人肺腺癌转移相关分子的定量蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是目前全球发病率和死亡率较高的恶性肿瘤之一,肺癌按组织学分类一般分为鳞癌、腺癌、大细胞癌和小细胞癌四型。近年来,人肺腺癌(lung adenocarcinoma,AdC)的发病率逐步上升,且病人的死亡率高、预后较差。肺腺癌死亡率高和预后差的主要原因是癌细胞易转移。临床上,对肺腺癌进行早期发现或控制癌细胞转移是降低其死亡率的有效手段。癌细胞转移是一个极其复杂的过程,涉及多因素、多阶段和多基因的参与,众多的正或负相关基因起着促进或抑制癌细胞转移的作用。然而,这些基因大多都是通过翻译成蛋白质来行使其促进或抑制癌细胞转移的功能。因此,直接筛选人肺腺癌转移相关蛋白质将为寻找能预测转移的分子标志物或临床治疗靶标奠定基础。
     为了筛选肺腺癌转移相关的蛋白质,依据临床诊断选取无转移的原发性肺腺癌组织和有转移的原发性肺腺癌组织作为研究对象,首先采用激光捕获显微切割(laser capture microdissection,LCM)技术对两组原发性肺腺癌组织中的癌细胞进行纯化,再利用双向荧光差异凝胶电泳技术(two-dimensional fluoresence difference gel electrophoresis,2D-DIGE)分离无转移肺腺癌组和有转移肺腺癌组中纯化的癌细胞总蛋白,通过Decyder软件分析两组差异表达的蛋白质点,质谱(mass spectrometry,MS)技术对差异表达的蛋白质点进行鉴定,Western blot验证部分差异蛋白质S100A9,B23,annexin A1,annexin A2和annexin A3的表达。为探讨部分差异蛋白质表达的临床病理意义,采用免疫组化染色检测部分差异蛋白质在存档的石蜡包埋组织中的表达,统计学分析差异蛋白质的表达水平与肺腺癌临床病理因素及患者复发和预后的关系。
     本研究建立了LCM纯化的无转移和有转移肺腺癌组织中癌细胞的2D-DIGE图谱,质谱鉴定了20个非冗余差异蛋白质。与无转移肺腺癌组相比,13个蛋白在有转移肺腺癌组表达上调,7个蛋白在有转移肺腺癌组中表达下调。Western blot验证分析显示,差异蛋白S100A9,annexin A1,annexin A2和annexin A3的表达水平在有转移肺腺癌组中较无转移肺腺癌组增高;B23的表达水平在有转移肺腺癌组中较无转移肺腺癌组降低。免疫组化进一步证实:与肺腺癌原发癌组织相比,annexin A1,annexin A2,annexin A3的表达水平在淋巴结转移癌组织中表达上调。统计学分析发现annexin A1,annexin A2和annexin A3的表达水平与肺腺癌的淋巴结转移和临床分期有关。Kaplan-Meier曲线和Cox回归分析进一步发现,annexinA1,annexin A2和annexin A3的表达水平与肺腺癌患者的复发和预后有关,annexin A1,annexin A2或annexin A3高表达的肺腺癌患者易复发,且生存率低,预后差。
     本研究首次应用LCM方法联合2D-DIGE及MS技术,分析、鉴定出人肺腺癌转移相关蛋白质,为研究人肺腺癌转移的分子机制、筛选能预测人肺腺癌转移的分子标志物奠定了基础。
Lung cancer is one of malignant tumors with very high morbidity and mortality.According to histological types,lung cancer is divided into four subtypes including lung squamous carcinoma,lung adenocarcinoma,small cell lung cancer and large cell lung cancer.In recent years,the incidence rate of human primary lung adenocarcinoma(AdC) has clearly been on the increase.And the patients of lung AdC have very low survival rate and very poor prognosis.Cancer cell metastasis is the major cause of high mortality and poor prognosis in lung AdC.In clinic,early-finding and controlling cancer cell metastasis is effective strategy to decrease the mortality.However,cancer cell metastasis is a very complicated process which is involved with many factors, many steps and many genes.A variety of positive and negative genes may be involved in this highly sophisticated process,which play important role in promoting or inhibiting cancer cell metastasis.Furthermore,these genes should be translated into proteins to exert the function of controlling cancer cell metastsis.Therefore,screening metastasis-related proteins directly is to provide the foundation for finding predictive metastatic biomarkers and clinical treat targets.
     To screen metastasis-associated biomarkers of lung AdC,laser capture microdissection(LCM) was used to purify the cancer cells from human primary lung AdC with(LNM AdC) and without metastasis(non-LNM AdC) according to clinical diagnosis of lymph node metastasis and distant metastasis.Then two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) was performed to isolate the total proteins of the pooled microdissected cancer cells from non-LNM AdC and LNM AdC.The differential proteins between non-LNM AdC and LNM AdC were analyzed by Decyder software and further identified by mass spectrometry(MS).The partial differential proteins including S100A9,B23,annexin A1,annexin A2 and annexin A3 were validated by Western blot.To further study the associations between expression levels of the partial differential proteins with clinical pathological fators and evaluate their clinicopathological significance, immunohistochemical technique was performed to analyze the expression levels of these proteins in archived paraffin imbedded tissues.And statistical analysis evaluated the relationships of their expression levels and clinical pathological factors and patients' relapse and outcome.
