现代地质.2006,(02):23~24.
    [8]梁江平,辛仁臣等.松辽盆地中部含油组层序地层格架及介形类特征的响应[J].地层学杂志,2005,29(4):405~409.
    [9] Sloss, L.L.Sequences in the cratonic interior of NorthAmerica[J].Geol.Soc.Am. Bull.,1963,74:93~114
    [10] Van Wagoner J C,Mitchum R M,Campion K M and Rahmanion V D. Siliciclasticsequence stratigraphy in well,cores and outcrops-concept for high-resolution correlation oftimes and facies[J].AAPG Methods in Exploration Series,1990(7):1~55
    [11] Van Wagoner J C,Posamentier H W,Mithchum R M,and Vail P R.et al.徐怀大等译.层序地层学基础综述和关键定义.见(In):徐怀大等.层序地层学原理~海平面变化综和分析[M].北京:石油工业出版社,1993.49~55.
    [12]林畅松,刘景彦等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276~281.
    [13]李洁,陈炳峰.大庆长垣喇萨杏油田三维精细地质建模方法.胡文瑞.精细油藏描述技术交流会论文集[D],北京:石油工业出版社,2005:100~106.
    [14]陈守田,孟完禄.薄互层储层预测方法[J].石油物探,2004.43(1):33~36.
    [15]董春梅,张宪国,林承焰.有关地震沉积学若干问题的探讨[J].石油地球物理勘探,2006,41(4):405-410.
    [16]林承焰,张宪国,董春梅.地震沉积学及其初步应用[J].石油学报,2007,28(2):69-73.
    [17]凌云研究组.基本地震属性在沉积环境解释中的应用研究[J].石油地球物理勘探,2003,38(6):642-653.
    [18] Zeng Hongliu,Hentz T F.High-frequency sequence stratigraphy from seismicsedimentology: Applied to Miocene,Vermilion Block50,Tiger Shoal area,offshoreLouisiana[J]. AAPG Bulletin,2004,88(2):153-174.
    [19] Zeng Hongliu,Henry S C,Riola J P.Stratal slicing,part II:Real3-D seismicdata[J].Geopgysics,1998,63(2):514-522.
    [20]曹辉.关于地震属性应用的几点认识[J].勘探地球物理进展,2002,25(5):18~22.
    [21] Schlager Wolfgang.The future of applied sedimentary geology[J].Journal of Sedimentary Research,2000,70(1):2-9.
    [22]林承焰,张宪国.地震沉积学探讨[J].地球科学进展,2006,21(11):1140~1144
    [23] Hongliu Zeng,Tucker F H. High~frequency sequence stratigraphy from seismicsedimentology: Applied to Miocene,Vermilion Block50,Tiger Shoal area,offshoreLouisiana[J]. AAPG Bulletin,2004,88(2):153~174.
    [24] Zeng Hongliu,Ambrose William A.. Seismic sedimentology and regional depositionalsystems in Mioceno Norte,Lake Maracaibo,Venezuela[J]. The Leading Edge,2001,20(11):1260~1269.
    [25] Zeng Hongliu,Kerans Charles. Seismic frequency control on carbonateseismic stratigraphy:A case study of the Kingdom Abo sequence[J],westTexas. AAPG Bulletin,2003,87(2):273~293.
    [26]杨万里,王志武,钟其权等.松辽陆相盆地石油地质[M].北京:石油工业出版社,1985.1~386.
    [27] Brown A R,Dahm C G,Graebner R J.. A stratigraphic casehistory using three-dimensional seismic data in the Gulf of Thailand[J].Geophysical Prospecting,1981,29(3):327~349.
    [28] Gregor P. Eberli,Jose Luis Masaferro,J. F.“Rick” Sarg. Seismic imagine of carbonatereservoir and system[J],AAPG Memoir81,2004.
    [29]赵政璋,赵贤正,王英民等.储层地震预测理论与实践[M].北京:科学出版社,2005,P207.
    [30]王洪宝.测井约束反演技术在滚动勘探开发中的应用及效果-以东辛油田沙三段岩性油藏的勘探开发为例[J].应用基础与工程学科学报,2001,9(4):330~338.
    [31]王延光.储层地震反演方法以及应用中的关键问题与对策[J].石油物探,2002,41(3):32~65.
    [32]邹才能,张颖.油气勘探开发实用地震新技术[M].北京:石油工业出版社,2002,6-36.
    [33]林畅松,潘元林,肖建新等.构造坡折带——断陷盆地层序分析和油气预测的重要概念[J].地球科学,2000.25(3):260~267.
    [34]马金龙等.汤原断陷构造沉积特征与油气成藏分布规律[J].石油实验地质,2006(3):21~24.
    [35]孙岩,李明,赵一民等.英台地区构造-岩性复合油气藏解释技术的应用与效果[J].石油地球物理勘探,2003,38(2):56~67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700