低品位菱镁矿和硼泥绿色化高附加值利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有丰富的镁资源,随着国民经济的快速发展,镁资源特别是矿产镁资源的消耗越来越多,优质资源急剧减少,因此对于低品位菱镁矿及其他含镁废弃物的利用研究日益迫切。本文设计了综合利用低品位菱镁矿和硼泥的“硫酸铵焙烧法”绿色新工艺,打通了工艺流程,优化了工艺参数,实现了化学品—硫酸铵的循环利用,研究了反应过程的动力学。制得了硫酸镁、氢氧化镁和氧化镁,并利用自制的MgO和CaO制备了镁钙砂,用纳米Mg(OH)2制备了防火涂料。取得结果如下:
     (1)采用硫酸铵焙烧法由低品位菱镁矿制备镁的化合物,通过单因素实验和正交实验优化了工艺条件。结果表明:随着焙烧温度的提高,镁的转化率先提高后降低;随着焙烧时间的延长和n((NH4)2SO4):n(MgO)的增大,镁的转化率提高。优化工艺条件为焙烧温度475℃,焙烧时间4 h,n((NH4)2SO4):n(MgO)1.1:1,此时镁的转化率为91.4%。检测表明,产物硫酸镁中Mg含量为9.72%,达到饲料级标准。
     (2)采用TG-DTA研究了轻烧镁粉与硫酸铵的反应过程,结果表明,该过程有三个放热峰,分别对应三个反应:
     (3)分别采用Kissinger法和Doyle-Ozawa法计算轻烧镁粉与硫酸铵反应各阶段吸热峰的表观活化能,结果如下
     三个反应峰的反应速率方程分别为第一个峰:第二个峰:第三个峰:
     (4)采用硫酸钱焙烧法由硼泥制取镁的化合物,通过单因素实验和正交实验优化了工艺条件。实验结果表明,随着焙烧温度的提高,镁的转化率先提高后降低;随着焙烧时间的延长和n((NH4)2SO4):n(MgO)的增大,镁的转化率提高;优化工艺条件为焙烧温度500℃,焙烧时间4 h,n((NH4)2SO4):n(MgO)1.2:1,此时镁的转化率为84.0%。
     (5)采用TG-DTA研究了硅酸镁与硫酸铵的反应过程,结果表明,该过程有三个放热峰,分别对应四个反应:
     (6)分别采用Kissinger法和Doyle-Ozawa法计算硅酸镁与硫酸铵反应阶段第一和第二吸热峰的表观活化能,结果如下
     两个反应峰的反应速率方程分别为第一个峰:第二个峰:
     (7)采用氨法由自制硫酸镁溶液制备微米氢氧化镁,研究发现,随着Mg2+初始浓度、反应时间、反应液pH值和陈化时间的增大,镁的沉淀率提高;随着反应温度和陈化温度的提高,镁的沉淀率先提高后降低。通过实验得到优化工艺条件为Mg2+初始浓度2.0 mo1·L-1,反应温度60℃,pH值11,反应时间60 min,此时Mg的沉淀率为90.1%。XRD分析表明产物为氢氧化镁,结晶良好。SEM检测表明,粉体颗粒呈粒径均匀的花状球形,微粒分散度良好,平均粒径约在2.5μm。TG-DTA分析表明Mg(OH)2的分解反应主要发生在310~390℃范围。
     (8)氨法制备氢氧化镁的晶体生长动力学研究表明,Mg(OH)2的晶体质量(即镁的沉淀率)和晶体平均粒径随着反应时间的延长呈指数增长,随着沉淀反应的进行,晶体的生长速率逐渐降低。m-t和D-t的关系式如下:
     (9)利用自制的高纯MgO微粉和CaO作原料,采用一步煅烧工艺制备高纯镁钙熟料,体积密度达到3.31 g·cm-3,显气孔率为1.08%。由于自制镁钙砂杂质含量少,其烧结性能和抗水化性能优于市售镁钙砂。添加TiO2微粉可有效促进镁钙砂的烧结,最佳添加量为1%,此时抗水化性能明显改善,超过1%后变化不明显。
     (10)采用氨水和氢氧化钠组成的复合碱液作为沉淀剂制备高纯纳米氢氧化镁粉体,研究发现随着Mg2+初始浓度的增加和反应温度的提高,粉体平均粒径先降低后增加;随着反应时间和陈化时间的延长,粉体平均粒径增加;随着搅拌强度的增加,平均粒径减小。当反应条件为Mg2+初始浓度2 mol·L1,反应温度50℃,反应时间60 min,搅拌强度900 r-min-1,陈化时间90 min时,所得氢氧化镁粉体为六方片状晶体,粒径在50~140 nm之间,平均粒径为91.4 nn。
     (11)以自制的Mg(OH)2纳米粉体为阻燃剂制备防火涂料,根据涂层的表观性能、干燥时问和耐燃性能进行检测,确定涂料的最优配方,该涂料达到国家一级技术标准;结合TG-DTA分析,表明自制纳米氢氧化镁有良好的阻燃作用。
In our country, there are abundant magnesium resources. With the rapid development of national economy, the consumption of magnesium resources, especial mineral magnesium resources, is great more and more, the reserve of high-quality resources reduses rapidly, so it becomes increasingly urgent in the study for utilization of low-grade magnesite and other waster materials of MgO. In this dissertation, a green new technology, ammonium sulfate calcination method, was designed to realize the comprehensive utilization of low-grade magnisite and boron mud. The process flows were gotten through, the processing parameters were optimized, the chemical, (NH4)2SO4, realized recycling, the reaction kinetics was studied, the products of MgSO4·7H2O, Mg(OH)2 and MgO were prepared. Taking self-made MgO and CaO as raw materials, MgO-CaO clinker was prepared; taking nano-Mg(OH)2 as raw materials, fireproof paint was prepared. The following conclusions were obtained.