     In the present study,2D-DIGE patterns of microdissected non-LNM AdC and LNM AdC were established,and 20 differential proteins in the above two tissues were identified,13 out of which were up-regulated and 7 were down-regulated in LNM AdC compared to non-LNM AdC.Western blot results indicated that S100A9,annexin A1,annexin A2 and annexin A3 were significantly up-regulated in LNM AdC compared to non-LNM AdC;B23 was significantly down-regulated in LNM AdC compared with non-LNM AdC.Immunohistochemical analysis further indicated S100A9,annexin A1, annexin A2 and annexin A3 were up-regulated in LNM AdC compared with non-LNM AdC;B23 was down-regulated in LNM AdC compared with non-LNM AdC.Furthermore,annexin A1,annenxin A2 and annexin A3 were up-regulated in positive lymph nodes compared with primary lung adenocarcinoma.Statistical analysis indicated the increase of the three annexins expression levels in these tumors was significantly associated with lymph node metastasis and advanced clinical stage.Kaplan-Meier curve and Cox regression analysis indicated annexin A1,annexin A2 and annexin A3 expression levels were correlated with relapse and survival.This is to say,the three annexins over-expression were associated with increased relapse rate and decreased survival rate.
     It was the first time that metastasis-associated proteins were identified in human primary lung AdC by LCM coupled with 2D-DIGE and MS techniques. Our findings will facilitate understanding of human lung AdC metastasis and provide some direct proof for mining markers for predicting metastasis and patients' outcome so as to improve the diagnosis and treatment of lung AdC.
引文
[1]Jemal A,Siegel R,Ward E,et al.Cancer statistics,2006.CA Cancer J Clin,2006,56(2):106-130.
    [2]Chiu Y L,Yu I T,Wong T W.Time trends of female lung cancer in Hong Kong:Age,period and birth cohort analysis.Int J Cancer,2004,111(3):424-430.
    [3]陈万青,张思维,孔灵芝,et al.中国肿瘤登记处2004年恶性肿瘤死亡资料分析.中国肿瘤,2008,17(11):913-916.
    [4]Little A G,Gay E G,Gaspar L E,et al.National survey of non-small cell lung cancer in the United States:epidemiology,pathology and patterns of care.Lung Cancer,2007,57(3):253-260.
    [5]Liao M L,Chen Z W,Zheng Y,et al.[Incidence,time trend,survival,and predictive factors of lung cancer in Shanghai populations].Zhonghua Yi Xue Za Zhi,2007,87(27):1876-1880.
    [6]Woodhouse E C,Chuaqui R F,Liotta L A.General mechanisms of metastasis.Cancer,1997,80(8 Suppl):1529-1537.
    [7]Sukoh N,Abe S,Nakajima I,et al.Immunohistochemical distributions of cathepsin B and basement membrane antigens in human lung adenocarcinoma:association with invasion and metastasis.Virchows Arch,1994,424(1):33-38.
    [8]Ozeki Y,Takishima K,Takagi K,et al.Immunohistochemical analysis of cathepsin B expression in human lung adenocarcinoma:the role in cancer progression.Jpn J Cancer Res,1993,84(9):972-975.
    [9]Ho C C,Huang P H,Huang H Y,et al.Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation.Am J Pathol,2002,161(5):1647-1656.
    [10]Mitsuta K,Yokoyama A,Kondo K,et al.Polymorphism of the MUC1 mucin gene is associated with susceptibility to lung adenocarcinoma and poor prognosis.Oncol Rep,2005,14(1):185-189.
    [11]Shih J Y,Yang S C,Hong T M,et al.Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells.J Natl Cancer Inst,2001,93(18):1392-1400.
    [12]Chang C C,Shih J Y,Jeng Y M,et al.Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis.J Natl Cancer Inst,2004,96(5):364-375.
    [13]Su J L,Yang C Y,Shih J Y,et al.Knockdown of contactin-1 expression suppresses invasion and metastasis of lung adenocarcinoma.Cancer Res,2006,66(5):2553-2561.
    [14]Shibata T,Uryu S,Kokubu A,et al.Genetic classification of lung adenocarcinoma based on array-based comparative genomic hybridization analysis:its association with clinicopathologic features.Clin Cancer Res,2005,11(17):6177-6185.
    [15]Nakamura N,Kobayashi K,Nakamoto M,et al.Identification of tumor markers and differentiation markers for molecular diagnosis of lung adenocarcinoma.Oncogene,2006,25(30):4245-4255.
    [16]Larsen J E,Pavey S J,Passmore L H,et al.Gene expression signature predicts recurrence in lung adenocarcinoma.Clin Cancer Res,2007,13(10):2946-2954.
    [17]Dai Z,Liu Y K,Cui J F,et al.Identification and analysis of altered alphal,6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis.Proteomics,2006,6(21):5857-5867.
    [18]Takikawa M,Akiyama Y,Maruyama K,et al.Proteomic analysis of a highly metastatic gastric cancer cell line using two-dimensional differential gel electrophoresis.Oncol Rep,2006,16(4):705-711.
    [19]Chen J,Kahne T,Rocken C,et al.Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins.J Proteome Res,2004,3(5):1009-1016.
    [20]Chen R,Yi E C,Donohoe S,et al.Pancreatic cancer proteome:the proteins that underlie invasion,metastasis,and immunologic escape.Gastroenterology,2005,129(4):1187-1197.
    [21]Wu M,Bai X,Xu G,et al.Proteome analysis of human androgen-independent prostate cancer cell lines:variable metastatic potentials correlated with vimentin expression.Proteomics,2007,7(12):1973-1983.
    [22]Chen Z G.Exploration of metastasis-related proteins as biomarkers and therapeutic targets in the treatment of head and neck cancer.Curr Cancer Drug Targets,2007,7(7):613-622.
    [23]Jiang D,Ying W,Lu Y,et al.Identification of metastasis-associated proteins by proteomic analysis and functional exploration of interleukin-18 in metastasis.Proteomics,2003,3(5):724-737.
    [24]高利伟,朱文,冯志华,et al.高转移和低转移人大细胞肺癌细胞株的比较蛋白组学研究.四川大学学报(医学版),2008,39(05):706-710.
