阴离子表面活性剂胶团强化超滤去除镉离子的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶团强化超滤是一种表面活性剂和超滤相结合的技术,在处理低浓度金属离子废水方面有很好的前景。本论文系统研究了阴离子表面活性剂胶团强化超滤去除水溶液中镉离子的各项控制参数。首先利用动态光散射法测定十二烷基硫酸钠胶团的直径大小、zeta电势等信息,研究不同情况下的胶团性质。在此基础上,研究了阴离子表面活性剂胶团强化超滤法对重金属离子的去除效率和渗透通量,考察了溶液浓度、pH值、跨膜压力、非离子表面活性剂、超滤膜种类、电解质等的影响,并采用核磁共振法对胶团强化超滤技术的机理进行了初步研究。
     动态光散射法研究发现表面活性剂浓度未达到临界胶团浓度CMC时就已经发现了大直径预胶团的存在。胶团的形成可能是一个多步骤过程,胶团直径随SDS浓度的增加而减小,小胶团可能比大胶团更容易排列整齐,使烷基链不易接触到水分子。胶团zeta电势随着Cd2+浓度的增加而增大,更多的Cd2+进入胶团stern层。非离子表面活性剂的加入使混合胶团直径减小,胶团表面电荷密度降低。
     当SDS浓度未达到其CMC 8 mmol/L就得到了较高的Cd2+截留率,这是由于浓差极化作用以及Cd2+的存在导致了CMC的降低。Cd2+浓度不变时,进料液SDS浓度增加使Cd2+截留率先快速增加后逐渐稳定。SDS浓度不变时,进料液Cd2+浓度增加使Cd2+截留率先轻微增加然后快速下降。当溶液pH值小于3时,大量H+与Cd2+在胶团表面竞争吸附使Cd2+截留率下降。渗透通量随跨膜压力的增加先直线增加后保持不变。非离子表面活性剂浓度的增加使Cd2+截留率先增大后减小,因为非离子表面活性剂的加入既生成了更多的胶团,又降低了混合胶团的反离子结合度。
     5种超滤膜的渗透通量从高到低依次为:P30 > P10 > C30 > P8 > C10。纤维素膜的标准通量比聚醚砜膜的标准通量要高得多。单位压力渗透通量随着跨膜压力的增大而减小。当S/M为10不变时,P8膜的Cd2+截留率随着跨膜压力和进料液浓度的增加而增大;但P10和P30膜的Cd2+截留率随跨膜压力的增加先增大后降低,进料液浓度越大,降低幅度越大。这是因为跨膜压力和进料液浓度的增加使得浓差极化作用增强,但各超滤膜对胶团的截留率不同。纤维素膜的Cd2+截留率不受跨膜压力增大的影响,而且C10和C30膜的Cd2+截留率比P10和P30膜低得多。这是因为,相同截留分子量的纤维素膜的纯水通量要小得多,浓差极化作用很弱。
     影响金属离子截留率的主要因素是价态,金属离子种类是次要因素。相同价态的金属离子与SDS胶团之间的静电吸附能力非常相近,Cd2+、Cu2+、Ni2+三种金属离子的截留率没有明显的区别。当NaCl浓度较高时,Na+和Cd2+之间存在着与胶团表面吸附的竞争,导致Cd2+截留率显著降低。Cd2+与溶液中的阴离子越容易形成络合物,则能与胶团结合的Cd2+越少。Cl-与Cd2+形成的络合物最稳定,SO42-次之,NO3-和CO32-最弱。
     核磁共振实验结果中的23Na+化学位移观测值随着Cd2+浓度的增加而增大,意味着越来越多Na+的从胶团结合态转变为自由态,Cd2+在胶团上的吸附能力更强。
Micellar-enhanced ultrafiltration, a surfactant-based separation process, is promising in removing multivalent metal ions from aqueous solutions. The micellar-enhanced ultrafiltration (MEUF) of cadmium from aqueous solution using anionic surfactants sodium dodecylsulfate (SDS) was investigated systematically in this paper. The micelle size and zeta potential of SDS micelles were determined by dynamic light scattering measurements (DLS). The effects of feed concentration, pH, transmembrane pressure, nonionic surfactants, membranes and salts were studied. The preliminary investigation on the mechanism of micellar-enhanced ultrafiltration was also studied by nuclear magnetic resonance mensuration.
     According to the results of dynamic light scattering measurements, large premicelle was found in solution with SDS concentration lower than cmc. The formation process of micelle is thought to be a stepwise process. The micelle size decreased with the increasing surfactant concentration. The monomer molecules in the small micelle may be arranged more orderly than those in the large micelle. The zeta potential increased with cadmium concentration, more Cd2+ ions were bound with micelle. The micelle size also decreased with the increasing nonionic surfactant concentration, the surface charge density of micelles was reduced rapidly. The high Cd2+ rejection were obtained when the SDS concentration lower than the CMC of SDS (8 mmol/L). This may attribute to the concentration polarization and the decrease of cmc because of the addition of Cd2+. When the feed Cd2+ concentration were fixed, the Cd2+ retention increased with feed SDS concentration first, then attained a plateau at higher SDS concentration. The Cd2+ retention increased slightly with feed Cd2+ concentration first then decreased rapidly with the fixed feed SDS concentration. Large numbers of H+ compete with Cd2+ to bind with micelles. The Cd2+ retention would decline if the solution pH lowers than 3. The permeate flux increased with the transmembrane pressure then keep constant. The Cd2+ retention increased with the nonionic surfactants concentration then decreased. The addition of nonionic surfactants increased the number of micelles and also decreased the counter-ion binding degree of mixed micelle.
