功率互补型混合滤波器组设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电子战中,数字化技术已经得到了广泛的应用。随着战场信号覆盖的瞬时带宽越来越大,信号实时处理对模拟信号数字化的要求也越来越高。同时,在FPGA等硬件平台高速发展的推动下,数字信号处理的速度有了空前的提升,这也迫切要求ADC系统的速度和精度不断提高。
     功率互补型混合滤波器组是实现高速高精度数据采集系统的一种有效方法,主要应用于宽带高精度数字化仪等测试仪器。宽带高精度数字化仪要求达到400MSa/s的采样率和12bit的分辨率,然而,由于现有芯片技术的限制,直接用一片ADC尚无法达到该指标,为此采用包含两片ADC的功率互补型混合滤波器组技术实现高速、高精度ADC系统。
     本文针对上述指标需求,详细地阐述了功率互补型混合滤波器组的设计方法以及相关理论。主要内容为:
     1.仔细研究了功率互补型混合滤波器组技术以及模数转换系统中信号完全重构的原理。
     2.详细介绍了遗传算法及其优化工具箱的应用,优化求解三阶模拟分解滤波器的传递函数,在此基础上,利用双端梯形网络技术得出滤波器RLC电路图和元件值。
     3.阐述了数字综合滤波器优化过程,并以信号的完全重构为依据,确定了理想数字综合滤波器的频率响应;再次利用遗传算法优化工具箱优化系统延时,同时根据反傅立叶变换求解出数字综合滤波器的系数,最后基于并行分布式算法和FPGA设计出数字综合滤波器。
     设计过程中,经过多次优化和尝试,确定了功率互补型混合滤波器组的设计方法和步骤,最终采用了3阶模拟分解滤波器和29阶数字综合滤波器,所得系统的峰值失真误差为1. 4×10?6dB,平均混叠误差-125dB,满足400MSa/s,12bit采样系统的要求。
In today’s electronic war, digital signal processing has been widely used. As the signal in the war field covers the wider instantaneous bandwidth, real-time signal processing shows the higher requirements of converting analog signal to digital signal. Meanwhile, with the promoting of the rapid development of FPGA and other hardware platforms, the speed of digital signal processing gains an unprecedented upgrade. It is also an urgent requirement to improve the speed and resolution of ADC system.
     Power complementary hybrid filter bank is an efficient method for realizing high speed and high resolution data acquisition system and it is mainly used in wide band and high resolution digitizer and other testing equipments. The wide band and high resolution digitizer demands to achieve 400MSa/s sampling rate and 12-bit resolution. However, due to the constraints of existing chip technique, it is difficult to achieve the target using one piece of ADC directly. Therefore, technology of power complementary hybrid filter bank containing two pieces of ADC is used for this purpose to enable the high speed and high resolution ADC system.
     This dissertation researches the design method and the associated theory of power complementary hybrid filter bank aiming at the above target. The main contents are as follows:
     1. Technology of power complementary hybrid filter bank and the theory of completely reconstructing signal in analog/digital conversion system are investigated in detail.
     2. Genetic Algorithm and application of the Genetic Algorithm Optimization Toolbox is demonstrated, which is developed to optimize the transfer function for third-order analog analysis filters. On this basis, RLC circuits and component values of the analog analysis filters are got according to doubly terminated ladder networks.
     3. Optimization of the synthesis filters is presented and the frequency responses of the ideal synthesis filters are determined based on the theory of completely reconstructing signal. Genetic Algorithm Optimization Toolbox is introduced again to optimize the system delay. At the same time, according to the Inverse Fast Fourier Transform, the synthesis filters coefficients are obtained. Finally, parallel distributed arithmetic is employed to implement the FIR digital filters in the FPGA.
     During the design, through a series of optimization and tries, the design methods and steps for the power complementary hybrid filter bank are ascertained. The system adopts three-order analog analysis filters and 29-order synthesis filters, introduces 1. 4×10?6dB peak distortion and -125dB average aliasing error, which can meet the requirements of 400MSa/s sampling rate and 12-bit resolution.
引文
[1] C. Schiller, P. Byrne. A 4GHz 8-bit ADC system. IEEE Journal of Solid-state Circuit, 1992, 12(11): 1781~1789.
    [2] M. T. McTigue, P. J. Byrne. An 8-Giga sample-per-second, 8-bit data acquisition system for a sampling digital oscilloscope. HP Journal .1993(10): 11~23.
    [3] Joseph Mitola. The software radio architecture. IEEE Communications Magazine, 1995, 5(3): 26~38.
    [4] A. Petraglia, Sanjit K. Mitra. High-speed A/D conversion incorporating a QMF bank. IEEE Trans Instrum Meas, 1992, 41(3): 427~431.
    [5] Scott R. Velazquez, Truong Q. Nguyen, Steven R. Broadstone, etc. A hybrid filter banks approach to analog-to-digital conversion. Proc.IEEE-SP Int.Symp. Time-frequency Time-Scale Anal. 1994, 116~119
    [6] Scott R. Velazquez, Truong Q. Nguyen, Steven R. Broadstone. Design of hybrid filter banks for analog/digital conversion. IEEE Trans Signal Processing, 1998, 46(4): 956~967.
    [7] Per. Lǒwenborg, H. Johnansson and Lars Wanhammar. A class of two-channel hybrid analog/digital filter banks. Midwest Symposium on Circuits and Systems. Las Cruces: IEEE Inc, 1999,14~17.
    [8] Liu Zhiyu and Lin Maoliu. Design of two-channel hybrid analog/digital banks satisfying near-perfect reconstruction. Int.Conf Signal Process. Proc., Vol.1, pp. 407~410, Aug 2004.
    [9] Per. Lǒwenborg, H. Johnsson and Lars Wanhammar. A class of two-channel approximately perfect reconstruction hybrid analog/digital filter banks, Proc. IEEE Int. Symp.Circuits Syst., Genva, Switzerland, 2000, 5: 28~31.
    [10] 刘治宇,林茂六.一种基于功率互补对的混合滤波器组的设计.西安交通大学学报,2005,39(4):389~392
    [11] 雷英杰.《MATLAB遗传算法工具箱及应用》.西安:西安电子科技大学出版社,2005.45~64
    [12] 王小平,曹立明.《遗传算法——理论、应用与软件实现》.西安:西安交通大学出版社,2002.18~25
    [13] 蒋云彩,万顷波.MATLAB遗传算法工具箱(GAOT)的应用.江西电力职业技术学院学报,2004,第17卷第3期:42~44
    [14] 曾日波.MATLAB遗传算法工具箱的应用.软件技术,2005,第24卷第6期:115~116
    [15] 丁士圻.《模拟滤波器》.哈尔滨:哈尔滨工程大学出版社,2004.126~148
    [16] Miroslav D. Lutovac, Dejan V. Tosic, Brian L. Evans.《Filter design for signal processing using MATLAB and Mathematica》.北京:电子工业出版社,2002.207~221
    [17] 胡广书.《现代信号处理教程》.北京:清华大学出版社,2004.134~139
    [18] 胡广书.《数字信号处理》.北京:清华大学出版社,2003.100~103
    [19] 程佩青.《数字信号处理教程》.北京:清华大学出版社,2001.209~217
    [20] 郭晓宇,潘登,杨同中.《基于FPGA实现FIR滤波器的研究》.电子技术应用,2004,第4期:61~63
    [21] 吴继华,王诚《.Altera FPGA/CPLD设计(高级篇)》.北京:人民邮电大学出版社,2005.157~158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700