    [25]Tian T,Hao J,Xu A,et al.Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis.Cancer Sci,2007,98(8):1265-1274.
    [26]田甜,郝佳,徐安健,et al.采用蛋白质组学技术筛选与肺腺癌转移相关的标志蛋白.现代仪器,2007,13(01):26-29.
    [27]Zhang H,Wang Y,Chen Y,et al.Identification and validation of S100A7 associated with lung squamous cell carcinoma metastasis to brain.Lung Cancer,2007,57(1):37-45.
    [28]詹显全,关勇军,李萃,et al.人肺腺癌细胞A-549和正常细胞HBE的蛋白质组差异分析.生物化学与生物物理学报:英文版,2002,34(1):50-56.
    [29]Li C,Xiao Z,Chen Z,et al.Proteome analysis of human lung squamous carcinoma.Proteomics,2006,6(2):547-558.
    [30]李萃,陈主初,肖志强,et al.人肺鳞癌组织及癌旁组织蛋白质双向电泳图谱的差异分析.癌症,2004,23(1):28-35.
    [31]李萃,段朝军,肖志强,et al.人肺鳞癌及肺炎性假瘤组织的蛋白质差异表达谱的初步建立.中华现代内科学杂志,2006,3(8):841-845.
    [32]李萃,肖志强,章晓鹏,et al.人肺鳞癌组织的血清蛋白质组学的比较分析.中国生物化学与分子生物学报,2005,21(3):357-368.
    [33]李萃,肖志强,段朝军,et al.人肺腺癌组织的血清蛋白质组学研究.中国医师杂志,2006,8(8):1009-1012.
    [34]Li C,Chen Z,Xiao Z,et al.Comparative proteomics analysis of human lung squamous carcinoma.Biochem Biophys Res Commun,2003,309(1):253-260.
    [35]Yao H,Zhang Z,Xiao Z,et al.Identification of metastasis asociated proteins in human lung squamous carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection.Lung Cancer,2008.[Epud ahead of print]
    [36]O'Farrell P H.High resolution two-dimensional electrophoresis of proteins.J Biol Chem,1975,205(10):4007-4021.
    [37]Gygi S P,Corthals G L,Zhang Y,et al.Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology.Proc Natl Acad Sci U S A,2000,97(17):9390-9395.
    [38]Gorg A,Weiss W,Dunn M J.Current two-dimensional electrophoresis technology for proteomics.Proteomics,2004,4(12):3665-3685.
    [39]Unlu M,Morgan M E,Minden J S.Difference gel electrophoresis:a single gel method for detecting changes in protein extracts.Electrophoresis,1997,18(11):2071-2077.
    [40] Van Den Bergh G, Arckens L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol, 2004, 15(1):38-43.
    [41] Wu T L. Two-dimensional difference gel electrophoresis. Methods Mol Biol, 2006, 328:71-95.
    [42] Kondo T, Hirohashi S. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat Protoc, 2006, l(6):2940-2956.
    [43] Tomonaga T, Matsushita K, Yamaguchi S, et al. Identification of Altered Protein Expression and Post-Translational Modifications in Primary Colorectal Cancer by Using Agarose Two-Dimensional Gel Electrophoresis. Clin Cancer Res, 2004, 10(6):2007-2014.
    [44] Friedman D B, Hill S, Keller J W, et al. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 2004,4(3):793-811.
    [45] Cassiday L. 2D DIGE sheds light on the metastasis suppressor BRMS1. J Proteome Res, 2007, 6(10): 3874-3874.
    [46] Byrne J C, Downes M R, O'Donoghue N, et al. 2D-DIGE as a Strategy To Identify Serum Markers for the Progression of Prostate Cancer. J Proteome Res, 2009, 8(2):942-957.
    [47] Lee I N, Chen C H, Sheu J C, et al. Identification of human hepatocellular carcinoma-related biomarkers by two-dimensional difference gel electrophoresis and mass spectrometry. J Proteome Res, 2005,4(6):2062-2069.
    [48] Liang C R, Leow C K, Neo J C, et al. Proteome analysis of human hepatocellular carcinoma tissues by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 2005, 5(8):2258-2271.
    [49] Lawrie L C, Fothergill J E, Murray G I. Spot the differences: proteomics in cancer research. Lancet Oncol, 2001, 2(5):270-277.
    [50] Bohm M, Wieland I, Schutze K, et al. Microbeam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue. Am J Pathol, 1997, 151(1):63-67.
    [51] Cheng A L, Huang W G, Chen Z C, et al. Identificating cathepsin D as a biomarker for differentiation and prognosis of nasopharyngeal carcinoma by laser capture microdissection and proteomic analysis. J Proteome Res, 2008, 7(6):2415-2426.
    [52] Lawrie L C, Curran S, Mcleod H L, et al. Application of laser capture microdissection and proteomics in colon cancer. Mol Pathol, 2001, 54(4):253-258.
    [53] Shekouh A R, Thompson C C, Prime W, et al. Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics, 2003,3(10):1988-2001.
    [54] Neubauer H, Clare S E, Kurek R, et al. Breast cancer proteomics by laser capture microdissection, sample pooling, 54-cm IPG IEF, and differential iodine radioisotope detection. Electrophoresis, 2006, 27(9): 1840-1852.
    [55] Ai J, Tan Y, Ying W, et al. Proteome analysis of hepatocellular carcinoma by laser capture microdissection. Proteomics, 2006, 6(2):538-546.
    [56] Candiano G, Bruschi M, Musante L, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004, 25(9):1327-1333.
    [57] Chen Y K, Su C T, Ding H J, et al. Clinical usefulness of fused PET/CT compared with PET alone or CT alone in nasopharyngeal carcinoma patients. Anticancer Res, 2006,26(2B):1471-1477.
