用户名: 密码: 验证码:
电化学催化氧化技术处理焦化废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今,焦化厂在发展中国家蓬勃发展,并带来了大量的焦化废水。在炼焦过程中产生的焦化废水含有苯酚类物质、氰化物、硫氰化物和多环芳烃等多种高浓度有害物质,不仅会对生态环境造成严重污染,并且难以用常规方法处理。高级氧化技术(Advanced OxidationProcesses,AOPs)是众多水处理方法中的一项技术热点,AOPs反应机理目前普遍认为是自由基氧化机理,即利用复合氧化剂、光照射、电或催化剂等作用,诱发产生多种形式的强氧化活性物质(·OH、HO_2·、过氧离子等),尤其是·OH,几乎可以无选择性地与废水中的任何有机污染物反应,彻底氧化污染物为CO_2、H_2O或矿物盐。本文研究采用电化学高级氧化技术处理焦化废水。
     论文的研究内容之一是在臭氧条件下,以高锰酸钾为催化剂以高岭土为载体进行的高级氧化法处理焦化废水。试验探讨了溶液的初始pH值、电流密度、催化剂用量等在多相电化学体系中对焦化废水降解效果的影响。实验表明,在常温常压及臭氧条件下,当体系初始pH为3,电流密度为30 mA·cm~(-2)时,处理焦化废水的COD降解率80 min内可达到92.5%。催化剂寿命研究表明,在催化剂使用三次后,依然保持它的催化活性。本部分还进一步讨论了经该法处理后水体的可持续性利用问题,实验以处理后水体定时定量灌溉于观赏性植物三叶草栽培土壤,通过研究三叶草叶绿素的日平均变化量,证明该法处理后的水体可完全用于植物灌溉。
     论文的研究内容之二探索了以高岭土为载体,采用焙烧法利用Fe和Mo制备改性高岭土催化剂,并成功地将其引入到环境科学领域进行水处理方面的研究。使用全自动X射线衍射仪、扫描电镜、红外可见光分光光度计及综合热分析仪对催化剂的结构、形貌及性能进行评价。研究表明,经过改性的高岭土在微观形貌和结构特征上均发生了较大的变化。制备的高岭土催化剂以无定型态存在,随着Al-O结构的缩合析出,层间键断裂,原高岭石结构被破坏,其微观形貌呈粒径较小的多孔性颗粒。最佳参数设计试验表明,该催化剂下在初始pH为6和电流密度为30 mA·cm~(-2)时,处理焦化废水的COD降解率90 min内可达到90.3%。
     在第二部分的基础上,论文的研究内容之三探索了以Fe、Mo和V制备改性高岭土为催化剂进行的高级氧化法处理焦化废水,并通过仪器分析比较了改性前后催化剂的结构、形貌和组成特征,以此为评价催化剂优劣的标准。通过对各种影响电化学高级氧化有机废水处理效果的因素如电流密度、pH值、铁离子和氯离子的存在等进行研究,期望得到降解焦化废水的最佳参数。试验表明对于难以处理的焦化废水,Fe_2O_3-MoO_3-V_2O_5负载高岭土是一种有效的催化剂,在常温常压及最佳试验条件下,可以使COD去除率在90 min内达到95.5%。本部分还进一步比较了改性高岭土催化剂存在的多相电化学体系和传统二维电化学体系,以及只有催化剂存在的多相体系的处理焦化废水的能力。研究表明,在相同对比实验条件下,高岭土改性电催化氧化焦化废水的处理效果优于单独二维电化学处理及单独使用催化剂的处理效果,处理焦化废水的COD降解率分别高出其他两个体系26.1%和62.2%。
Nowadays, coke plants and coal gasification plants are available in developing countries, so a large volume of wastewater generated from the coking industry contains phenolic compounds, cyanide, thiocyanide and polynuclear aromatic hydrocarbons (PAHs). The presence of these pollutants in water sources produces long-term environmental and ecological impacts, and which makes it difficult to treat the wastewater by conventional technologies. Advanced Oxidation Processes (AOPs) is the technical key points in treatment of wastewater. It is widely accepted that the mechanism of AOPs is the free radical oxidation mechanism. AOPs employ composite oxidant, irradiation, electricity or catalyst to produce kinds of strong oxydants (·OH, HO_2·, O_2~- ). Expecially OH, it can degrade any organic pollutements to CO_2, H_2O or mineral salt. Coking wastewater was treated by AOPs in this article.