     The specific flux values of various membranes decreased in the order as follows: P30 > P10 > C30 > P8 > C10. The specific flux gradually decreased with the increase of transmembrane pressure. When the ratio of surfactant to metal concentration was fixed at 10, the Cd2+ retention of P8 membrane decreased with the increase of transmembrane pressure and feed concentration. However, the Cd2+ retentions of P10 and P30 membranes increased with transmembrane pressure firstly then decreased. The higher the feed solution, the more the Cd2+ retention decreased. The reason for this is the different effects of concentration polarization which enhanced by the increase of TMP and feed concentration. No significant influence of pressure on the rejection of Cd2+ was observed during the experiments with two cellulose membranes. The rejections of Cd2+ of cellulose membranes were much lower than those of polyethersulfone membranes. This can be attributed to the lower concentration polarization because of the much smaller water permeate flux of cellulose membranes.
     The rejections of metal ions strongly depend on the valence of metal ion. The electrostatic attraction of micelle and metal ions with the same valence were much closed. The rejection of Cd2+、Cu2+、Ni2+ were almost the same. The rejections of Cd2+ decreased rapidly with the NaCl concentration. This can be attributed to the competition of Na+ and Cd2+ for the binding with micelles. The stronger the complexation of Cd2+ and the anion in solution, the more the rejection of Cd2+ decreased. The complexation ability of anions decreased in the order as follows: Cl- > SO42- > NO3-≈CO32-.
     23Na+ magnetic resonance mensuration chemical shift increased with the Cd2+ concentration. It means that more Na+ change from the binding state to free state. The electrostatic attraction of Cd2+ and micelle were stronger.
引文
[1]杨肖娥,杨明杰.镉从农业土壤向人类食物链的迁移.广东微量元素科学, 1996, 3(7): 1-13
    [2]邱瑾.工业废水中常见的微量元素及对人体健康的危害.杭州师范学院学报, 1994, (6): 108-114
    [3]赖宝春.大余县污灌区镉污染对人体健康影响调查.环境与开发, 1995, 10(4): 8-9
    [4]王春,杨德芬,袁绍明.会理污灌区重金属污染的调查、评价及防治对策.四川环境, 1998, 17(3): 41-46
    [5]张勇,董大龙.辽宁省部分县土壤及玉米中重金属污染状况评价.辽宁农业职业技术学院学报, 2001, 3(1): 14-17
    [6]曹惠荣,牟云霞,李巍.沈阳经济技术开发区镉污染状况调查.环境保护科学, 2000, 26(100): 45-46
    [7]范成新,朱育新,吉志军,等.太湖宜溧河水系沉积物的重金属污染特征.湖泊科学, 2002, 14(3): 235-241
    [8]王凯荣.我国农田镉污染现状及治理利用对策.农业环境保护, 1997, 16(6): 274-278
    [9]国家环保总局,中国环境质量报告——水质部分. 1991-1995年
    [10]刘庆文.重金属离子废水的处理方法.天津化工, 1995, (4): 16-18
    [11]吴训伟.临界效应、临界浓度在镉职业危害评价中的应用.化工劳动卫生通讯, 1998, 12(3): 116-123
    [12]刘杰.镉的毒性和毒理学研究进展.中华劳动卫生职业病杂志, 1998, 16(1): 2-4
    [13]蔡保松,张国平.大、小麦对镉的吸收、运输及在籽粒中的积累.麦类作物学报, 2002, 23(3): 82-86
    [14]白嵩,纪秀娥,白岩,等.水体镉污染对水稻幼株生长及某些生理特性的影响.吉林农业大学学报, 2004, 26(3): 245-247
    [15]孔祥生,张妙霞,郭秀璞. Cd2+毒害对玉米幼苗细胞膜透性及保护酶活性的影响.农业环境保护, 1999, 18(3): 133-134
    [16]吴燕玉,余国营,王新,等. Cd Pb Cu Zn As复合污染对水稻的影响.农业环境保护, 1998, 17(2): 49-54
    [17]陈志良,莫大伦,仇荣亮.镉污染对生物有机体的危害与防治对策.环境保护科学, 2001, (106): 37-39
    [18]裴秀丛,徐兆发.镉的慢性毒作用及其远期效应.环境与职业医学, 2003, 20(1): 58-61
    [19]秦俊法,李增禧.镉的人体健康效应.广东微量元素科学, 2004, 11(6): 1-10
    [20]赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题.给水排水, 1998, 24(10): 22-25
    [21]张荣良.处理硫酸生产含镉、砷废水的试验研究.硫酸工业, 1997, (5): 18-19
    [22]程振华,王振玉,黄巍.东日电源厂镉镍废水处理工艺总结.工业用水与废水, 1999, 30(2): 28-29
    [23]周淑珍.贵溪冶炼厂废酸废水除镉工艺探讨.硫酸工业, 1996, (5): 1-5
    [24]廖长海,林丽晖.冶炼制酸高镉铅污水处理探讨.有色金属, 1998, 50(4): 133-136
    [25]陈利民.铜镉盐废水的处理.陕西化工, 1990, (3): 27-28
    [26]郭静.钨矿山含镉、氟工业废水处理方法研究.江西冶金, 1990, 10(1): 13-14
    [27]邱廷省,成先雄,郝志伟.含镉废水处理技术现状及发展.四川有色金属, 2002, (4): 38-41
    [28]张建梅,韩志萍,王亚军.重金属废水的治理和回收综述.湖州师范学院学报, 2002, 24(3): 48-52
    [29]黄继国,张永祥,吕斯濠.重金属废水处理技术综述.世界地质, 1999, 18(4): 83-86
    [30]吕新元,梁统玲.镉污染及其防治.上海环境科学, 1997, (7): 45
    [31]沈华.颜料工业含镉废水治理研究.精细化工中间体, 2001, 31(1): 38-40
    [32]张玉梅.含镉废水处理的试验研究.环境工程, 1995, 13, (1): 15-21
    [33]魏星.含镉废水综合治理试验研究.内蒙古环境保护, 1995, 7(4): 33-36