    [58] Karp N A, Kreil D P, Lilley K S. Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics, 2004,4(5): 1421-1432. [59] Fountoulakis M, Berndt P, Langen H, et al. The rat liver mitochondrial proteins. Electrophoresis, 2002, 23(2):311-328.
    [60] Fountoulakis M, Suter L. Proteomic analysis of the rat liver. J Chromatogr B Analyt Technol Biomed Life Sci, 2002, 782(1-2):197-218.
    [61] Schmidt F, Donahoe S, Hagens K, et al. Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol Cell Proteomics, 2004, 3(1):24-42.
    [62] Chen G, Gharib T G, Wang H, et al. Protein profiles associated with survival in lung adenocarcinoma. Proc Natl Acad Sci U S A, 2003, 100(23):13537-13542.
    [63] Takashima M, Kuramitsu Y, Yokoyama Y, et al. Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. Proteomics, 2005, 5(6): 1686-1692.
    [64] Chang G C, Liu K J, Hsieh C L, et al. Identification of alpha-enolase as an autoantigen in lung cancer: its overexpression is associated with clinical outcomes. Clin Cancer Res, 2006, 12(19):5746-5754.
    [65] He P, Naka T, Serada S, et al. Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer.Cancer Sci,2007,98(8):1234-1240.
    [66]Huang L J,Chen S X,Luo W J,et al.Proteomic analysis of secreted proteins of non-small cell lung cancer.Ai Zheng,2006,25(11):1361-1367.
    [67]Ugurel S,Bell N,Sucker A,et al.Tumor type M2 pyruvate kinase(TuM2-PK) as a novel plasma tumor marker in melanoma.Int J Cancer,2005,117(5):825-830.
    [68]Schneider J,Bitterlich N,Schulze G.Improved sensitivity in the diagnosis of gastro-intestinal tumors by fuzzy logic-based tumor marker profiles including the tumor M2-PK.Anticancer Res,2005,25(3A):1507-1515.
    [69]Hudelist G,Kostler W,Czerwenka K,et al.Predicting the clinical course of breast cancer patients undergoing trastuzumab-based therapy:an outlook.Methods Find Exp Clin Pharmacol,2004,26(3):201-210.
    [70]Schneider J,Neu K,Velcovsky H G,et al.Tumor M2-pyruvate kinase in the follow-up of inoperable lung cancer patients:a pilot study.Cancer Lett,2003,193(1):91-98.
    [71]Schneider J,Velcovsky H G,Morr H,et al.Comparison of the tumor markers tumor M2-PK,CEA,CYFRA 21-1,NSE and SCC in the diagnosis of lung cancer.Anticancer Res,2000,20(6D):5053-5058.
    [72]Zhang B,Chen J Y,Chen D D,et al.Tumor type M2 pyruvate kinase expression in gastric cancer,colorectal cancer and controls.World J Gastroenterol,2004,10(11):1643-1646.
    [73]Roigas J,Deger S,Schroeder J,et al.Tumor type M2 pyruvate kinase expression in metastatic renal cell carcinoma.Urol Res,2003,31(6):358-362.
    [74]Luftner D,Mesterharm J,Akrivakis C,et al.Tumor type M2 pyruvate kinase expression in advanced breast cancer.Anticancer Res,2000,20(6D):5077-5082.
    [75]Schneider J,Morr H,Velcovsky H G,et al.Quantitative detection of tumor M2-pyruvate kinase in plasma of patients with lung cancer in comparison to other lung diseases.Cancer Detect Prev,2000,24(6):531-535.
    [76]Schneider J,Neu K,Grimm H,et al.Tumor M2-pyruvate kinase in lung cancer patients:immunohistochemical detection and disease monitoring.Anticancer Res,2002,22(1A):311-318.
    [77]高红军,周兰萍,毛友生,et al.食管鳞癌肿瘤相关抗原磷酸甘油酸激酶1的鉴定.世界华人消化杂志,2008,16(17):1866-1872.
    [78]庞博,钱晓龙,武瑞琴,et al.一个新的前列腺癌细胞系分泌蛋白磷酸甘油酸酯激酶的鉴定与分析.生物技术通讯,2008,19(05):649-652.
    [79]Zieker D,Konigsrainer I,Traub F,et al.PGKl a potential marker for peritoneal
    dissemination in gastric cancer.Cell Physiol Biochem,2008,21(5-6):429-436.
    
    [80]Hermani A,Hess J,De Servi B,et al.Calcium-binding proteins S100A8 and S100A9as novel diagnostic markers in human prostate cancer.Clin Cancer Res,2005,11(14):5146-5152.
    [81]El-Rifai W,Moskaluk C A,Abdrabbo M K,et al.Gastric cancers overexpress S100A calcium-binding proteins.Cancer Res,2002,62(23):6823-6826.
    [82]Stulik J,Osterreicher J,Koupilova K,et al.The analysis of S100A9 and S100A8expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma:the S100A9 and S100A8 positive cells underlie and invade tumor mass.Electrophoresis,1999,20(4-5):1047-1054.
    [83]Arai K,Teratani T,Nozawa R,et al.Immunohistochemical investigation of S100A9expression in pulmonary adenocarcinoma:S100A9 expression is associated with tumor differentiation.Oncol Rep,2001,8(3):591-596.
    [84]Kim H J,Kang H J,Lee H,et al.Identification of S100A8 and A100A9 as Serological Markers for Colorectal Cancer.J Proteome Res,2009.[Epud ahead of print]
    [85]Yong H Y,Moon A.Roles of calcium-binding proteins,S100A8 and S100A9,in invasive phenotype of human gastric cancer cells.Arch Pharm Res,2007,30(1):75-81.