     The first part of this thesis is treatment of coking wastewater with AOPs which employ potassium permanganate as catalyst and use kaolin as carrier, in the presence of ozone. The article discussed the effect of parameters like initial pH, current density and catalyst dose on chemical oxygen demand (COD) removal rate with time. The study results showed that at 298 K and 1 atm in the presence of ozone, COD removal efficiency with coking wastewater of 92.5% was obtained in 80 min at pH 3 and 30 mAcm~(-2) current density. Catalyst lifetime was also tested, and the results showed that catalyst activity still remained even if the catalyst was used three times. Further discussion about the sustainable use of the treated wastewater was made when using it to irrigate the ornament clover. The chlorophyll concentration of clover was selected as parameter to evaluate the using feasibility of the treated water. The steady amount of chlorophyll indicated that the treated wastewater could be applied to irrigation completely.
     The second part of this thesis is to use kaolin as carrier, synthesize Fe and Mo modified catalyst which was used in wastewater treatment. Catalyst was charactered by X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FT-IR), Scanning electron microscope (SEM) and Thermo-gravimetric Analyzer (TGA). Study indicated there's a total difference in its micro-sized morphology and structure before and after the modification. The results showed that the previous structure of kaolin had almost disappeared, the stable Al-O ocatahedron structure in neat kaolin had broken, and the losses in crystallinity and the structure deformation. It existed large amount of micro-sized and loose particles. The study results showed that employing modified kaoln catalyst, COD removal efficiency with coking wastewater of 90.3% was obtained in 90 min at pH 6 and 30 mAcm~(-2) current density.
     The third part of this thesis is treatment of coking wastewater with AOPs which employ Fe, Mo and V modified kaolin as catalyst, based on the second part study. Micro-sized morphology and structure of the catalyst were investigated before and after the modification. The effect of current density, initial pH, the presence of Fe~(3+) and Cl~- on COD removal rate with time were tested to find the optimal parameter combination. Experimental results showed that Fe, Mo and V modified kaolin was effectual catalyst in treatment of coking wastewater. In the presence of it at 298 K and 1 atm, COD removal efficiency with coking wastewater of 95.5% was obtained in 90 min at optimal parameter combination. The treatment results were compared using three different systems (multi-phase electrochemical system, traditional two-electrode electrochemical system and only catalyst existed system) to eliminate the pollutants with coking wastewater in this part. The study indicated that the COD degradation rate with coking wastewater under multi-phase electrochemical system was higher than that of two others by 26.1% and 62.2%.
引文
[1]张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境,2009,18(2):116-120.
    [2]汪恕诚.怎样解决中国4大水问题[J].水利经济,2005,23(2):1-6.
    [3]蒋耀新.水环境现状及水污染防治[J].甘肃环境研究与监测,2006,16(4):454-456.
    [4]方群.中国水资源安全研究[J].经济研究参考,2004,(59):17-20.
    [5]成自勇,张芮,魏巍,等.中国水资源存在的问题及对策[J].水利经济,2007,25(1):66-69.
    [6]张荣,陈建,陶奇.水处理技术研究进展[J].化工纵横,2003,17(1):17-21.
    [7]刘善培,王启山,樊雪红,等.华北地区微污染水的气浮和沉淀工艺处理[J].吉林大学学报(工学版),2008,38(1):245-248.
    [8]吕后鲁,刘德启.工业废水处理技术综述[J].石油化工环境保护[J].2006,29(4):15-19.
    [9]金文杰,左宇,于群.混凝吸附法深度处理焦化废水[J].环境工程,2009,27(1):3-4.