    [34]徐永华,汤惠民.含镉废水处理与回收技术.工业水处理, 1988, 8(6): 9-13
    [35]张大力,卢立柱.含镉废水废渣的处理技术及动向.污染防治与技术, 1994, (5): 8-10
    [36]陈阳,钟国清.电镀镉废水处理的实验研究.电镀与精饰, 2004, 26(5): 36-38
    [37]王建明.综合沉淀法处理锌镉废水.涂料工业, 1990, (4): 53-54
    [38] Barrado E, Prieto F, Medina J, et al. Purification of cadmium wastewater: characterization and electrochemical behaviour of cadmium-bearing ferrites. Quimica Analitica, 2001, 20(1): 47-53
    [39]方如云,张智宏,杨建男,等.铁氧体法处理含铬和镉废水的研究.江苏石油化工学院学报, 1999, 11(4): 8-10
    [40]卢莲英,邹光中,叶宋娣.铁氧体与镉共沉淀的试验研究.化学与生物工程,2004, (6): 44-46
    [41]刘淑泉,刘传惠,许孙曲,等.重金属废水净化与有价金属回收试验.环境科学, 1988, 9(2): 37-41
    [42]孙建民,于丽青,孙汉文.重金属废水处理技术进展.河北大学学报自然科学版, 2004, 24(4): 438-443
    [43]韩庆生.污水净化电化学技术.武汉:武汉大学出版社, 1988: 195-200
    [44]张红波,徐仲榆,莫孝文.膨胀石墨流态化电极处理酸性含镉废水的研究.环境科学, 1993, 14(6): 20
    [45]辛世宗,杨华.流化床电解法去除湿法冶金滤液中的铜和镉.国外环境科学技术, 1989, (3): 71-76
    [46]廖自基.环境中微量重金属元素的污染危害与迁移转化.北京:科学出版社, 1989, (29)
    [47] Anastasios I Z, Konstantine A Matis. Removal of cadmium from dilute solutions by flotation. Water Science and Technology, 1995, 31 (3-4): 315-326
    [48]陶中东,黄颂安.泡沫分离方法回收钪.化工时刊, 2003, 17(9): 23-26
    [49]陈跃,黄颂安,施亚钧.泡沫塔处理含镉废水连续稳态操作的数学模型.华东化工学院学报, 1993, 19(4): 399-403
    [50]陈玉娥,徐志勇. CH型絮凝剂处理废水的研究.湖南化工, 2000, 30(1): 35-37
    [51]杨智宽,单崇新,苏帕拉.羧甲基壳聚糖对水中Cd2+的絮凝处理研究.环境科学与技术, 2000, 88(1): 10-12
    [52]张廷安,杨欢,赵乃仁,等.用壳聚糖絮凝剂处理含镉废水.东北大学学报自然科学版, 2001, 22(5): 547-549
    [53] Carmen G. Cadmium and copper removel by a granular activated carbon in laboratory column systems. Separation Science and Technology, 2000, (7): 1039-1041
    [54]郑礼胜,王志龙.用矿渣处理含镉废水的探索试验.化工环保, 1996, 6(4): 244-246
    [55]唐兰模,沈敦瑜,符迈群,等.用壳聚糖除去溶液中微量镉的研究.化学世界, 1998, (10): 549-552
    [56]邵健,王亚玲,杨宇民. L-半胱胺酸改性甲壳素处理含铅、镉工业废水.环境污染治理技术与设备, 2003, 4(12): 63-65
    [57]李贞,何少先.利用硅藻土处理含镉废水机理的初步研究.环境科学进展, 1993, 1(6): 64-67
    [58]宝迪,张树芳,王永军.天然沸石处理含铅、镉废水的试验研究.内蒙古石油化工, 2003, 29(2): 5-7
    [59]姜述芹,周保学,于秀娟,等.氢氧化镁处理含镉废水的研究.环境化学, 2003, 22(6): 601-604
    [60]马艳飞,王九思,宋光顺,等.氢氧化镁对废水中镉吸附性能的研究.兰州铁道学院学报自然科学版, 2003, 22(4): 120-122
    [61]陈晋阳,黄卫.无定形氢氧化铁吸附水溶液中镉离子机理的XPS研究.分析测试学报, 2002, 21(3): 70-72
    [62]唐玉斌,陈芳艳,张洪林. FCC废催化剂对水中镉的吸附热力学及动力学研究.辽宁城乡环境科技, 2000, 18(5): 19-23
    [63]陈芳艳,张洪林,唐玉斌,等.催化裂化废催化剂对废水中镉的吸附性能研究.石油化工环境保护, 1998, (4): 50-54
    [64]李新云,张宝泉,白晓军.合成羟基磷灰石处理工业废水中镉和铅的研究.北京工业大学学报, 1993, 19(4): 80-85
    [65]胥焕岩,许昕荣,彭明生,等.一种新型环境矿物材料在废水治理中的应用研究-磷灰石去除水溶液中铅离子和镉离子的对比研究.环境污染治理技术与设备, 2003, 4(4): 27-30
    [66]胥焕岩,许昕荣,刘羽,等.一种新型环境矿物材料在废水治理中的应用研究-硅基磷块岩吸附水溶液中镉离子的研究.环境污染治理技术与设备, 2003, 4(5): 15-18
    [67]吴之传,陶庭先,高红军,等.改性聚丙烯腈纤维对铅镉汞离子的吸附性能研究.水处理技术, 2003, 29(2): 92-95
    [68]李胜科,费晓华.海泡石处理含镉废水技术研究.化工矿物与加工, 2004, (9): 16-17
    [69] Ruxandra M F. Cadmium adsorption on aluminum oxide in the presence of polyacrylic acid. Envion. Sci. Technol., 2001, (35): 348-350
    [70] Kuh S E. Removal characteristics of cadmium ion by waste egg shell. Environmental Technology, 2001, (21): 883-886
    [71]张彩云.膨润土对废水溶液中镉离子吸附的研究.广西化工, 2002, 31(2): 18-19
    [72] Ma W, Tobin J M. Determination and modelling of effects of pH on peat biosorption of chromium, copper and cadmium. Biochemical Engineering Journal, 2004, 18(1): 33-40
    [73]陈芳艳,唐玉斌,陈君.活性炭纤维对水中镉离子的吸附研究.抚顺石油学院学报, 2000, 20(3): 26-29
    [74]施文康.含镉、铅、汞废水的吸附实验设计.实验与创新思维, 2003, (9): 7-8
    [75]陈晋阳,黄卫.用低成本的粘土矿物吸附水溶液中镉离子的研究.应用科技, 2002, 29(2): 41-43
    [76]王银叶,宋增喜.改性麦饭石用于除铅、镉、汞废水吸附剂的开发与应用.山西师范大学学报自然科学版, 1996, 10(1): 25-28
    [77]俞善信,易丽.聚苯乙烯三乙醇胺树脂对水中镉离子的吸附.化工环保, 2000, 20(1): 46-47
    [78]杨莉丽,康海彦,李娜,等.离子交换树脂吸附镉的动力学研究.离子交换与吸附, 2004, 20(2): 138-143
    [79]陈立高.离子交换法处理工业含镉废水.水处理技术, 1982, (2): 30
    [80]钱廷宝,胡安朋.离子交换法处理含铅镉废水.工业水处理, 1984, 14(4): 24-27
    [81]张淑媛.李自法.含镉废水的处理.化工环保, 1991, 11(1): 16-19
    [82]周国平,罗士平,孙英. ISC聚合物去除电镀废水中镉和铬离子.水处理技术, 2003, 29(3): 177-179
    [83]车荣睿.离子交换法在治理含镉废水中的应用.离子交换与吸附, 1993, 9(3): 276-282
    [84]朱才铨,郁建涵.新型水处理技术.工业水处理,1984, 4(1): 8-13