    [86]陈霞,李建生.S100A9蛋白的生物学特性与临床意义.国外医学(内科学分册),2006,33(06):275-276.
    [87]周丹,倪晓华.核磷蛋白的生物学功能及其与肿瘤发生的关系.生命的化学,2006,26(03):244-247.
    [88]谢丽,陈晓燕,秦雪.Annexins与肿瘤的相关研究.医学综述,2007,13(03):196-198.
    [89]张立勇,赵晓航,吴旻.膜联蛋白I的结构和功能.生物化学与生物物理进展,2002,29(04):514-517.
    [90]张敏,曹云山,朱任之.膜联蛋白A1与肿瘤.国外医学.生理.病理科学与临床分册,2005,25(02):139-142.
    [91]Hara A,Okayasu I.Cyclooxygenase-2 and inducible nitric oxide synthase expression in human astrocytic gliomas:correlation with angiogenesis and prognostic significance.Acta Neuropathol,2004,108(l):43-48.
    [92]Heizmann C W,Fritz G,Schafer B W.S100 proteins:structure,functions and pathology.Front Biosci,2002,7:1356-1368.
    [93]Arai K,Teratani T,Kuruto-Niwa R,et al.S100A9 expression in invasive ductal carcinoma of the breast:S100A9 expression in adenocarcinoma is closely associated with poor tumour differentiation.Eur J Cancer,2004,40(8):1179-1187.
    [94]Stulik J,Osterreicher J,Koupilova K,et al.The analysis of S100A9 and S100A8expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma:the S100A9 and S100A8 positive cells underlie and invade tumor mass.Electrophoresis,1999,20(4-5):1047-1054.
    [95]Ott H W,Lindner H,Sarg B,et al.Calgranulins in cystic fluid and serum from patients with ovarian carcinomas.Cancer Res,2003,63(21):7507-7514.
    [96]Arai K,Yamada T,Nozawa R.Immunohistochemical investigation of migration inhibitory factor-related protein(MRP)-14 expression in hepatocellular carcinoma.Med Oncol,2000,17(3):183-188.
    [97]矫文捷.第一部分:S100A8、S100A9蛋白差异表达与肺癌分化转移的关系;第二部分:新型单克隆抗体GLC238在肺癌组织中的表达:[博士学位论文].北京:首都医科大学,2004
    [98]李俊材,傅仲学,汪斌,et al.双向凝胶电泳-飞行时间质谱技术鉴定食管上皮细胞癌变时14-3-3 protein ε、S100A9的表达.中国生物工程杂志,2008,28(02):80-85.
    [99]秦凤金,耿力,赵玲,et al.S100A9在宫颈鳞状细胞癌中的表达.中国肿瘤临床,2007,34(12):661-663.
    [100]徐诚望,杨晓明。核磷蛋白与肿瘤的发生.军事医学科学院院刊,2008,32(04):382-385.
    [101]Colombo E,Marine J C,Danovi D,et al.Nucleophosmin regulates the stability and transcriptional activity of p53.Nat Cell Biol,2002,4(7):529-533.
    [102]Korgaonkar C,Hagen J,Tompkins V,et al.Nucleophosmin(B23) targets ARF to nucleoli and inhibits its function.Mol Cell Biol,2005,25(4):1258-1271.
    [103]Kondo T,Minamino N,Nagamura-Inoue T,et al.Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity.Oncogene,1997,15(11):1275-1281.
    [104]林毅,朱雪琼,吕杰强.膜联蛋白I在肿瘤中的研究进展.实用癌症杂志,2008,23(01):97-99.
    [105][105]Masaki T,Tokuda M,Ohnishi M,et al.Enhanced expression of the protein kinase substrate annexin in human hepatocellular carcinoma.Hepatology,1996,24(1):72-81.
    [106]Zimmermann U,Woenckhaus C,Teller S,et al.Expression of annexin AI in conventional renal cell carcinoma(CRCC) correlates with tumour stage,Fuhrman grade,amount of eosinophilic cells and clinical outcome.Histol Histopathol,2007, 22(5):527-534.
    [107]Cui L,Wang Y,Shi Y,et al.Overexpression of annexin al induced by terephthalic acid calculi in rat bladder cancer.Proteomics,2007,7(22):4192-4202.
    [108]张雷,杨筱,钟来平,et al.膜联蛋白A1表达下降在口腔鳞癌中的意义.中国口腔颌面外科杂志,2008,6(01):22-27.
    [109]Wang K L,Wu T T,Resetkova E,et al.Expression of annexin Al in esophageal and esophagogastric junction adenocarcinomas:association with poor outcome.Clin Cancer Res,2006,12(15):4598-4604.
    [110]Paweletz C P,Ornstein D K,Roth M J,et al.Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma.Cancer Res,2000,60(22):6293-6297.
    [111]刘腊军,徐爱君,方秀根.Annexin I蛋白在人前列腺癌中的表达及临床意义.现代生物医学进展,2008,8(05):910-912.
    [112]Rodrigo J P,Garcia-Pedrero J M,Fernandez M P,et al.Annexin Al expression in nasopharyngeal carcinoma correlates with squamous differentiation.Am J Rhinol,2005,19(5):483-487.
    [113]Yu G,Wang J,Chen Y,et al.Tissue microarray analysis reveals strong clinical evidence for a close association between loss of annexin Al expression and nodal metastasis in gastric cancer.Clin Exp Metastasis,2008,25(7):695~702.
    [114]高喜红,张煦,康瑞兰.Annexin-1在子宫内膜癌中的表达及临床意义.中国妇幼保健,2007,22(13):1811-1812.
