高分辨率遥感卫星隔振与姿态控制一体化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安装在高分辨率遥感卫星上的空间相机对振动十分敏感。星上姿态控制飞轮等扰振源产生的振动会使相机视线发生抖动,导致其获取的图像产生扭曲、模糊等现象,无法达到预期的分辨能力。针对飞轮与相机采取隔振措施是减小相机视线抖动、提高成像质量的有效途径。降低隔振频率可以提高隔振效果,但同时会对姿态控制性能产生不利影响。本文的主要研究目的是在考虑姿态控制系统性能需求的前提下,寻找隔振频率的下限,以达到最佳的振动隔离效果。当隔振效果仍不能满足要求时,将通过隔振与姿态控制的协同设计实现更理想的隔振效果。
     研究了用于评估扰振对遥感卫星图像质量影响的结构-控制-光学一体化建模方法。分析了飞轮产生振动的原因,并通过实验测试验证了谐波叠加模型的有效性。研究了通过隔振装置连接的子结构模态综合方法,提高了修改隔振装置设计时对整体结构进行模态重分析的效率。研究了用于评估扰振影响的光学评价指标。
     研究了考虑对姿态控制系统影响时选取飞轮隔振参数的方法。推导了安装隔振装置后飞轮的动力学方程,分析了飞轮隔振装置六自由度扰振载荷传递特性,研究了飞轮在隔振装置上的进动与章动现象以及卫星姿态调整引起的飞轮进动规律。结果表明,降低隔振频率时,飞轮进动衰减时间会大幅延长并对卫星姿态形成低频扰动,对进动衰减时间的要求决定了飞轮隔振频率与阻尼比的下限。
     研究了考虑控制系统需求时选取相机隔振参数的方法以及相机隔振与姿态控制的协同设计方法。研究了相机隔振导致的异位控制问题,推导了一种形式简洁的异位控制系统稳定条件,即为了保证系统的稳定性,隔振装置的响应时间应短于控制系统的响应时间,这对相机隔振频率及阻尼比的下限也提出了要求。采用回路相位分析方法对控制与结构的相互作用规律进行了研究,发现异位控制系统易于失稳的原因是控制回路对结构模态形成了负阻尼。研究了隔振与姿态控制协同设计方法,结果表明用时采取低频相机隔振与控制律规修改措施可以在保证姿态控制性能的同时实现更好的隔振效果。
     采用优化方法对飞轮、相机隔振参数的选取进行了研究,通过设定控制规律修改策略实现了隔振与姿态控制的联合优化设计。优化结果表明,综合采用飞轮隔振、低频相机隔振及相应的控制规律修改措施可以在保证姿态控制性能的同时实现最佳的隔振效果。
The space camera onboard the high resolution remote sensing satellite is extremelysensitive to disturbances, which can degrade the performance by resulting in blurred ordistorted image. To reduce the line-of-sight jitter caused by disturbances, passiveisolators can be added between the satellite bus and the reaction wheel, or between thesatellite bus and the space camera. To achieve better disturbance attenuation, isolatorswith lower cut-off frequencies should be used, which, however, may degrade theattitude control performance. This paper will focused on finding the lower limit of theisolation frequency with its impacts on the attitude control performance taken intoaccount. If the requirement for isolation performance cannot be satisfied, an integrateddesign of the isolator and attitude control will be performed to achieve better vibrationattenuation.
     The integrated modeling of structures-controls-optics is studied, which is necessaryto evaluate the impact of disturbances on the image quality. The disturbance generatedby the reaction wheel is characterized and demonstrated through disturbance tests. Acomponent mode synthesis method is studied for structures connected with isolators,which can reduce the eigenvalue re-analysis costs when tuning the isolator parameters.The image formation principles, the optical sensitivity and the performance metricsderived from the modulation transfer function are introdued which are useful inevaluating the impact of disturbances on the image.