    [10]陈火林,张家泉,卢俊彩,等.树脂吸附法处理二氯吡啶酸生产废水[J].工业水处理,2008,28(2):26-29.
    [11]张小璇,任源,韦朝海,等.焦化废水生物处理尾水中残余有机物的活性炭吸附及其机理[J].环境科学,2007,27(7):1113-1120.
    [12]胡记杰,肖俊霞,任源,等.焦化废水原水中有机污染物的活性炭吸附过程解析[J].环境科学,2008,29(6):1567-1571.
    [13]C.Y.Tang,Q.S.Fu,C.S.Criddle,et al.Effect of flux(transmembrane Pressure)and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing Wastewater[J].Environ.Sci.Technol.2007,(41):2008-2014.
    [14]A.C.Archer,A.M.Mendes,R.A.Boaventura.Separation of an anionic surfactant by nanofiltration[J].Environ.Sci.Technol.1999,33(16):2758-2764.
    [15]陈菊芬,吴遵义,楼亚男,等.膜分离技术在小型电镀园区水回用中的应用[J].水处理技术,2008,34(6):87-91.
    [16]徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学工业出版社,2003.
    [17]任立斌.一种新型水处理方法-SBR法[J].北京轻工业学院院报,1998,16(2):11-15.
    [18]邹平,高廷耀.SBR法处理制药废水的试验研究[J].给水排水,2000,26(5):43-45.
    [19]S.Yi,W.Q.Zhuang,B.Wu,et al.Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor[J].Environ.Sci.Technol.2006,(40):2396-2401.
    [20]杨平,王彬.生物法处理焦化废水评述[J].化工环保,2001,21(3):144-149.
    [21]牛天新,张永明,朱奇亮.利用生物膜去除城市河道水中氨氮的影响因素[J].上海师范大学学报(自然科学版),2007,36(1):102-106.
    [22]S.Mace,J.Dosta A.Gali,et al.Optimization of biological nitrogen removal via nitrite in a SBR treating supernatant from the anaerobic digestion of municipal solid wastes[J].Ind.Eng.Chem.Res.2006,(45):2787-2792.
    [23]佘宗莲,田由芸.厌氧-好氧序列间歇式反应器处理生物制药废水的研究[J].环境科学研究,1998,11(1):49-52.
    [24]谷成,刘维立.高浓度有机废水处理技术的发展[J].城市环境与城市生态,1999,12(3):54-56.
    [25]李宏昌,瞿春艳,于佳欢,等.工业废水处理技术及发展趋势[J].煤炭技术,2008,27(6):138-139.
    [26]韩洪军,杜冰.厌氧污泥床过滤器处理涤纶废水的生产性试验[J].环境工程,2000,18(2):19-21.
    [27]许涛,宋国勇.难降解有机废水的高级氧化技术[J].辽宁城乡环境科技,2005,25(3):44-46.
    [28]M.J.Dietrich,T.L.Randall,P.J.Canney.Wet Air Oxidation of Hazardous Organies in Wastewater[J].Environment Progress.1985,4(3):171-177.
    [29]杨爽,江洁,张雁秋.湿式氧化技术的应用研究进展[J].环境科学与管理,2005, 30(4):88-98.
    [30]韩玉英.催化湿式氧化处理高浓度毗虫琳农药废水的研究[D].西安:西北大学,2005.
    [31]孙颖,李新勇.非均相催化湿式氧化技术处理4-氯酚[J].环境科学研究,2008,21(1):192-195.
    [32]谭亚军,蒋展鹏.废水处理催化湿式氧化法及其催化剂的研究进展[J].环境工程,1999,17(4):14-18.
    [33]杜鸿章,尹承龙.难降解高浓库有机废水催化湿式氧化净化技术Ⅰ.高活性、高稳定性的湿式氧化催化剂的研制[J].水处理技术,1997,23(2):83-87.
    [34]杜鸿章,尹承龙.焦化污水催化湿式氧化净化技术[J].工业水处理,1996,16(6):11-13.
    [35]A.Quintanilla,J.A.Casas,J.J.Rodriguez.Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts[J].Appl.Catal.B.2007,(76):135-145.