    [85]戴汉光.微孔过滤处理含镉废水.化工环保, 1992, 12(3): 179-180
    [86]高以烜,叶凌碧.膜分离技术在工业废水处理中的应用.工业水处理, 1986, 6(6): 3-6
    [87]王志忠,高以烜.反渗透技术处理镀镉废水的探讨.工业水处理, 1985, 5(5): 17-21
    [88]王玉军,骆广生,王岩,等.膜萃取处理水溶液中镉、锌离子的工艺.环境科学, 2001, 22(5): 73-77
    [89]王岩,王玉军,骆广生,等.中空纤维膜萃取镉离子的研究.化学工程, 2002, 30(5): 62-65
    [90]黄炳辉,张仲甫,汪德先.用液膜技术提取镉的研究.膜科学与技术, 1989, 9(2): 57-63
    [91]何鼎胜,马铭.三正辛胺-二甲苯液膜迁移Cd的研究.高等学校化学学报, 2000, 21(4): 605-608
    [92] Mathilde R J, Janne F R, Signe N, et al. Electrodialytic removal of cadmium from wastewater sludge. Journal of Hazardous Materious, 2004, 106(2-3): 127-132
    [93] Lee D H, Kang C H, Sohn W. Method for treating cadmium-containing wastewater using strains of Tyromyces palustris. KR. Pat. No. 2000020770-A, 2001
    [94] Singh K K, Rupainwar D C, Hasan S H. Lowcost bio-sorbent 'maize bran' for the removal of cadmium from wastewater. Journal of the Indian Chemical Society, 2005, 80(4): 342-346
    [95] Ali N A, Bernal M P, Ater M. Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquatic Botany, 2004, 80(3): 163-176
    [96] Ozdemir G, Ceyhau N, Ozturk T, et al. Biosorption of chromium(VI) cadmium(II) and copper(II) by Pantoea sp TEM. Chemical Engineering Journal, 2004, 102(3): 249-253
    [97] Vasudevan P, Padmavathy V, Dhingra S C. Kinetics of biosorption of cadmium on Baker's yeast. Bioresearch Technology, 2003, 89(3): 281-287
    [98] Akhtar N, Saeed A, Iqbal M. Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresearch Technology, 2003, 88(2): 163-165
    [99] Liu Y, Yang S F, Xu, H, et al. Biosorption kinetics of cadmium (II) on aerobic granular sludge. Process Biochemistry, 2003, 38 (7): 997-1001
    [100]冯咏梅,王文华,常秀莲,等.海带吸附镉离子的研究.烟台大学学报自然科学与工程版, 2003, 16(3): 175-179
    [101]尹平河,赵玲.海藻生物吸废水中铅、铜和镉的研究.海洋环境科学, 2000, 19(3): 11-15
    [102]林荣根,黄朋林,周俊良.两种褐藻对铜和镉的吸着及洗脱研究.海洋环境科学, 1999, 18(4): 8-14
    [103]李清彪,刘刚,胡月琳,等.黄孢展齿革菌对镉离子的吸附.离子交换与吸附, 2001, 17(6): 501-506
    [104]陈翠雪,李清彪,邓旭,等.黄孢展齿革菌菌丝球同时吸附铅镉离子的动力学.离子交换与吸附, 2003, 19(2): 133-138
    [105]徐惠娟,龙敏南,许建宾,等.啤酒酵母生物吸附镉的研究.工业微生物, 2004, 34(2): 10-14
    [106]邱廷省,成先雄,啤酒酵母吸附镉离子的试验研究.环境污染与防治, 2004, 26(2): 95-97
    [107]王元秀,王志国,赵凤云.唐菖蒲对铅、镉的吸收和利用.山东建材学院学报, 2001, 15(2): 189-190
    [108]张志杰,王志盈,吕秋芬,等.凤眼莲对铅、镉废水净化能力的研究.环境科学, 1989, 10(5): 14-17
    [109]翟云波,魏先勋,曾光明,等.间歇反应器内污泥衍生吸附剂去除水溶液中镍、镉离子.环境化学, 2004, 23(3): 274-277
    [110]许华夏,张春桂,姜晴楠,等.用微生物法固定重金属离子镉和铅的研究.环境科技, 1993, 13(2): 51-55
    [111]林如亮,齐水冰.焦化废水菌种筛选及降解研究.广东化工, 2004, 31 (2): 51-54
    [112] Lim P E, Ong S A, Seng C A. Simultaneous adsorption and biodegradation processes in sequencing batch reactor (SBR) for treating copper and cadmium-containing wastewater. Water Research, 2002, 36(3): 667-675
    [113] Santos A, Alonso E, Riesco P. Influence of cadmium on the performance of an activated SBR sludge treatment. Environmental Technology, 2005, 26(2): 127-134
    [114]王绍文.重金属废水的危害与防治.金属世界, 1997, (5): 11-12
    [115] Lakshminarayanaiah N. Equations of Membrane Biophysics. New York: Academic Press, 1984: 15-50
    [116]华耀祖.超滤技术与应用.北京:化学工业出版社, 2004: 74-103
    [117]朱长乐.膜科学技术.北京:高等教育出版社, 2004: 183-215
    [118]刘茉娥.膜分离技术应用手册.北京:化学工业出版社, 2001: 1-8
    [119]张玉忠,郑领英,高从堦.液体分离膜技术及应用,北京:化学工业出版社, 2004, 72-134
    [120] Akita S, Castillo L P, Nii S, et al. Separation of Co(II)/Ni(II) via micellar-enhanced ultrafiltration using organophosphorus acid extractant solubilized by nonionic surfactant. Journal of Membrane Science, 1999, 162(1-2): 111-117
    [121] Fillipi B R, Scamehorn J F, Christian S D, et al. A comparative economic analysis of copper removal from water by ligand-modified micellar-enhanced ultrafiltration and by conventional solvent extraction. Journal of Membrane Science, 1998, 145: 27-44
    [122] Hebrant M, Provin C, Brunette J P, et al. Micellar extraction of europium (III) by a bolaform extractant and parent compounds derived from 5-pyrazolone. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2001, 181(1-3): 225-236