     (1) Compound of magnesium was prepared through ammonium sulfate calcination method from low-grade magnesite. The technological conditions were optimized through single factor experiments and orthogonal experiments. The results indicate that the conversion rate of Mg increases with the increasing of calcination temperature first then decreases, increases with the increasing of calcination time and mol ratio of (NH4)2SO4 and MgO. At the optimum technological conditions of alcination temperature 475℃, calcinations time 4 h, n((NH4)2SO4):n(MgO) 1.1:1, the conversion rate of Mg is 91.4%. The content of Mg in final product of MgSO4·7H2O is 9.72%, which meets feed-grade standard.
     (2) TG-DTA analysis was used to study the reaction mechanism of light-burned magnesia and ammonium sulfate. The results indicate there are three exothermic peaks, which are corresponding to three reactions
     (3) The apparent activation energies of three reactions of light-burned magnesia and ammonium sulfate were calculated through Kissinger method and Doyle-Ozawa method. The results are shown in following table.
     The reaction rate equations are First peak: Second peak: Third peak:
     (4) Compound of magnesium was prepared through ammonium sulfate calcination method from boron mud. The experiment results indicate that the conversion rate of Mg increases with the increasing of calcination temperature first then decreases, increases with the increasing of calcination time and mol ratio of (NH4)2SO4 and MgO. At the optimum technological conditions of alcination temperature 475℃, calcinations time 4 h, n((NH4)2SO4):n(MgO) 1.1:1, the conversion rate of Mg is 84.0%.
     (5) TG-DTA analysis was used to study the reaction mechanism of MgSiO3 and ammonium sulfate. The results indicate there are three exothermic peaks, which are corresponding to four reactions
     (6) The apparent activation energies of first and second reactions of MgSiO3 and ammonium sulfate were calculated through Kissinger method and Doyle-Ozawa method. The results are shown in following table.
     (7) Micro-Mg(OH)2 was prepared through ammonia precipitation method from self-made MgSO4 solution. The studies show that the precipitation rate of Mg increases with the increasing of initial concentration of Mg2+, reaction time, pH value and ageing time, increases first then decreases with the increasing of reaction temperature and ageing temperature. The optimum technological conditions obtained through experiments are initial concentration of Mg2+ 2.0 mol·L-1, reaction temperature 60℃, pH value 11, reaction time 60 min, at that time, the precipitation rate of Mg is 90.1%. XRD analysis indicates the product is Mg(OH)2 and well crystallized. SEM test indicates the grains are flower-like spherical, the granularity is uniform, the average grain size is about 2.5μm, the dispersivity is good. TG-DTA analysis indicates the decomposition of Mg(OH)2 occures at 310~390℃.
     (8) The studies of Mg(OH)2 crystal growth kinetics of ammonia precipitation method indicate the mass of Mg(OH)2, i.e. the precipitation rate of Mg, and the average grain size of crystal increase exponentially with the reaction time. With going on of precipitation reaction, the growth rate of crystal decreases gradually. The relations of m-t and D-t are
     (9) Taking self-made high-purity micro-MgO and CaO powder as raw materials, high-prity MgO-CaO clinker was prepared through one step sintering technics. The bulk density can be up to 3.31 g·cm-3, the apparent porosity is 1.08%. Because the impurities in self-made MgO-CaO clinker are few, the sintering character and hydration resistance are better than those of saled clinker. Adding TiO2 micro-powder in material can promotes the sinter properties of clinker, the optimum added amount is 1%, at that time, the hydration resistance improves greatly, after that the improvement is not significant.