    [36]金腊华,杜美珍.臭氧氧化法处理汽车制造厂综合废水的试验研究[J].环境与开发,2000,15(2):18-20.
    [37]张水平,董呈杰,袁非亮.臭氧在水处理中的应用[J].工业安全与环保,2005,31(8):19-20.
    [38]王宝贞,王琳.水污染治理新技术-新工艺、新概念、新理论[M].北京:科学出版社,2004:256-332.
    [39]A.Fujishima,K.Honda.Electrochemical Photolysis of Water at a Semiconductor Electrode[J].Nature.1972,238(5385):37-38.
    [40]J.H.Carey,J.Lawrence,H.M.Tosine.Photodechlorination of PCB's in the Presence of Titaniumdioxide in Aqueous Suspension[J].Bull Environ.Contam.Toxical.1976,16(6):697-701.
    [41]尹红霞,康天放,张雁,等.电化学催化氧化法降解水中甲基橙的研究[J].环境科学与技术,2008,31(2):88-91.
    [42]吴高明,魏松波,雷兴红,等.焦化废水电化学处理技术研究进展[J].工业水处理,2007,27(9):7-10.
    [43]K.Rajeshwar,J.G.Ibanez,G.M.Swain.Electrochemistry and the environment[J].J.Appl.Electrochem.1994,24(7):1077-1091.
    [44]R.B.Mellor,J.Ronnenberg,W.H.Campbell,et al.Reduction of nitrate and nitrite in water by immobilized enzymes[J].Nature.1992,355(3):717-719.
    [45]L.Szpyrkowicz,M.Radaelli,S.Daniele,et al.Application of electro-catalytic mediated oxidation for the treatment of a spent textile bath in a membrane reactor[J].Ind.Eng.Chem.Res.2007,(46):6732-6736.
    [46]陈武,梅平,吴伍涛.三维电极电化学方法处理含锌废水的试验研究[J].长江大学学报(自科版),2006,3(3):35-37.
    [47]N.S.Bhadrinarayana,C.A.Basha,N.Anantharaman.Electrochemical oxidation of cyanide and simultaneous cathodic removal of cadmium present in the plating rinse water[J].Ind.Eng.Chem.Res.2007,(46):6417-6424.
    [48]C.Comninellis.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment[J].Electrochimi.Acta.1994,39(11-12):1857-1862.
    [49]谢茂松,王学林,徐桂芳,等.用电-多相催化反应处理二硝基苯酚工业废水的方法[P].中国专利,961155.45.0.
    [50]杨卫身,周集体,杨凤林.微电解法降解染料的研究[J].上海环境科学,1996,15(7):30-33.
    [51]宋卫峰,吴斌,马前,等.电解法降解有机污染物机理及动力学的研究[J].化工环保,2001,21(3):131-136.
    [52]C.Comninellis,A.Nerini.Anodic oxidation of phenol in the presenceof NaCl of wastewater treatment[J].J.Appl.Electrochem.1995,25(1):23-28.
    [53]孙晓君,冯玉杰.废水中难降解有机物的高级氧化技术[J].化工环保,2001,21(5):264-269.
    [54]A.I.Tsyganok,K.Otsuka.Electrocatalytic Reductive Dehalogenation of 2,4-D in Aqueous Solution on Carbon Materials Containing Supported Palladium[J].Electrochemical Acta.1998,43(18):2589-2596.
    [55]A.I.Tsyganok,I.Yamanaka,K.Otsuka.Dechlorination of Chloroaromatics by Electrocatalytic Reduction over Palladium-Loaded Carbon Felt at Room Temperature[J].Chemosphere.1999,39(11):1819-1831.
    [56]A.I.Tsyganok,I.Yamanaka,K.Otsuka.Electrocatalytic Dehalogenation of Chloroaromatics on Palladium-Loaded Carbon Felt Cathode in Aqueous Medium[J]. Chem.Lett.1998,(4):303-304.