     The selection of wheel isolation parameters is studied with the impact on theattitude control performance taken into account. The motion of equation of the reactionwheel mounted on an isolator is derived and the disturbance transmissibilities in6degree of freedoms are analysed. The precession and nutation phenomena of a wheel onan isolator as well as the wheel percession excited by the base motion are studied. It isshown that the lower limit of the frequency and damping ratio of the wheel isolator ismainly determined by the required precession decay time.
     The integrated design method of camera isolation and attitude control is studied.The non-collocated control problem induced by the camera isolation is investigated andan analytical stability condition is derived, which indicates that the settling time of theisolator should be shorter than the controller to ensure the system stability. A loop phase based analysis method is proposed and applied in the controls-structures interactionstudy, which shows that it is the negative damping added to the sturctural mode by thecontrol loop that makes the non-collocated control system easily be destablized. Anintegrated design method of camera isolation and attitude control is studied, which canachieve better disturbance attenuation compared to separate design.
     A design method based on optimization is proposed to help determine theparameters of vibration isolators. A control law modification strategy is added to theoptimization process to perform integrated design of the vibration isolator and attitudecontrol. Results show that a combination of wheel isolation, low frequency cameraisolation and the corresponding control law modification can result in optimaldisturbance attenuation while ensuring the attitude control performance.
引文
[1]黄文虎,王心清,张景绘,等.航天柔性结构振动控制的若干新进展.力学进展,1997,27(1):5-18.
    [2]牟全臣,黄文虎,郑钢铁,等.航天结构主、被动一体化振动控制技术的研究现状和进展.应用力学学报,2001,18(3):1-7.
    [3]潘坚,雷治夫.阻尼减振技术在航天领域中的实践.宇航材料工艺,1991,(4):87-90.
    [4]申智春,梁鲁,郑钢铁,等.某型卫星有效载荷支架振动抑制.宇航学报,2006,27(3):503-506.
    [5] Anandakrishnan S M, Connor C T, Lee S, et al. Hubble Space Telescope solar array damperfor improving control system stability.//Proceedings of IEEE Aerospace Conference.Montana: IEEE,2000.
    [6]刘安成,吴大方,高镇同,等.卫星太阳能帆板振动抑制研究.实验力学,2002,17(4):477-482.
    [7]罗晓平,黄海,咸奎成.复杂结构振动控制设计与仿真方法研究.北京航空航天大学学报,2006,32(1):18-21.
    [8]胡强,程耀东,齐津.主动控制的高精度隔振平台的仿真.浙江大学学报(自然科学版),1999,33(2):209-213.
    [9]张泽,崔龙,黄海.基于实时Linux的Stewart主动隔振平台控制器及实验.//第30届中国控制会议论文集.烟台:2011:2429-2434.
    [10]王晓雷,杨庆俊,郑钢铁.八作动器隔振平台的通道耦合分析及解耦控制.宇航学报,2007,28(4):1007-1011.
    [11]刘磊,王萍萍,孔宪仁,等. Stewart平台动力学建模及鲁棒主动隔振控制.宇航学报,2011,32(6):1231-1238.
    [12]刘勺斌,杨洪波,刘洋,等.基于Stewart平台的空间光学仪器隔振系统研究.噪声与振动控制,2008,(6):10-14.
    [13] Laskin R A, Sirlin S W, Future payload isolation and pointing system technology. J Guidance,1986,9(4):469-477.
    [14] Reals G A, Crum R C, Dougherty H J, et al. Hubble Space Telescope precision pointingcontrol system. J Guidance,1988,11(2):119-123.
    [15] Davis L P, Wilson J F, Jewell R E, et al. Hubble Space Telescope reaction wheel assemblyvibration isolation system.//Proceedings of Damping.1986: BA1-BA22.
    [16] Sharkey J P, Nurre G S, Beals G A, et al. A chronology of the on-orbit pointing control systemchanges on the Hubble Space Telescope and associated pointing improvements, AIAA Paper92-4618,1992.