     (10) Nano-Mg(OH)2 powder was prepared taking the mixed alkaline solution of ammonia and NaOH as precipitator. The studies indicate that the average particle size of powder decreases first then increases with the increasing of initial concentration of Mg2+ and reaction temperature, increases with the prolonging of reaction time and ageing time, decreases with the increasing of stirring rate. When initial concentration of Mg2+ is 2 mol·L-1, reaction temperature is 50℃, reaction time is 60 min, stirring rate is 900 r·min-1, ageing time is 90 min, the morphology of Mg(OH)2 particles is hexagonal flake, the grain size is 50~140 nm, the average diameter is 91.4 nm.
     (11) Taking self-made nano-Mg(OH)2 powder as fire retardant, fireproof paint was prepared. According to the appearance properties, dehydration times and resistance properties of fireproof coat, the optimum formulation was confirmed. This paint meets national first class technical standard, which and TG-DTA results indicate that self-made nano-Mg(OH)2 powder has good flame retardancy.
引文
1.胡庆福,刘景泽,宋丽英,等.中国镁资源优势及镁质化工材料发展方向[J],无机盐工业,2006,38(9):13-16.
    2.胡庆福,胡晓湘,宋丽英.充分发挥中国含镁非金属矿优势,发展镁质化工材料[J],镁化合物科技(生产)信息,2005,2,13-16.
    3.陈肇友,李红霞.镁资源综合利用及镁质耐火材料的发展[J],耐火材料,2005,39:1-5.
    4.蒋启,江鸿.我国采矿业走向有序轨道任重道远[J],中国非金属矿业导刊,2005,2(46):59-61.
    5.王宇菲,陈艺锋.察尔汗盐湖镁资源利用途径分析[J],世界有色金属,2000,12:14-15.
    6.黄西平,张琦,郭淑元,等.我国镁资源利用现状及开发前景[J],海湖盐与化工2004,33(6):1-6.
    7.胡宝玉,徐延庆,张宏达.特种耐火材料[M],北京:冶金工业出版社,2004,14-15.
    8.饶东生.硅酸盐物理化学[M],北京:冶金工业出版社,1996,254-259.
    9.王恩慧.菱镁耐火材料[M],沈阳:辽宁科学技术出版社,1999,55-65.
    10.全跃,刘德禄.颗粒体积密度3.40 g·cm-1,高纯镁砂的生产研制[J],中国非金属矿工业导刊,2002,4,21-22.
    11.吴万伯.谈菱镁矿的综合开发与利用[J],矿产保护与利用,1994,11.
    12.孙宝歧,吴一善,梁志标,等.非金属矿深加工[M],北京:冶金工业出版社,1999,12:56-57.
    13.全跃.菱镁行业如何应对入世挑战[J],国土资源,2002,1,22-23.
    14.吴万伯.谈菱镁矿的综合开发与利用[J],矿产保护与利用,1994,(1):15-18.
    15.任建武.一种以菱镁矿为原料生产氢氧化镁和轻质氧化镁的方法[P],发明专利,CN1868952.
    16. D. Sheila, C. Sankaran, P. R. Khangaonkar. Studies on the extraction of magnesia from low grade magnesites by carbon dioxide pressure leaching of hydrated magnesia[J], Minerals Engineering,1991,4(1):79-88.
    17. Guocai Zhu, Huajun Zhang, Yuna Zhao. A novel recirculating reactor for the leaching of magnesia by CO2[J], Hydrometallurgy,2008,92(3-4):141-147.
    18. A. Kadir Mesci, Fatih Sevim. Dissolution of magnesia in aqueous carbon dioxide by ultrasound[J], International J. Mineral Processing,2006,79(2):83-88.
    19.胡庆福,宋丽英,胡晓湘.钙镁碳酸盐碳化工艺设备选择及工艺条件控制[J],IM&P化工矿物与加工,2004,10,19-20.
    20. Hulya Ozbek, Yuksel Abali, Sabri Colak, Ilhami Ceyhun, Zafer Karagolge. Dissolution kinetics of magnesite mineral in water saturated by chlorine gas[J], Hydrometallurgy, 1999,51(2):173-185.
    21. Pavel Raschman, Alena Fedorockova. Study of inhibiting effect of acid concentration on the dissolution rate of magnesium oxide during the leaching of dead-burned magnesite[J], Hydrometallurgy,2004,71(3-4):403-412.
    22. Gaoxiang DU, Baikun WANG, preparation of plate-shape nano-Mg(OH)2 powder from magnesite tailing[J], Earth Science Frontiers,2008,15(4):142-145.
    23. Oral Lacin, Bunyamin Donmez, Fatih Demir. Dissolution kinetics of natural magnesite in acetic acid solutions[J], International Journal of Mineral Processing,2005,75(1-2): 91-99.
    24.朱国才,梁国兴,池汝安.以菱镁矿制备镁盐系列产品[J],1998,1,17-18.
    25. A.Mercy Ranjitham, P.R Khangaonkar. Leaching behaviour of calcined magnesite with ammonium chloride solutions[J], Hydrometallurgy,1990,23(2-3):177-189.