    [123] Hong J J, Yang S M, Lee C H, et al. Ultrafiltration of divalent metal cations from 100aqueous solution using polycarboxylic acid type biosurfactant. Journal of Colloid and Interface Science, 1998, 202(1): 63-73
    [124] Gzara L and Dhahbi M. Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants. Desalination, 2001, 137(1-3): 241-250
    [125] Aoudia M, Allal N, Djennet A, et al. Dynamic micellar enhanced ultrafiltration: use of anionic (SDS)-nonionic(NPE) system to remove Cr3+ at low surfactant concentration. Journal of Membrane Science, 2003, 217(1-2): 181-192
    [126] Adamczak H, Materna K, Urbanski R, et al. Ultrafiltration of micellar solutions containing phenols. Journal of Colloid and Interface Science, 1999, 218(2): 359-368
    [127] Sadaoui B Z, AZoug C, Charbit G, et al. Surfactants for separation processes: enhanced ultrafiltration. Journal of Environmental Engineering, 1998, 124(8): 695-700
    [128] Juang R S, Xu Y Y, and Chen C L. Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. Journal of Membrane Science, 2003, 218(1-2): 257-267
    [129] Ahmadi S, Huang Y C, Batchelor B, et al. Binding of Heavy-Metals to Derivatives of Cholesterol and Sodium Dodecyl-Sulfate. Journal of Environmental Engineering, 1995, 121(9): 645-652
    [130] Yoon J, Yoon Y, Amy G, et al. Use of surfactant modified ultrafiltration for perchlorate (ClO4-) removal. Water Research, 2003, 37(9): 2001-2012
    [131] Baek K, Kim B K, Cho H J, et al. Removal characteristics of anionic metals by micellar-enhanced ultrafiltration. Journal of Hazardous Materials, 2003, 99(3): 303-311
    [132] Akita S, Yang L, and Takeuchi H. Micellar-enhanced ultrafiltration of gold(III) with nonionic surfactant. Journal of Membrane Science, 1997, 133(2): 189-194
    [133] Talens-Alesson F I, Adamczak H, and Szymanowski J. Micellar-enhanced ultrafiltration of phenol by means of oxyethylated fatty acid methyl esters. Journal of Membrane Science, 2001, 192(1-2): 155-163
    [134] Choi Y K, Lee S B, Lee D J, et al. Micellar enhanced ultrafiltration using PEO-PPO-PEO block copolymers. Journal of Membrane Science, 1998, 148(2): 185-194
    [135] Kim C K, Kim S S, Kim D W, et al. Removal of aromatic compounds in the aqueous solution via micellar enhanced ultrafiltration. Journal of Membrane Science, 1998, 147(1): 13-22
    [136] Talens-Alesson F I, Urbanski R, and Szymanowski J. Evolution of resistance to permeation during micellar enhanced ultrafiltration of phenol and 4-nitrophenol. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2001, 178(1-3): 71-77
    [137] Jachowska M, Adamczak H, and Szymanowski J. Ultrafiltration characteristics of oxyethylated methyl dodecanoate aqueous solutions. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2002, 196(1): 11-18
    [138] Korzystka B, Adamczak H, Sobczynska A, et al. Ultrafiltration characteristics of colloid solutions containing oxyethylated methyl dodecanoate, hexadecyltrimethylammonium bromide and selected phenols as pollutants. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2003, 212(2-3): 175-183
    [139] Tung C C, Yang Y M, Chang C H, et al. Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants. Waste Management, 2002, 22(7): 695-701
    [140] Fillipi B R, Brant L W, Scamehorn J F, et al. Use of micellar-enhanced ultrafiltration at low surfactant concentrations and with anionic-nonionic surfactant mixtures. Journal of Colloid and Interface Science, 1999, 213(1): 68-80
    [141]时钧,袁权,高从堦.膜技术手册.北京:化学工业出版社, 2001, 61
    [142] Byhlin H and J?nsson A S. Influence of adsorption and concentration polarisation on membrane performance during ultrafiltration of a non-ionic surfactant. Desalination, 2002, 151(1): 21-31