    [57]M.O.Azzam,M.A.Tarazi,Y.Tahboub.Anodic Destruction of 4-Chlorophenol Solution[J].J.Hazard.Mater.2000,(75):99-113.
    [58]P.Janderka,P.Broz.Electrochemical Degradation of Polychlorinated Biphenyls[J].Collect.Czech.Chem.Commun.1995,60:917-927.
    [59]王程远.电化学氧化法降解水中含氮污染物的试验研究[M].北京:北京化工大学,2008.
    [60]高远,吴昊,陈少纯.电解氧化处理高浓度有机废水的研究[J].工业水处理,2008,28(5):69-71.
    [61]尹红霞,康天放,张雁,等.电化学催化氧化法降解水中甲基橙的研究[J].环境科学与技术,2008,31(2):88-91.
    [62]许海梁,杨卫身,周集体.偶氮染料废水的电解处理[J].化工环保,1999,19(1):32-36.
    [63]李耀刚,许文林,孙彦平.不同组份PbO_2-MnO_2催化层钛基阳极的研究[J].无机材料学报,1997,12(1):125-128.
    [64]C.Comninellis,G.P.Vercesi.Problems in DSA(?) coating deposition by thermal decomposition[J].J.Appl.Electrochem.1991,(21):136-142.
    [65]S.Stucki,R.Kotz,B.Carcer.Electrochemical wastewater treatment using high overvoltage anodes Part Ⅱ:Anode performance and applications[J].J.Appl.Electrochem.1991,21(2):99-104.
    [66]杨雅雯,王守伟,赵燕,等.稀土Ce掺杂SnSb复合涂层电极的实验研究[J].环境工程学报,2008,2(3):370-373.
    [67]赵国华.氧化物修饰电极电催化氧化降解有机废水[D].上海:同济大学环境科学与工程,1999.
    [68]王建秋,夏明芳,徐炎华.三维电极法处理氯苯废水[J].化工环保,2007,27(5):399-403.
    [69]陶龙骧,谢茂松.电催化和粒子群电极用于处理有机工业污水[J].工业水处理,2000,20(9):1-3.
    [70]E.Couture,J.F.Rusling,S Zhang.Mediated Electrolytic Dechlorination of Pollutants in Water Using Surfactants[J].Institution of Chemical Engineers Symposium Series.1992,(127):177-187.
    [71]P.Gallone.Achievements and tasks of electrochemical engineering[J].Electrochemical Acta.1977,22(9):913-920.
    [72]李天成,朱慎林.电催化氧化技术处理苯酚废水研究[J].电化学,2005,11(1):101-104.
    [73]申哲民,王文华.不同形式电极与染料溶液的反应及能耗[J].环境污染治理技术与设备,2000,1(2):21-25.
    [74]熊林,李明玉,尹华,等.三维电极流化床对印染废水降解脱色处理[J].给水排水,2005,31(1):59-62.
    [75]陈武,李凡修,梅平.废水处理的电化学方法研究进展[J].湖北化工,2001,18(1):10-12.
    [76]李凡修,陆晓华,梅平,等.高级氧化技术用于油田废水处理的研究进展[J].油田化学,2006,23(2):188-192.
    [77]M.Brewster,F.Fuss,J.Tebbens,et al.Spectrophotometric analysis of electrochemically treated simulated disperse dye bath effluent[M].AATCC,Book of papes.1992:17-191.
    [78]龙淼.高压脉冲放电处理焦化废水的研究[D].武汉:华中科技大学,2006.
    [79]谢光炎,梁开文.废水净化的电化学方法进展[J].给水排水,1998,24(1):64-68.
    [80]J.R.Backhurst,J.M.Coulson,F.Goodridge,et al.A preliminary investigation of fluidized bed electrodes[J].J.Electrochem.Soc.1969,(116):1600-1607.
    [81]D.Zhou,W.M.Cai,Q.H.Wang.Study on the use of bipolar-particles-electrodes in decolorization of dyeing effluents and its Principle[J].Water.Sei.Tech.1987,19(3-4):391-400.
    [82]杨松.复极性三维电极反应器的改进研究[J].大连:大连理工大学,2004.