    26. Pavel Raschman. Leaching of calcined magnesite using ammonium chloride at constant pH[J], Hydrometallurgy,2000,561(1):109-123.
    27.隋升,曹广益.氧化镁生产工艺的改进[J],上海交通大学学报,2001,35(4):595-598.
    28.明常鑫,翟学良,池利民.超细高活性氧化镁的制备、性质及发展趋势[J],无机盐工业,2004,6:7-9.
    29.李联会,王振道,胡庆福,等.菱镁矿复分解法制取药用碳酸镁[J],非金属矿,2001,24(4):25-27.
    30.印万忠,王星亮.辽宁大石桥某低品级菱镁矿浮选提纯试验研究[J],2008年中国镁盐行业年会暨节能减排新技术推介会专辑,2008,172-176.
    31.张一敏.低品级菱镁矿提纯研究[J],金属矿山,1990,10,39-42.
    32.程建国,余永富.海城三级菱镁矿浮选提纯的研究[J],矿业工程,1993,13(4):19-23.
    33.孙永明.菱镁矿煅烧氧化镁水化制备高纯超细氢氧化镁[D],南京:南京工业大学,2005,17-19.
    34.于传敏.低品位菱镁矿选矿脱硅技术研究[J],轻金属,2007,1,4-8.
    35.张兴业.提高我国菱镁矿资源利用率的途径[J],矿产保护与利用,2008,4,23-25.
    36. Du Gaoxiang, Wang Baikun. Preparation of plate-shape nano-Mg(OH)2 powder from magnesite tailing[J], Earth Science Frontiers,2008,15(4):142-145.
    37.张焕军,朱国才,胡熙恩.(NH4)2S04浸取轻烧氧化镁的反应动力学[J],清华大学学报(自然科学板)2003,43(10):1321-1323.
    38.欧滕蛟,卢旭晨,梁小峰,等.煅烧菱镁矿在氯化铵乙二醇溶液中的浸取动力学[J],过程工程学报,2007,7(5):928-933.
    39.徐微,蔡勇,陈白珍,等.用低品位菱镁矿制取高纯镁砂[J],中南大学学报(自然科学版),2006,37(4):698-702.
    40.李强译.采用水合氧化镁的二氧化碳压浸法从低品位菱镁矿中提取氧化镁的研究[J],国外金属矿选矿,1993,8,46-51.
    41.章柯宁,张一敏,王昌安,等.从低品位菱镁矿中提取高纯氧化镁的研究[J],武汉科技大学学报(自然科学版),2006,29(6):558-560.
    42.易小祥,杨大兵,李亚伟.碳化法处理巴盟菱镁矿[J],金属矿山,2008,7,61-63.
    43.杨大兵,易小祥,张毅,等.二次碳化法处理巴盟菱镁矿[J],矿业工程,2008,6(4):70-72.
    44.辽宁省人民政府镁资源保护办公室.辽宁省硼行业循环经济工作实施方案,沈阳,2006,06.
    45.吕品,刘景泽,于淑伟.硼泥的综合利用[J],辽宁化工,2004,33(6):342-344.
    46.范建萍.从硼泥中制取轻质氧化镁的工艺研究[J],山西化工,1999,28(2):18-20.
    47.李刚,任学峰,刘素兰,等.硼泥基烧结砖工艺实验研究[J],沈阳建筑大学学报, 2006,22(5):764-767.
    48. R. Boncukcuoglu, M. M. Kocakerim, H. Ersahan. Upgrading of the reactor waste obtained during borax production from tincal [J],Minerals Engineering,1999,12(10): 1275-1280.
    49. Ayhan Demirbas, Haydar Yuksek, Ismail Cakmak, etc. Recovery of boric acid from boronic wastes by leaching with water, carbon dioxide- or sulfur dioxide-saturated water and leaching kinetics [J], Resources, Conservation and Recycling,2000,28(1-2): 135-146.
    50. Taner Kavas. Use of boron waste as a fluxing agent in production of red mud brick [J], Building and Environment,2006,41(12):1779-1783.
    51. S. Kurama, A. Kara, H. Kurama. Investigation of borax waste behaviour in tile production [J], J. European Ceramic Society,2007,27(2-3):1715-1720.
    52.翟玉春,宁志强,王伟,等.两种综合利用硼泥、菱镁矿和滑石制备氧化镁、二氧化硅的方法,发明专利,申请号:2007100121716.
    53.王伟,翟玉春,顾惠敏.一种利用含镁物料生产系列镁质化工产品的方法,发明专利,申请号:2008100133296.
    54.宋彦梅,衣守志.氢氧化镁的生产及应用技术进展[J],海湖盐与化工,2006,35(2):15-20.
    55. Xu Hui, Deng Xin-rong. Preparation and properties of superfine Mg(OH)2 flame retardant[J], Transactions of Nonferrous Metals Society of China,2006,16:488-492.