    [143] Doulia D, Tragardh G, and Gekas V. Interaction behaviour in ultrafiltration of nonionic surfactants PartⅡ. Static adsorption below CMC. Journal of Membrane Science, 1997, 123: 133-142
    [144] J?nsson A S, Lindau J, Wimmerstedt R, et al. Influence of the concentration of a low-molecular organic solute on the flux reduction of a polyethersulphone ultrafiltration membrane. Journal of Membrane Science, 1997, 135: 117-128
    [145] Kavitskaya A A, Klimenko N A, Bildyukevich A V, et al. Adsorption of anionic surface active substances (SAS) on charged membranes. Desalination, 2003, 158: 225-230
    [146] Jadhav S R, Verma N, Sharma A, et al. Flux and retention analysis during micellar enhanced ultrafiltration for the removal of phenol and aniline. Separation and Purification Technology, 2001, 24(3): 541-557
    [147] Bielska M and Szymanowski J. Micellar enhanced ultrafiltration of nitrobenzene and 4-nitrophenol. Journal of Membrane Science, 2004, 243(1-2): 273-281
    [148] Baek K and Yang J W. Cross-flow micellar-enhanced ultrafiltration for removal of nitrate and chromate: competitive binding. Journal of Hazardous Materials, 2004, 108(1-2): 119-123
    [149] Baek K, Lee H H, and Yang J W. Micellar-enhanced ultrafiltration for simultaneous removal of ferricyanide and nitrate. Desalination, 2003, 158(1-3): 157-166
    [150] Baek K, Kim B K, and Yang J W. Application of micellar enhanced ultrafiltration for nutrients removal. Desalination, 2003, 156(1-3): 137-144
    [151] Yurlova L, Kryvoruchko A, and Kornilovich B. Removal of Ni(II) ions from wastewater by micellar-enhanced ultrafiltration. Desalination, 2002, 144(1-3): 255-260
    [152] Sabate J, Pujola M, and Llorens J. Comparison of polysulfone and ceramic membranes for the separation of phenol in micellar-enhanced ultrafiltration. Journal of Colloid and Interface Science, 2002, 246(1): 157-163
    [153] Urbanski R, Goralska E, Bart H J, et al. Ultrafiltration of surfactant solutions. Journal of Colloid and Interface Science, 2002, 253(2): 419-426
    [154] Liu C K and Li C W. Simultaneous recovery of copper and surfactant by an electrolytic process from synthetic solution prepared to simulate a concentrate waste stream of a micellar-enhanced ultrafiltration process. Desalination, 2004, 169(2): 185-192
    [155] Liu C K and Li C W. Combined electrolysis and micellar enhanced ultrafiltration (MEUF) process for metal removal. Separation and Purification Technology, 2005, 43(1): 25-31
    [156] Purkait M K, DasGupta S, and De S. Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Separation and Purification Technology, 2004, 37(1): 81-92
    [157] Kamenka N and Zana R. Interaction of magnesium and cadmium dodecyl sulfates with poly(ethylene oxide) and poly(vinylpyrrolidone): conductance, self-diffusion and fluorescence probing investigations. Journal of Colloid and Interface Science, 1997, 188(1): 130-138
    [158] Cui X, Mao S, Liu M, et al. Mechanism of surfactant micelle formation. Langmuir, 2008, 24(19): 10771-10775
    [159] Fernandez V V A, Soltero J F A, Puig J E, et al. Temporal evolution of the sizedistribution during exchange kinetics of pluronic P103 at low temperatures. The Journal of Physical Chemistry B, 2009, 113(10): 3015-3023
    [160] Sorci G A and Walker T D. Phenomenon observed at the onset of micellization using static light scattering. Langmuir, 2005, 21(3): 803-806
    [161] Gandhi H, Modi S, Jain N, et al. Mixed micelles of some metal dodecyl sulfates and triton X-100 in aqueous media Journal of Surfactants and Detergents, 2001, 4(4): 359-365
    [162] Mishael Y G and Dubin P L. Toluene solubilization induces different modes of mixed micelle growth. Langmuir, 2005, 21(22): 9803-9808
    [163] Almgren M and Swarup S. Size of sodium dodecyl sulfate micelles in the presence of additives. 3. Multivalent and hydrophobic counterions, cationic and nonionic surfactants. The Journal of Physical Chemistry, 1983, 87(5): 876-881