    [17] Neeck S P, Venator T J, Bolek J T. Jitter and stability calculation for the ASTER instrument.Platforms and Systems.//Proceedings of Platforms and Systems. Rome: SPIE,1994:70-80.
    [18] Belvin W K, Sparks D W, Horta L G, et al. On the isolation of science payloads fromspacecraft vibrations.//Proceedings of the36th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference. New Orleans: AIAA,1995:698-708.
    [19] Pendergast K J, Schauwecker C J. Use of a passive reaction wheel jitter isolation system tomeet the Advanced X-ray Astrophysics Facility imaging performance requirements.//Proceedings of the1998Conference on Space Telescopes and Instruments V. Hawaii: SPIE,1998:1078-1094.
    [20] Bronowicki A J, Forensic investigation of reaction wheel nutation on isolator.//Proceedingsof the49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and MaterialsConference. Schaumburg: AIAA,2008.
    [21] McMickell M B, Kreider T, Hansen E, et al. Optical payload isolation using the miniaturevibration isolation system.//Proceedings of Industrial and Commercial Applications of SmartStructures Technologies2007. San Diego: SPIE,2007.
    [22] Kantsiper B L, Ray J C, Hunt J W, et al. Autonomous avoidance of structural resonances onthe STEREO mission.//Proceedings of AIAA Guidance, Navigation and Control Conferenceand Exhibit. Hilton Head: AIAA,2007.
    [23] Miller S E, Kirchman P, Sudey J. Reaction wheel operational impacts on the GOES-N jitterenvironment.//Proceedings of AIAA Guidance, Navigation and Control Conference andExhibit. Hilton: AIAA,2007.
    [24] DigitalGlobe. Worldview-1Data Sheet [EB/OL].[2012]. http://www.digitalglobe.com/downloads/WorldView1-DS-WV1-Web.pdf.
    [25] DigitalGlobe. Worldview-2Data Sheet [EB/OL].[2012]. http://www.digitalglobe.com/downloads/WorldView2-DS-WV2-Web.pdf.
    [26] Ball Corporation. Worldview-2[EB/OL].[2011]. http://www.ballaerospace.com/page.jsp?page=82.
    [27] GeoEye. GeoEye-1Fact Sheet [EB/OL].[2012]. http://www.geoeye.com/CorpSite/assets/docs/brochures/GeoEye-1_Fact_Sheet.pdf.
    [28] Matthews G, Havey Jr K, Egerman R. A paradigm shift to enable more cost effective spacescience telescope missions in the upcoming decades.//Proceedings of Modeling, SystemsEngineering, and Project Management for Astronomy IV. San Diego: SPIE,2010.
    [29] Doyle K B. Structural line-of-sight jitter analysis for MLCD,//Proceedings of NewDevelopments in Optomechanics. San Diego: SPIE,2007:66650I-1-12.
    [30] Doyle K B. Design optimization of a dual mode multi-axis passive isolation configuration forMLCD. San Diego: SPIE,2007:66650G-1-12.
    [31] Sannibale V, Ortiz G G, and Farr W H, A Sub-hertz vibration isolation platform for a deepspace optical communication transceiver.//Hemmati H eds. Proceedings of Free-Space LaserCommunication Technologies XXI. San Jose: SPIE,2009:71990I-1-9.
    [32] Lillie C F, Bronowicki A J, Adaptation in space telescopes.//Proceedings of the45thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Conference.Palm Springs: AIAA,2004:1-11.
    [33] NASA. SIM [EB/OL].[2011]. http://science.nasa.gov/missions/sim/.
    [34] Liu K C, Blaurock C A. Solar dynamics observatory on-orbit jitter testing, analysis, andmitigation plans.//Proceedings of AIAA Guidance, Navigation, and Control Conference.Portland: AIAA,2011:1-28.