    56. Hua Gui, Xiaohong Zhang, Weifu Dong, Qingguo Wang, Jianming Gao, Zhihai Song, Jinmei Lai, Yiqun Liu, Fan Huang, Jinliang Qiao. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites[J], Polymer Communication,2007,48:2537-2541.
    57. Tabak H, Scharp R, Burchle J, et al. Advances in biotreatmentof acidmine drainage and biorecovery ofmetals:1. Metal precipitation for recovery and recycle[J].Biodegradation, 2003,14(6):423-436.
    58.马颖颖,衣守志.氢氧化镁在水处理中应用研究新进展[J],盐业与化工,2007,36(2):39-41.
    59. Wu Qingzhong, Bishop, Paul L, Keener Tim C. Biological phosphate uptake and release: effect of pH and magnesium ions[J], Water Environment Research,2006,78(2): 196-201.
    60.赵建海,宋兴福,陆强,汪瑾,于建国,张大年.氢氧化镁在环境污染治理中的应用研究进展[J],环境污染治理技术与设备,2002,3(5):66-69.
    61.何昌洪,张密林,刘俊国.氢氧化镁在环保领域的应用[J],化学工程师,2003,6:49-50.
    62.周辉,刘忠,马滢,魏亚静.氢氧化镁及其在造纸工业中的应用[J],黑龙江造纸,2008,(4):31-34.
    63.李环,于景坤,匡世波.菱镁石轻烧水化法制备高密度烧结镁砂[J],耐火材料,2007,41(2):122-125,129.
    64.陈向锋,刘晓慧.氢氧化镁在烟气脱硫中的应用[J],海湖盐与化工,2006,35(3):34-36.
    65.欧育湘.国外阻燃剂发展动态及对发展我国阻燃剂工业之浅见[J],阻燃材料与技术,2003,2,1-5.
    66.孙卫青,邱宗玺,张军等.聚乙烯塑料无卤阻燃技术进展[J],郑州大学学报,2002,34(4):60-64.
    67. Hornsby P R, Watson C L. Plastics and Rubber Processing and Application [J],1989,11 (1):45-51.
    68.张泽江,冯良荣,邱发礼.纳米无机阻燃剂的研究进展[J],化工进展(Progress In Chemistry),2004,7:43-46.
    69.陈玉坤,徐传辉,贾德民,陈克复Mg(OH)2阻燃聚合物的研究进展[J],合成树脂及塑料,2007,24(2):64-68.
    70. Longzhen Qiu, Rongcai Xie, Peng Ding, Baojun Qu. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA[J], Composite Structures,2003,62:391-395.
    71.郑水林,杜高翔,李杨,高峰,高斌.用水镁石制备超细氢氧化镁的研究[J],矿冶,2004,13(2):43-46.
    72. I.F. Mironyuk, V.M. Gun'ko, M.O. Povazhnyak, V.I. Zarko, V.M. Chelyadin, R. Leboda, J. Skubiszewska-Zieba, W. Janusz. Magnesia formed on calcination of Mg(OH)2 prepared from natural bischofite[J], Applied Surface Science,2006,252(12): 4071-4082.
    73. Mouzhong.Fu, Baojun.Qu. Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends [J],Polymer Degradation and Stability,2004,85 (1):633-639.
    74. B.V.Lvov, A.V.Novichikhin, A.O.Dyakov. Mechanism of thermal decomposition of magnesium hydroxide [J], Thermochimica Acta,1998,315 (2):135-143.
    75.周卫平,买买提江.氢氧化镁阻燃剂的制备技术[J],无机盐工业,1997,(4):25-27.
    76.周仲怀,赵中华,王兴建,等.氢氧化镁研制的若干问题[J],海湖盐与化工,2002,31(5):31-35.
    77.刘兆平,杨永会,樊唯馏,等.特殊晶形貌的氢氧化镁阻燃剂的研制[J],化学世界,2002,(11):612-614.
    78.胡章文,杨保俊,单承湘.由蛇纹石酸浸滤液制备氢氧化镁工艺条件研究[J],合肥工业大学学报(自然科学版),2003,26(2):232-235.
    79.杨定明,石荣铭.苦土—硫酸铵循环法制备氢氧化镁[J],矿产综合利用,2001,2(1):9-11.
    80. Qian Hai-yan, Deng Min, Zhang Shao-ming, Xu Ling-ling. Synthesis of superfine Mg(OH)2 particles by magnesite[J], Materials Science and Engineering:A,2007, 445-446:600-603.
    81.胡庆福,宋丽英,刘宝树,刘景泽.轻烧粉水化法制取阻燃级氢氧化镁新工艺[J],无机盐工业,2006,38(70),30-32.
    82.孙永明.菱镁矿煅烧氧化镁水化制备高纯超细氢氧化镁[D],江苏,南京工业大学,2005,38-42.