    [164] Penfold J, Tucker I, Thomas R K, et al. Structure of mixed anionic/nonionic surfactant micelles: experimental observations relating to the role of headgroup electrostatic and steric effects and the effects of added electrolyte. The Journal of Physical Chemistry B, 2005, 109(21): 10760-10770
    [165] Chodankar S, Aswal V K, Hassan P A, et al. Structure of protein-surfactant complexes as studied by small-angle neutron scattering and dynamic light scattering. Physica B: Condensed Matter, 2007, 398(1): 112-117
    [166] Ghosh S and Moulik S P. Interfacial and micellization behaviors of binary and ternary mixtures of amphiphiles (Tween-20, Brij-35, and sodium dodecyl sulfate) in aqueous medium. Journal of Colloid and Interface Science, 1998, 208(2): 357-366
    [167] Satake I, Iwamatsu I, Hosokawa S, et al. The surface activities of bivalent metal alkyl sulfates. I. On the micelles of some metal alkyl sulfates. Bulletin of the Chemical Society of Japan, 1963, 36: 204-209
    [168] Almgren M, Gimel J C, Wang K, et al. SDS micelles at high ionic strength, a light scattering, neutron scattering, fluorescence quenching, and cryo-TEM investigation. Journal of Colloid and Interface Science, 1998, 202(2): 222-231
    [169] Li C W, Liu C K, and Yen W S. Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions. Chemosphere, 2006, 63(2): 353-358
    [170] Moroi Y and Yoshida N. A new approach to micellization parameters: its application to sodium dodecyl sulfate micelle. Langmuir, 1997, 13(15): 3909-3912
    [171] Kamble S B and Marathe K V. Membrane characteristics and fouling study inMEUF for the removal of chromate anions from aqueous streams. Separation Science and Technology, 2005, 40(15): 3051-3070
    [172] Fernandez E, Benito J M, Pazos C, et al. Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions. Journal of Membrane Science, 2005, 246(1): 1-6
    [173] Chhatre A J and Marathe K V. Dynamic analysis and optimization of surfactant dosage in micellar enhanced ultrafiltration of nickel from aqueous streams. Separation Science and Technology, 2006, 41(12): 2755-2770
    [174] Ghosh G and Bhattacharya P K. Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chemical Engineering Journal, 2006, 119(1): 45-53
    [175] Beolchini F, Pagnanelli F, de Michelis I, et al. Micellar enhanced ultrafiltration for arsenic(V) removal: Effect of main operating conditions and dynamic modelling. Environmental Science & Technology, 2006, 40(8): 2746-2752
    [176] Zaghbani N, Hafiane A, and Dhahbi M. Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration. Separation and Purification Technology, 2007, 55(1): 117-124
    [177] Wang T Z, Mao S Z, Miao X J, et al. 1H NMR study of mixed micellization of sodium dodecyl sulfate and triton X-100. Journal of Colloid and Interface Science, 2001, 241(2): 465-468
    [178] Bielska M and Prochaska K. Dyes separation by means of cross-flow ultrafiltration of micellar solutions. Dyes and Pigments, 2007, 74(2): 410-415
    [179] Bielska M and Szymanowski J. Removal of methylene blue from waste water using micellar enhanced ultrafiltration. Water Research, 2006, 40(5): 1027-1033
    [180] Ahmad A L, Puasa S W, and Zulkali M M D. Micellar-enhanced ultrafiltration for removal of reactive dyes from an aqueous solution. Desalination, 2006, 191(1-3): 153-161
    [181]赵剑曦,朱德春,江琳沁. SDS和Brij 35混合胶团特性以及芘在胶团和水相间的分配.精细化工, 2004, 17(4): 197-201
    [182] Xiarchos I and Doulia D. Effect of nonionic surfactants on the solubilization of alachlor. Journal of Hazardous Materials, 2006, 136(3): 882-888
    [183] Patrick H N, Warr G G, Manne S, et al. Self-assembly structures of nonionic surfactants at graphite/solution interfaces. Langmuir, 1997, 13(16): 4349-4356