    [35] Hyde T T, Ha K Q, Johnston J D, et al. Integrated modeling activities for the James WebbSpace Telescope optical jitter analysis.//Mather C eds. Proceedings of Optical, Infrared, andMillimeter Space Telescopes. Bellingham: SPIE,2004:588-599.
    [36] Dewell L, Pedreiro N, Blaurock C, et al. Precision telescope pointing and spacecraft vibrationisolation for the Terrestrial Planet Finder Coronagraph.//MacEwen H A eds. Proceedings ofUV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II. Bellingham:SPIE,2005:589902-1-14.
    [37] Pedreiro N, Gonzales M A, Foster B W, et al. Agile disturbance-free payload.//Proceedingsof AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco: AIAA,2005:1-18.
    [38] Matsos H. Rage Against the Dying of the Light [EB/OL].[2012]. http://www.astrobio.net/exclusive/4005/rage-against-the-dying-of-the-light.
    [39] Brugarolas P, Alexander J, Trauger J, et al. ACCESS pointing control system.//Proceedingsof Space Telescopes and Instrumentation2010: Optical, Infrared, and Millimeter Wave. SanDiego: SPIE,2010:73314V-1-22.
    [40] Marneffe B de, Avraam M, Deraemaeker A, et al. Vibration isolation of precision payloads: asix-axis electromagnetic relaxation isolator, Journal of Guidance, Control, and Dynamics,32(2),2009:395-401.
    [41] Oh H U, Izawa K, Taniwaki S. Development of variable-damping isolator using bio-metalfiber for reaction wheel vibration isolation, Smart Materials and Structures,14,2005:928-933.
    [42] Oh H U, Taniwaki S, Kinjyo N, et al. Flywheel vibration isolation test using avariable-damping isolator, Smart Materials and Structures,15,2006:365-370.
    [43] Zhang Z, Aglietti, Guglielmo, et al. Microvibrations induced by a cantilevered wheelassembly with a soft-suspension system. AIAA Journal,49(5),2011:1067-1079.
    [44]王全武,虎刚.飞轮振动频谱特征的初步理论分析和验证.空间控制技术与应用,34(4),2008:42-46.
    [45]赵煜,张鹏飞,程伟.反作用轮扰动特性测量及研究.实验力学,24(6),2009:532-538.
    [46]赵发刚,周徐斌,申军烽.高精度遥感卫星飞轮扰动分析与仿真.//高分辨率遥感卫星结构振动及控制技术研讨会论文集.长沙:中国宇航学会,2011:342-347.
    [47]蔺宇辉,李玲,王春辉,等.某空间光学遥感器的振动抑制及装星应力卸载技术应用.//高分辨率遥感卫星结构振动及控制技术研讨会论文集.长沙:中国宇航学会,2011:87-94.
    [48]郑钢铁,梁鲁,王光远,等.遥感卫星动力学问题系统解决方法和装置.//高分辨率遥感卫星结构振动及控制技术研讨会论文集.长沙:中国宇航学会,2011:349-356.
    [49]冯华君,郑珍珍,徐之海,等.基于卫星颤震光学成像的仿真模型分析.//高分辨率遥感卫星结构振动及控制技术研讨会论文集.长沙:中国宇航学会,2011:24-29.
    [50]庞世伟,杨雷,曲广吉.基于集成建模的航天器微振动扰动性能评估技术.//2007年全国结构动力学学术研讨会论文集.南昌:中国振动工程学会,2007:245-253.
    [51]牟夏,宗红,雷拥军.高分辨率遥感卫星控制技术综述.//高分辨率遥感卫星结构振动及控制技术研讨会论文集.长沙:中国宇航学会,2011:149-153.
    [52] Wolverton T E, Brooks J J, Structural and optical analysis of a landsat telescope mirror.//Proceedings of the1987MSC/NASTRAN World User’s Conference. Los Angeles: MSCSoftware,1987:1-14.