    83.徐宝强.阻燃级超微氢氧化镁的制备研究[D],云南,昆明理工大学,2005,24-32.
    84. Henrist C., Mathieu J. P., Vogels C., Rulmont A., Cloots R.. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution[J], J. Crystal Growth,2003,249(1-2),321-330.
    85. Q.L. Wu, L. Xiang, Y. Jin. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2[J], Powder Technology,2006,165(2):100-104.
    86.刘友仁.以含镁卤水和硫化碱浓卤为原料制取硫化氢和氢氧化镁[P].中国专利:CN1145575.
    87.金永成,向兰,金涌.硫氢化物——水热法制备氢氧化镁的过程研究[J],海湖盐与化工,2003(2):1-4.
    88.李凤生.超细粉体技术[M],北京:国防工业出版社,2000,49-63.
    89. C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, R. Cloots. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution[J], Journal of Crystal Growth,2003,249(1-2):321-330.
    90. Q.L. Wu, L. Xiang, Y. Jin. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2[J], Powder Technology,2006,165(2):100-104.
    91. Du Gaoxiang, Wang Baikun. Preparation of plate-shape nano-Mg(OH)2 powder from magnesite tailing[J], Earth Science Frontiers,2008,15(4):142-145.
    92.吴会军,向兰,金永成,金涌.高分散氢氧化镁粉体的制备及其影响因素[J],无机材料学报,2004,19(5):1181-1185.
    93.王志强,刘建平.沉淀法合成高纯超细氢氧化镁的研究[J],无机盐工业,2001,33(4):3-4.
    94.郭如新.透过国外氢氧化镁阻燃剂的发展看中国[J],精细与专用化学品,1999(15):13-16.
    95.李克民.国内外氢氧化镁阻燃剂的发展状况[J],阻燃材料与技术,1998(2):11-15.
    96.高善民,王善华,孙树声,等.市场前景广阔的无机阻燃剂氢氧化镁[J],化工进展,2001(8),56-59.
    97.孟平蕊,李良波.聚合物添加剂分析进展[J],中国塑料,1998,13(8):16-20.
    98.杨鸿.氢氧化镁阻燃剂的开发与应用[J],无机盐工业,2001,33(3):23-25.
    99.胡庆福.镁化合物生产与应用[M],北京:化工工业出版社,2004,125-129.
    100.李存弼.VOD钢包用耐火材料[J],国外耐火材料,1999,1:29-34.
    101.松田伸一.耐火物基の础科学:构成成分の结晶化学と物性1[J],耐火物,1993,45(9):546-599.
    102.大里奇.耐火物基の础科学:构成成分の结晶化学と物性2[J],耐火物,1993,45(12):718-727.
    103.王诚训,栾文杰,李洪申.炉外精炼用耐火材料[M],北京:冶金工业出版社,1996:111-112.
    104.蒋增海.一步煅烧镁白云石烧成砖的工艺研究[J],耐火材料,1979,13(5):30-34.
    105.Akira Kaneyasu, Yo Arita, Aeira Yoshida, et al. Hydration Resistanceof MgO Aggregate with Added CaO[J], Taikabutsu Overseas,1999,19(1):30-34.
    106.Tian Fengren, Chen Shujiang, Wu Wenfang, et al. Influences ofAdditives on Synthesized MgO-CaO Materials, Proceedings of theInternational Symposium on Refractories[C], Haikou, China,1996:418-423.
    107.Maciel-Camacho A, Jackson R, et al. The Kinetics of Lime Hydration and its Control by Superficial Recarbonisation, The Institute of Materials(UK),1992:790-809.
    108.Asano K, Reynen piet, et al. Resistance to Hydration of Refractory Construction Materials in the system MgO-CaO, Ceram.Int,1982,34(10):589-593.
    109.陈开献,陈肇友.混合稀土氧化物与Fe2O3对白云石烧结性能和抗水化性能的影响[J],耐火材料,1992,26(4):187-189.
    110.肖国庆,杨兴华.Fe203、A1203加入物对镁钙砂抗水化性的影响[J],耐火材料,1998,32(7):77-79.
    111.赵惠忠.合成镁白云石中CaO和MgO晶粒生长动力学[J],耐火材料,1996,30(20):84-87.
    112.陈树江,程继健,田凤仁.铁钛复合添加剂对提高合成镁钙砂抗水化性的研究[J],华东理工大学学报,2000,26(2):165-167.
    113.欧阳军华,顾华志,汪厚植,等.表面处理镁钙砂对浇注料性能的影响[J],武汉科技大学学报,2003,26(1):14-16.
    114. Satoru Ueno, Jingku Yu, Keisuke Hiragushi, et al.Sinterability and Hydration Resistance of Magnesia and Calcia Coated With TiO2[J], Taikabutsu Overseas,2001, 21(2):116-124.