    [115]赵宪龙,李发智,包守芳,et al.膜联蛋白-1在膀胱移行细胞癌发生发展中的表达.西北国防医学杂志,2006,27(04):263-265.
    [116]Liang L,Qu L,Ding Y.Protein and mRNA characterization in human colorectal carcinoma cell lines with different metastatic potentials.Cancer Invest,2007,25(6):427-434.
    [117]曲利娟,梁莉,丁彦青.大肠癌组织中Annexin I蛋白的表达及意义.临床与实验病理学杂志,2006,22(05):556-559.
    [118]Wang K L,Wu T,Resetkova E,et al.Expression of Annexin Al in Esophageal and Esophagogastric Junction Adenocarcinomas:Association with Poor Outcome.Clin Cancer Res,2006,12(15):4598-4604.
    [119]Babbin B A,Lee W Y,Parkos C A,et al.Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors.J Biol Chem,2006,281(28):19588-19599.
    [120]Tanaka T,Akatsuka S,Ozeki M,et al.Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis.Oncogene,2004,23(22):3980-3989.
    [121]Vishwanatha J K,Chiang Y,Kumble K D,et al.Enhanced expression of annexin II in human pancreatic carcinoma cells and primary pancreatic cancers.Carcinogenesis,1993,14(12):2575-2579.
    [122]Cole S P,Pinkoski M J,Bhardwaj G,et al.Elevated expression of annexin II (lipocortin II,p36) in a multidrug resistant small cell lung cancer cell line.Br J Cancer,1992,65(4):498-502.
    [123]章蔼然,潘宁,侯颖春.膜联蛋白A2与恶性肿瘤发展进程的关系.细胞生物学杂志,2008,30(03):307-311.
    [124]Brichory F M,Misek D E,Yim A M,et al.An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer.Proc Natl Acad Sci U S A,2001,98(17):9824-9829.
    [125]Park J E,Lee D H,Lee J A,et al.Annexin A3 is a potential angiogenic mediator.Biochem Biophys Res Commun,2005,337(4):1283-1287.
    [126]Harashima M,Harada K,Ito Y,et al.Annexin A3 Expression Increases in Hepatocytes and is Regulated by Hepatocyte Growth Factor in Rat Liver Regeneration.J Biochem,2008,143(4):537-545.
    [127]Harashima M,Niimi S,Koyanagi H,et al.Change in annexin A3 expression by regulatory factors of hepatocyte growth in primary cultured rat hepatocytes.Biol Pharm Bull,2006,29(7):1339-1343.
    [128]Madoz-Gurpide J,Lopez-Serra P,Martinez-Torrecuadrada J L,et al.Proteomics-based validation of genomic data:applications in colorectal cancer diagnosis.Mol Cell Proteomics,2006,5(8):1471-1483.
    [129]Kollermann J,Schlomm T,Bang H,et al.Expression and prognostic relevance of annexin A3 in prostate cancer.Eur Urol,2008,54(6):1314-1323.
    [130]Tan Y H,Lee K H,Lin T,et al.Cytotoxicity and proteomics analyses of OSU03013in lung cancer.Clin Cancer Res,2008,14(6):1823-1830.
    [1]Jemal A,Siegel R,Ward E,et al.Cancer statistics,2006.CA Cancer J Clin,2006,56(2):106-130.
    [2]Fry W A,Phillips J L,Menck H R.Ten-year survey of lung cancer treatment and survival in hospitals in the United States:a national cancer data base report.Cancer,1999,86(9):1867-1876.
    [3]Chiu Y L,Yu I T,Wong T W.Time trends of female lung cancer in Hong Kong:Age,period and birth cohort analysis.Int J Cancer,2004,111(3):424-430.
    [4]陈万青,张思维,孔灵芝,et al.中国肿瘤登记处2004年恶性肿瘤死亡资料分析.中国肿瘤,2008,17(11):913-916.
    [5]胡成平.肺癌流行病学与烟草控制的研究进展.中国肺癌杂志,2008,11(01):25-28.
    [6]Schena M,Shalon D,Davis R W,et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science,1995,270(5235):467-470.
    [7]Wodicka L,Dong H,Mittmann M,et al.Genome-wide expression monitoring in Saccharomyces cerevisiae.Nat Biotechnol,1997,15(13):1359-1367.
    [8]Lashkari D A,Derisi J L,Mccusker J H,et al.Yeast microarrays for genome wide parallel genetic and gene expression analysis.Proc Natl Acad Sci U S A,1997,94(24):13057-13062.
    [9]Bhattacharjee A,Richards W G,Staunton J,et al.Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.Proc Natl Acad Sci U S A,2001,98(24):13790-13795.
    [10]Fenn J B,Mann M,Meng C K,et al.Electrospray ionization for mass spectrometry of large biomolecules.Science,1989,246(4926):64-71.
    [11]Karas M,Hillenkamp F.Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons.Anal Chem,1988,60(20):2299-2301.
    [12]Hirsch J,Hansen K C,Burlingame A L,et al.Proteomics:current techniques and potential applications to lung disease.Am J Physiol Lung Cell Mol Physiol,2004,287(1):1-23.
    [13]Patterson S D,Aebersold R H.Proteomics:the first decade and beyond.Nat Genet, 2003, 33 Suppl:311-323.
    [14] Henzel W J, Billed T M, Stults J T, et al. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A, 1993, 90(11):5011-5015.
    [15] James P, Quadroni M, Carafoli E, et al. Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun, 1993,195(1):58-64.
    [16] Mann M, Hojrup P, Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom, 1993, 22(6):338-345.
    [17] Pappin D J, Hojrup P, Bleasby A J. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol, 1993, 3(6):327-332.
    [18] Eisen M B, Spellman P T, Brown P O, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998, 95(25): 14863-14868.
    [19] Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439):531-537.