    [53] Mosier G E., Howard J M, Johnston J D, et al. The role of integrated modeling in the designand verification of the james webb space telescope.//Proceedings of Space SystemsEngineering and Optical Alignment Mechanisms. Bellingham: SPIE,2004:96-107.
    [54] Yocum J F., Slafer L I. Control system design in the presence of severe structural dynamicsinteractions, J Guidance and Control,1978,1(2):109-116.
    [55] Wie B, Plescia C T. Attitude stabilization of flexible spacecraft during stationkeepingmaneuvers. AIAA Paper83-2226,1983.
    [56] Wie B, Liu Q. Classical and robust H∞control redesign for the Hubble Space Telescope.Journal of Guidance, Control, and Dynamics,1993,16(6):1069-1077.
    [57]周军,刘莹莹.航天器主动振动反馈全物理仿真试验研究.振动、测试与诊断,2008,28(1):50-78.
    [58]朱桂东,郑钢铁,邵成勋.柔性航天器附件振动抑制的根部控制法.振动工程学报,1997,10(1):92-95.
    [59]程磊,王天舒,李俊峰.挠性多体卫星姿态动力学与控制.清华大学学报(自然科学版),2005,45(11):1506-1509.
    [60] Banerjee A, Gonzales M A, Saeed S, et al. Spacecraft slew-stare-slew with vibrationreduction: simulation and ground experiments.//Proceedings of AIAA/AAS AstrodynamicsSpecialist Conference and Exhibit. Providence: AIAA,2004:1-11.
    [61]胡庆雷,马广富.基于变结构/输入成形的航天器振动抑制方法.哈尔滨工业大学学报,2006,28(10):1769-1777.
    [62]孔宪仁,杨正贤,叶东,等.基于输入成形的柔性航天器振动闭环抑制方法研究.振动与冲击,2010,29(3):72-76.
    [63]陈涛,胡超,黄文虎.航天器姿态调整时的变结构控制与振动抑制方法.宇航学报,2007,28(5):1199-1204.
    [64]王晓磊,吴宏鑫.挠性航天器振动抑制的自适应方法及实验研究.宇航学报,2005,26(3):275-280.
    [65]张洪华,张国峰.带有挠性附件卫星的自适应内模控制.控制工程,2001,(3):10-16.
    [66]李争学,王本利,马兴瑞.带挠性附件航天器的鲁棒姿态跟踪控制.宇航学报,2009,5(3):974-981.
    [67] Gevarter W B. Basic relations for control of flexible vehicles. AIAA Journal,1969,8(4):666-672.
    [68] Cunningham D C, Higgins Jr W T. A comparison of conventional and tracking filter systemsfor launch vehicle stabilization.//Proceedings of AIAA Guidance, Control, and FlightMechanics Conference. Princeton: AIAA,1969:1-5.
    [69] Chodas J L, Man G K. Design of the Galileo scan platform control. J Guidance,1984,7(4):422-429.
    [70] Martin G, Bryson Jr A E. Attitude control of a flexible spacecraft. Jourmal of Guidance andControl,1980,3(1):37-41.
    [71] Cannon Jr R H, Rosenthal D E. Experiments in control of flexible structures withnoncolocated sensors and actuators. J Guidance,1984,7(5):546-553.
    [72] Lee Y J, Speyer J L. Zero locus of a beam with varying sensor and actuator locations. Journalof Guidance, Control, and Dynamics,1993,16(1):21-25.
    [73] Wie B, Bernstein D S. Benchmark problems for robust control design. Journal of Guidance,Control, and Dynamics,1992,15(5):1057-1059.
    [74] Thompson P M. Classical/H2Solution for a robust control design benchmark problem.Journal of Guidance, Control, and Dynamics,1995,18(1):160-169.