    115.Akira Kaneyasu, Shin-ichi Yamamoto. Magnesia-containing Clinker Improved on the Hydration Resistance[J], Taikabutsu,1995,47(12):599-600.
    116.Toshihisa Sasaki, Jun Egami. Development of CaO-Containing Basicity Casting. Proceedings of UNITECR'95[C], Kyoto, Japan,1995:293-300.
    117.梁永和,吴芸芸.抗水化镁钙质耐火浇注料的性能与显微结构[J],耐火材料,2002,36(3):132-135.
    118.王伟,顾惠敏,翟玉春,戴永年.低品位菱镁矿制备高纯Mg(OH)2的“绿色”新工艺[J],耐火材料,2009,43(1):42-44.
    1.印万忠,南黎,韩跃新,袁致涛,王泽红.纳米氢氧化镁的合成与结晶机理分析[J].金属矿山,2005,345(3):38-41.
    2.翟玉春,宁志强,王伟,刘岩,顾惠敏,李在元,谢宏伟,吴艳,牟文宁,管秀荣.两种综合利用硼泥、菱镁矿和滑石制备氧化镁、二氧化硅的方法[P],发明专利,CN101348268.
    3. Hiilya Ozbek, Yiiksel Abali, Sabri Colak, Ilhami Ceyhun, Zafer Karagolge. Dissolution kinetics of magnesite mineral in water saturated by chlorine gas[J], Hydrometallurgy, 1999,51(2):173-185.
    4. Pavel Raschman, Alena Fedorockova. Study of inhibiting effect of acid concentration on the dissolution rate of magnesium oxide during the leaching of dead-burned magnesite[J], Hydrometallurgy,2004,71(3-4):403-412.
    5. Gaoxiang DU, Baikun WANG. Preparation of plate-shape nano-Mg(OH)2 powder from magnesite tailing[J], Earth Science Frontiers,2008,15(4):142-145.
    6. Oral Lacin, Bunyamin Donmez, Fatih Demir. Dissolution kinetics of natural magnesite in acetic acid solutions[J], International Journal of Mineral Processing,2005,75(1-2): 91-99.
    7.孙永明.菱镁矿煅烧氧化镁水化制备高纯超细氢氧化镁[D],南京:南京工业大学,2005.
    8.姜玉芝,韩跃新,印万忠,白丽梅.利用菱镁矿制备氢氧化镁[J],东北大学学报,2006,27(6):694-697.
    9. Hai-yan Qian, Min Deng, Shao-ming Zhang, Ling-ling Xu. Synthesis of superfine Mg(OH)2 particles by magnesite[J], Materials Science and Engineering:A,2007, 445-446:600-603.
    10. V. S. S. Birchal, S. D. F. Rocha, V. S. T. Ciminelli. The effect of magnesite calcination conditions on magnesia hydration[J], Minerals Engineering,2000,13(14-15): 1629-1633.
    11.任建武.一种以菱镁矿为原料生产氢氧化镁和轻质氧化镁的方法[P],发明专利,CN1868952.
    12.易小祥,杨大兵,李亚伟.碳化法从巴盟菱镁矿中提取高纯氧化镁[J],矿产保护与利用,2008,(2):19-22.
    13. D. Sheila, C. Sankaran, P. R. Khangaonkar. Studies on the extraction of magnesia from low grade magnesites by carbon dioxide pressure leaching of hydrated magnesia[J], Minerals Engineering,1991,4(1):79-88.
    14. Guocai Zhu, Huajun Zhang, Yuna Zhao. A novel recirculating reactor for the leaching of magnesia by CO2[J], Hydrometallurgy,2008,92(3-4):141-147.
    15. A. Kadir Mesci, Fatih Sevim. Dissolution of magnesia in aqueous carbon dioxide by ultrasound[J], International J. Mineral Processing,2006,79(2):83-88.
    16.徐徽,蔡勇,陈白珍,苏元智.用低品位菱镁矿制取高纯镁砂,中南大学学报,2006,31(4):698-702.
    17.朱国才,孟广洲,原绍刚.由菱镁矿联合生产硫酸镁、碳酸镁及氢氧化镁产品的方法[P],发明专利,CN1401573.
    18. A.Mercy Ranjitham, P.R Khangaonkar. Leaching behaviour of calcined magnesite with ammonium chloride solutions[J], Hydrometallurgy,1990,23(2-3):177-189.
    19. Pavel Raschman. Leaching of calcined magnesite using ammonium chloride at constant pH[J], Hydrometallurgy,2000,561(1):109-123.
    20.王伟,顾惠敏,翟玉春,戴永年.低品位菱镁矿制备高纯Mg(OH)2的“绿色”新工艺[J],耐火材料,2009,43(1):42-44.
    21.王伟,翟玉春,顾惠敏.一种利用含镁物料生产系列镁质化工产品的方法[P],发明专利,2008100133296.