    [20] Quackenbush J. Computational analysis of microarray data. Nat Rev Genet, 2001, 2(6):418-427.
    [21] Giordano T J, Shedden K A, Schwartz D R, et al. Organ-specific molecular classification of primary lung, colon, and ovarian adenocarcinomas using gene expression profiles. Am J Pathol, 2001,159(4):1231-1238.
    [22] Virtanen C, Ishikawa Y, Honjoh D, et al. Integrated classification of lung tumors and cell lines by expression profiling. Proc Natl Acad Sci U S A, 2002, 99(19):12357-12362.
    [23] Beer D G, Kardia S L, Huang C C, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med, 2002, 8(8):816-824.
    [24] Miura K, Bowman E D, Simon R, et al. Laser capture microdissection and microarray expression analysis of lung adenocarcinoma reveals tobacco smoking- and prognosis-related molecular profiles. Cancer Res, 2002, 62(11):3244-3250.
    [25] Lim E H, Aggarwal A, Agasthian T, et al. Feasibility of using low-volume tissue samples for gene expression profiling of advanced non-small cell lung cancers. Clin Cancer Res, 2003,9(16 Pt l):5980-5987.
    [26] Campa M J, Wang M Z, Howard B, et al. Protein expression profiling identifies macrophage migration inhibitory factor and cyclophilin a as potential molecular targets in non-small cell lung cancer. Cancer Res, 2003, 63(7): 1652-1656.
    [27] Borczuk A C, Gorenstein L, Walter K L, et al. Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol, 2003, 163(5): 1949-1960.
    [28] Yamagata N, Shyr Y, Yanagisawa K, et al. A training-testing approach to the molecular classification of resected non-small cell lung cancer. Clin Cancer Res, 2003, 9(13):4695-4704.
    [29] Yanagisawa K, Shyr Y, Xu B J, et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet, 2003, 362(9382):433-439.
    [30] Kikuchi T, Daigo Y, Katagiri T, et al. Expression profiles of non-small cell lung cancers on cDNA microarrays: identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs. Oncogene, 2003,22(14):2192-2205.
    [31] Borczuk A C, Shah L, Pearson G D, et al. Molecular signatures in biopsy specimens of lung cancer. Am J Respir Crit Care Med, 2004,170(2): 167-174.
    [32] Bonner A E, Lemon W J, Devereux T R, et al. Molecular profiling of mouse lung rumors: association with tumor progression, lung development, and human lung adenocarcinomas. Oncogene, 2004,23(5):1166-1176.
    [33] Tomida S, Koshikawa K, Yatabe Y, et al. Gene expression-based, individualized outcome prediction for surgically treated lung cancer patients. Oncogene, 2004, 23(31):5360-5370.
    [34] Garber M E, Troyanskaya O G, Schluens K, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A, 2001, 98(24): 13784-13789.
    [35] Beer D G, Kardia S L, Huang C C, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med, 2002, 8(8):816-824.
    [36] Parmigiani G, Garrett-Mayer E S, Anbazhagan R, et al. A cross-study comparison of gene expression studies for the molecular classification of lung cancer. Clin Cancer Res, 2004, 10(9):2922-2927.
    [37] Anbazhagan R, Tihan T, Bornman D M, et al. Classification of small cell lung cancer and pulmonary carcinoid by gene expression profiles. Cancer Res, 1999, 59(20):5119-5122.
    [38] Gordon G J, Jensen R V, Hsiao L L, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res, 2002, 62(17):4963-4967.
    [39] Beer D G, Kardia S L, Huang C C, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med, 2002, 8(8):816-824.
    [40]Wigle D A,Jurisica I,Radulovich N,et al.Molecular profiling of non-small cell lung cancer and correlation with disease-free survival.Cancer Res,2002,62(11):3005-3008.
    [41]Chen G,Gharib T G,Wang H,et al.Protein profiles associated with survival in lung adenocarcinoma.Proc Natl Acad Sci U S A,2003,100(23):13537-13542.
    [42]Gordon G J,Richards W G,Sugarbaker D J,et al.A prognostic test for adenocarcinoma of the lung from gene expression profiling data.Cancer Epidemiol Biomarkers Prev,2003,12(9):905-910.
    [43]Diederichs S,Bulk E,Steffen B,et al.S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer.Cancer Res,2004,64(16):5564-5569.
    [44]Paez J G,Janne P A,Lee J C,et al.EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy.Science,2004,304(5676):1497-1500.
    [45]时晓华,张旭华.肺腺癌和癌旁组织蛋白质表达谱差异的研究.生物医学工程研究,2007,36(03):288-290.
    [46]戴明,罗荣城.蛋白质组学在肺癌诊治研究中的应用.癌症,2007,26(06):669-672.
    [47]聂赣娟,周建华,李茂玉,et al.肺鳞癌患者与健康人血清的差异蛋白质组学研究.生物化学与生物物理进展,2008,35(03):349-355.
    [48]张慧珍,巴月,杨继要,et al.肺癌相关蛋白的筛选与鉴定。第四军医大学学报,2007,28(01):6-8.
    [49]Taron M,Ichinose Y,Rosell R,et al.Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas.Clin Cancer Res,2005,11(16):5878-5885.
    [50]Lynch T J,Bell D W,Sordella R,et al.Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.N Engl J Med,2004,350(21):2129-2139.
    [51]Yano S,Wang W,Li Q,et al.Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations.Cancer Res,2008,68(22):9479-9487.
    [52]Zhang G C,Lin J Y,Wang Z,et al.Epidermal growth factor receptor double activating mutations involving both exons 19 and 21 exist in Chinese non-small cell lung cancer patients.Clin Oncol(R Coll Radiol),2007,19(7):499-506.