    [184] Lee J, Yang J S, Kim H J, et al. Simultaneous removal of organic and inorganic contaminants by micellar enhanced ultrafiltration with mixed surfactant. 105Desalination, 2005, 184(1-3): 395-407
    [185] Fang Y Y, Zeng G M, Huang J H, et al. Micellar-enhanced ultrafiltration of cadmium ions with anionic-nonionic surfactants. Journal of Membrane Science, 2008, 320(1-2): 514-519
    [186] Xu K, Zeng G M, Huang J H, et al. Removal of Cd2+ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294(1-3): 140-146
    [187] Llorens J, Pujola M, and Sabate J. Separation of cadmium from aqueous streams by polymer enhanced ultrafiltration: a two-phase model for complexation binding. Journal of Membrane Science, 2004, 239(2): 173-181
    [188] Zaidi S K and Kumar A. Experimental studies in the dead-end ultrafiltration of dextran: analysis of concentration polarization. Separation and Purification Technology, 2004, 36(2): 115-130
    [189] Cheong D W and Panagiotopoulos A Z. Monte carlo simulations of micellization in model ionic surfactants: application to sodium dodecyl sulfate. Langmuir, 2006, 22(9): 4076-4083
    [190] Amos D A, Markels J H, Lynn S, et al. Osmotic pressure and interparticle interactions in ionic micellar surfactant solutions. The Journal of Physical Chemistry B, 1998, 102(15): 2739-2753
    [191] Scamehorn J F, Christian S D, Elsayed D A, et al. Removal of divalent metal-cations and their mixtures from aqueous atreams using micellar-enhanced ultrafiltration. Separation Science and Technology, 1994, 29(7): 809-830
    [192] Danis U and Aydiner C. Investigation of process performance and fouling mechanisms in micellar-enhanced ultrafiltration of nickel-contaminated waters. Journal of Hazardous Materials, 2008, 162(2-3): 577-587
    [193] Bade R, Lee S H, Jo S, et al. Micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes for chromate removal from wastewater. Desalination, 2008, 229(1-3): 264-278
    [194] J?nsson A S, J?nsson B, and Byhlin H. A concentration polarization model for the ultrafiltration of nonionic surfactants. Journal of Colloid and Interface Science, 2006, 304(1): 191-199
    [195] Karate V D and Marathe K V. Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. Journal of Hazardous Materials, 2008, 157(2-3): 464-471
    [196] Zaghbani N, Hafiane A, and Dhahbi M. Removal of Safranin T from wastewater using micellar enhanced ultrafiltration. Desalination, 2008, 222(1-3): 348-356
    [197] Byhlin H and Jonsson A S. Influence of adsorption and concentration polarisation on membrane performance during ultrafiltration of a non-ionic surfactant. Desalination, 2003, 151(1): 21-31
    [198] Huang Y C and Batchelor B. Crossflow surfactant-based ultrafiltration of heavy metals from waste streams. Separation Science and Technology, 1994, 29(15): 1979-1998
    [199] Yang J S, Baek K, and Yang J W. Crossflow ultrafiltration of surfactant solutions. Desalination, 2005, 184(1-3): 385-394
    [200] Tounissou P, Hebrant M, and Tondre C. On the behavior of micellar solutions in tangential ultrafiltration using mineral membranes. Journal of Colloid and Interface Science, 1996, 183(2): 491-497
    [201]徐晓明,林永生,吴章锋,等.季铵盐Gemini表面活性剂胶团水溶液的流变性质.高等学校化学学报, 2004, 25(7): 1334-1337
    [202]唐善彧,程绍进,陈立滇.表面活性剂溶液研究新方法.北京:石油工业出版社, 1992, 271-316
    [203]刘雪锋,方云,杨扬,等.聚合物-表面活性剂复合体系的核磁共振研究.日用化学工业, 2001, 31(1): 28-34
    [204] Gustavsson H and Lindman B. Alkali ion binding to aggregates of amphiphilic compounds studied by nuclear magnetic resonance chemical shifts. Journal of the American Chemical Society, 1978, 100(15): 4647-4654
    [205] Cabane B. Structure of some polymer-detergent aggregates in water. The Journal of Physical Chemistry B, 1977, 81(17): 1639-1645

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700