    [75] Adams R J, Banda S S. Combined Linear Quadratic Gaussian and H∞control of a benchmarkproblem. Journal of Guidance, Control, and Dynamics,1992,15(5):1134-1139.
    [76] Singh T. Fuel/time optimal control of the benchmark problem. Journal of Guidance, Control,and Dynamics,1995,18(6):1225-1231.
    [77] Morari, Braatz R. Robust control for a noncollocated spring-mass system. Journal ofGuidance, Control, and Dynamics,1992,15(5):1103-1110.
    [78] Wie B, Byun K W, New generalized structural filtering concept for active vibration controlsynthesis. J Guidance,1989,12(2):147-154.
    [79] Wie B, Horta L, Sullar J. Classical control system design and experiment for the Mini-MastTruss Structure. J Guidance,1990,14(4):778-784.
    [80] Wie B, Gonzalez M. Control synthesis for flexible space structures excited by persistentdisturbances. J Guidance,1992,15(1):73-80.
    [81] Wie B. Experimental demonstration of a classical approach to flexible structure control.Journal of Guidance, Control, and Dynamics,1992,15(6):1327-1333.
    [82] Wie B, Du W, Analysis and design of launch vehicle flight control systems.//Proceedings ofAIAA Guidance, Navigation and Control Conference. Honolulu: AIAA,2008:1-25.
    [83] Onoda J, Haftka R T. An approach to structure/control simultaneous optimization for largeflexible spacecraft. AIAA Journal,1987,25(8).
    [84] Hou G, Koganti G. A two-level approach for controls-structures integrated design, AIAAPaper94-4332,1994.
    [85] Kajiwara I, Tsujioka K, Nagamatsu A. Approach for simultaneous optimization of a structureand control system. AIAA Journal,1994,32(4):866-873.
    [86] Newsom J R, Anderson W W. The NASA-LaRC controls-structures interaction (CSI)technology program. Control Eng. Practice,1994,2(3):479-490.
    [87] Maghami P G, Joshi S M, Lim K B. Integrated controls-structures design:A practical designtool for modern spacecraft.//Proceedings of the American Control Conference. Boston:American Automatic Control Council,1991:1465-1473.
    [88] Maghami P. Integrated controls-structures design methodology: redesign of an evolutionarytest structure. Journal of Guidance, Controls and Dynamics,1996,19(2):316-323.
    [89] Masterson R, Miller D, Grogan R. Development of empirical and analytical reaction wheeldisturbance models.//Proceedings of40th AIAA/ASCE/AHS/ASC Structures, StructuralDynamics and Materials Conference. St. Louis: AIAA,1999:1-12.
    [90] Masterson R A, Miller D W. Development and validation of reaction wheel disturbancemodels: empirical model. Journal of Sound and Vibration,2002,249(3):575-598.
    [91]胡玉禧,安连生.应用光学.安徽:中国科学技术大学出版社,1996:42-43.
    [92] Burge J H. An easy way to relate optical element motion to system pointing stability.//Mouroulis P Z, Smith W J, Johnson R B, eds.//Proceedings of Current Developments in LensDesign and Optical Engineering VII. San Diego: SPIE,2006:62880I-1-12
    [93]陈世平,杨秉新,王怀义,王金堂等.空间相机设计与试验.北京:中国宇航出版社,2003:257-258.
    [94]刘延柱.陀螺力学.北京:科学出版社,2009:42.
    [95]刘延柱.高等动力学.北京:高等教育出版社,2001:24-25.
    [96]张文.转子动力学理论基础.北京:科学出版社,1990:26-27.
    [97]王照林.运动稳定性及其应用.北京:高等教育出版社,1992:53-54.
    [98] Dorf R C, Bishop R H. Modern Control Systems,10thed. London: Pearson Education, Inc.2005:250.
    [99]吴麒,王诗宓.自动控制原理(第2版)(上册).北京:清华大学出版社,2006:219.
    [100]章仁为.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998:313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700