    [53]宋启斌,胡胜.EGFR突变与非小细胞肺癌.中国肿瘤,2007,16(11):910-914.
    [54]姜斌,朱冠山,刘峰,et al.中国人非小细胞肺癌EGFR基因突变的研究.上海第二 医科大学学报,2005,25(11):1148-1150.
    [55]孙少卫,肖莉,廖端芳.EGFR突变在非小细胞性肺癌发生和化疗反应性中的作用及其分子机制.南华大学学报(医学版),2007,35(03):445-448.
    [56]董强刚,韩宝惠,黄进肃,et al.176例非小细胞肺癌的EGFR基因突变分析.中华肿瘤杂志,2006,28(09):686-690.
    [57]Miura K,Bowman E D,Simon R,et al.Laser capture microdissection and microarray exptession analysis of lung adenocarcinoma reveals tobacco smoking-and prognosis-related molecular profiles.Cancer Res,2002,62(11):3244-3250.
    [58]Powell C A,Spira A,Derti A,et al.Gene expression in lung adenocarcinomas of smokers and nonsmokers.Am J Respir Cell Mol Biol,2003,29(2):157-162.
    [59]Spira A,Beane J,Shah V,et al.Effects of cigarette smoke on the human airway epithelial cell transcriptome.Proe Natl Acad Sci U S A,2004,101(27):10143-10148.
    [60]Chen G,Gharib T G,Huang C C,et al.Proteomic analysis of lung adenocarcinoma:identification of a highly expressed set of proteins in tumors.Clin Cancer Res,2002,8(7):2298-2305.
    [61]Chen G,Gharib T G,Wang H,et al.Protein profiles associated with survival in lung adenocarcinoma.Proc Natl Acad Sci U S A,2003,100(23):13537-13542.
    [62]Gharib T G,Chen G,Wang H,et al.Proteomic analysis of cytokeratin isoforms uncovers association with survival in lung adenocarcinoma.Neoplasia,2002,4(5):440-448.
    [63]Hall A K.Differential expression of thymosin genes in human tumors and in the developing human kidney.Int J Cancer,1991,48(5):672-677.
    [64]Jiang D,Ying W,Lu Y,et al.Identification of metastasis-associated proteins by proteomic analysis and functional exploration of interleukin-18 in metastasis.Proteomics,2003,3(5):724-737。
    [65]高利伟,朱文,冯志华,et al.高转移和低转移人大细胞肺癌细胞株的比较蛋白组学研究.四川大学学报(医学版),2008,39(05):706-710.
    [66]Tian T,Hao J,Xu A,et al.Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis.Cancer Sci,2007,98(8):1265-1274.
    [67]田甜,郝佳,徐安健,et al。采用蛋白质组学技术筛选与肺腺癌转移相关的标志蛋白.现代仪器,2007,13(01):26-29.
    [68]Zhang H,Wang Y,Chen Y,et al.Identification and validation of S100A7 associated with lung squamous cell careinoma metastasis to brain.Lung Cancer,2007,57(1):37-45.
    [69]詹显全,关勇军,李萃,et al.人肺腺癌细胞A-549和正常细胞HBE的蛋白质组差异分析.生物化学与生物物理学报:英文版,2002,34(1):50-56.
    [70]Zhan X Q,Guan Y J,Li C,et al.[Differential proteomic analysis of human lung adenocarcinoma cell line A-549 and of normal cell line HBE].Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao(Shanghai),2002,34(l):50-56.
    [71]Li C,Xiao Z,Chen Z,et al.Proteome analysis of human lung squamous carcinoma.Proteomics,2006,6(2):547-558.
    [72]李萃,陈主初,肖志强,et al.人肺鳞癌组织及癌旁组织蛋白质双向电泳图谱的差异分析.癌症,2004,23(1):28-35.
    [73]李萃,段朝军,肖志强,et al.人肺鳞癌及肺炎性假瘤组织的蛋白质差异表达谱的初步建立。中华现代内科学杂志,2006,3(8):841-845.
    [74]李萃,肖志强,章晓鹏,et al.人肺鳞癌组织的血清蛋白质组学的比较分析.中国生物化学与分子生物学报,2005,21(3):357-368.
    [75]李萃,肖志强,段朝军,et al.人肺腺癌组织的血清蛋白质组学研究.中国医师杂志,2006,8(8):1009-1012.
    [76]Li C,Chen Z,Xiao Z,et al.Comparative proteomics analysis of human lung squamous carcinoma.Biochem Biophys Res Commun,2003,309(l):253-260.
    [77]Yao H,Zhang Z,Xiao Z,et al.Identification of metastasis associated proteins in human lung squamous carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection.Lung Cancer,2008.[Epud ahead of print]
    [78]Gariboldi M,Spinola M,Milani S,et al.Gene expression profile of normal lungs predicts genetic predisposition to lung cancer in mice.Carcinogenesis,2003,24(11):1819-1826.
    [79]Ramaswamy S,Ross K N,Lander E S,et al.A molecular signature of metastasis in primary solid tumors.Nat Genet,2003,33(1):49-54.
    [80]Hong T M,Yang P C,Peck K,et al.Profiling the downstream genes of tumor suppressor PTEN in lung cancer cells by complementary DNA microarray.Am J Respir Cell Mol Biol,2000,23(3):355-363.
    [81]Russo G,Claudio P P,Fu Y,et al.pRB2/p130 target genes in non-small lung cancer cells identified by microarray analysis.Oncogene,2003,22(44):6959-6969.
    [82]Emmert-Buck M R,Bonner R F,Smith P D,et al.Laser capture microdissection.Science,1996,274(5289):998-1001.
    [83]Blagoev B,Ong S E,Kratchmarova I,et al.Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics.Nat Biotechnol,2004,22(9):1139-1145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700