    [83]吴辉煌.水中有机污染物电化学清除的研究进展[J].环境污染与防治,2000,22(4):39-42.
    [84]J.Wang,L.Angnes,H.Tobias,et al.Carbon Aerogel Composite Electrodes[J].Anal.Chem.1993,65(17):2300-2303.
    [85]D.Kohler,J.Zabasajja,A.Krisnagopalan,et al.Metal-carbon composite materials from fiber precursors Ⅰ.Preparation of stainless steel-carbon composite electrodes[J].J.Electrochem.Soc.1990,137(1 ):136-141.
    [86]J.Wang,A.Brennsteiner,L.Angnes,et al.Composite electrodes based on carbonized poly(acrylonitrile) foams[J].Anal.Chem.1990,62(10):1102-1104.
    [87]N.Sleszynski,J.Osteryoung,M.Carter.Arrays of very small voltammetric electrodes based on reticulated vitreous carbon[J].Anal.Chem.1984,56(2):130-135.
    [88]熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998,18(1):5-8.
    [89]李保山,牛玉舒,翟玉春,等.发泡金属电极的宏观反应速率及电势分布[J].化工学报,2001,52(7):593-600.
    [90]董献堆,陈平安,陆君涛,等.电解用三维电极体系的研究与发展[J].化学通报,1997,(5):12-19.
    [91]朱宏丽,王书惠.三维电极在水处理中的应用[J].环境科学,1985,6(6):36-40.
    [92]F.Leroux,F.Coeuret.Flow-by electrodes of ordered sheets of expand metal[J].Electrochemical Acta.1985,30(2):167-172.
    [93]A.Stock,M.A.Enriquez-Granados,M.Roger,et al.Behaviour of porous electrodes in a flow-by regime-1,theoretical study[J].Electrochemical Acta.1982,27(2):293-301.
    [94]APHA.Standard methods for the examination of water and wastewater[M].20thed American Public Health Association:Washington D C.1998.
    [95]G.Mackinney.Absorption of light by chlorophyll solutions[J].J.Biol.Chem.1941,(140):315-22.
    [96]S.S.Vaghela,A.D.Jethva,B B Mehta,et al.Laboratory studies of electrochemical treatment of industrial azo dye effluent[J].Environ.Sci.Technol.2005,39(8):2848-2855.
    [97]张智强,袁润章.高岭石脱(OH)过程及其结构变化的研究[J].硅酸盐通报,1993,(6):37-42.
    [98]谷麟.Co,Cu改性高岭土催化剂的制备及在电化学催化氧化有机废水中的应用研究[D].西安:陕西师范大学,2007.
    [99]马惠言,简丽,张前程.TiO_2/高岭石负载型催化剂的制备与表征[J].化工进展,2007,26(10):1493-1450.
    [100]Q.F.Zhuo,H.Z.Ma,B.Wang,et al.Catalytic decolorization of azo-stuff with electro-coagulation method assisted by cobalt phosphomolybdate modified kaolin[J]. J.Hazard.Mater.2007,(142):81-87.
    [101]H.Z.Ma,B.Wang,Y.Wang.Application of molybdenum and phosphate modified kaolin in electrochemical treatment of paper mill wastewater[J].J.Hazard.Mater.2007,(145):417-423.
    [102]杨海波,胡明,梁继然,等.氧化钒/多孔硅/硅结构的微观形貌、纳米力学及温敏特性[J].物理化学学报,2008,24(6):1017-1022.
    [103]C.Walling.Fenton's reagent revisited[J].Acc.Chem.Res.1975,(8):125-131.
    [104]O.T.Can,M.Kobya,E.Demirbas,et al.Treatment of the textile wastewater by combined electrocoagulation[J].Chemosphere.2006,(62):181-187.
    [105]Y.J.Liu,X.Z.Jiang.Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution[J].Environ.Sci.Technol.2005,(39):8512-8517.
    [106]D.Rajkumar,B.J.Song,J.G.Kim.Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds[J].Dye and Pigments.2007,72(1):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700