    22.白丽梅,韩跃新,印万忠,姜玉芝.菱镁矿制备优质活性镁技术研究[J],有色矿冶,2005,21(S):47-48.
    23.胡庆福主编.镁化合物生产与应用[M],北京:化学工业出版社,2004,360.
    1.王伟,顾惠敏,翟玉春,戴永年.低品位菱镁矿制备高纯Mg(OH)2的“绿色”新工艺[J],耐火材料,2009,43(1):42-44.
    2.王伟,翟玉春,顾惠敏.一种利用含镁物料生产系列镁质化工产品的方法[P],发明专利,申请号2008100133296.
    3.神户博太郎,刘振海.热分析[M],北京:化学工业出版社,1982,7-18.
    4.沈兴.差热、热重分析与非等温固相反应动力学[M],北京:冶金工业出版社,1995,22-56.
    5. Homer E Kissinger. Variation of peak temperature with heating rate in differential thermal analysis[J], J Research of the National Bureau of Standards,1956,57(4): 217-220.
    6. C D Doyle. Kinetic analysis of thermogravimetric data[J]. J Appl Polymer Sci,1961,5: 285-292.
    7. Homer E Kissinger. Reaction kinetics in differential thermal analysis[J], Anal Chem, 1957,29(11):1702-1706.
    8.陆昌伟,奚同庚.热分析质谱法[M],上海:上海科学技术文献出版社,2002:104-110.
    9.胡荣祖,史启祯.热分析动力学[M],北京:科学出版社,2001:47-52,109.
    10. M J Starink. A new method for the derivation of activation energies from experiments performed at constant heating rate[J]. Thermochim Acta,1996,288:97-104.
    11.蔡正千.热分析[M],北京:高等教育出版社,1993:68-104,113-117.
    12.于伯龄,姜胶东.实用热分析[M],北京:纺织工业出版社,1999:151-158.
    1. Ayhan Demirbas, Haydar Yuksek, Ismail Cakmak, Mehmet M. Kucuk, Mustafa Cengiz, Muzaffer Alkan. Recovery of boric acid from boronic wastes by leaching with water, carbon dioxide- or sulfur dioxide-saturated water and leaching kinetics [J], Resources, Conservation and Recycling,2000,28:135-146.
    2. Boncukcuoglu R., Kocakerim M.M., Ersahan H.. Upgrading of the reactor waste obtained during borax production from tincal[J], Minerals Engineering,1999,12: 1275-1280.
    3.范建萍.从硼泥中制取轻质氧化镁的工艺研究[J],陕西化工,1999,28(2):18-20.
    4. Kurama S., Kara A., Kurama H.. Investigation of borax waste behaviour in tile production[J], J. European Ceramic Society,2007,27:1715-1720.
    5.李刚,任学峰,刘素兰,穆永亮,冯宗玉.硼泥基烧结砖工艺实验研究[J],沈阳建筑大学学报,2006,22(5):764-767.
    6.吕品,刘景泽,于淑伟.硼泥的综合利用[J],辽宁化工,2004,33(6):342-344.
    7. Taner Kavas. Use of boron waste as a fluxing agent in production of red mud brick[J], Building and Environment,2006,41:1779-1783.
    8.翟玉春,宁志强,王伟,刘岩,顾惠敏,李在元,谢宏伟,吴艳,牟文宁,管秀荣.两种综合利用硼泥、菱镁矿和滑石制备氧化镁、二氧化硅的方法[P],发明专利,No.CN101348268.
    9.梁英教,车荫昌.无机物热力学数据手册[M],沈阳:东北大学出版社,1993,p536.
    10.[美]I.M.科尔索夫等.南京化工学院分析化学教研组译,《定量分析化学》[M],北京:高等教育出版社,1987.
    11.孙新华,欧秀芹,周启立.硼镁矿综合利用研究[J],无机盐工业,2005,37(2):44-46.
    12.胡庆福.镁化合物生产与应用[M],北京:化工工业出版社,2004,p14.
    1.宋彦梅,衣守志.氢氧化镁的生产及应用技术进展[J],海湖盐与化工,2006,35(2):15-20.
    2. Xu Hui, Deng Xin-rong. Preparation and properties of superfine Mg(OH)2 flame retardant[J], Transactions of Nonferrous Metals Society of China,2006,16:488-492.
    3. Hua Gui, Xiaohong Zhang, Weifu Dong, Qingguo Wang, Jianming Gao, Zhihai Song, Jinmei Lai, Yiqun Liu, Fan Huang, Jinliang Qiao. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites[J], Polymer Communication,2007,48:2537-2541.
    4. Tabak H, Scharp R, Burchle J, et al. Advances in biotreatmentof acidmine drainage and biorecovery ofmetals:1. Metal precipitation for recovery and recycle[J]。 Biodegradation,2003,14(6):423-436.
    5.马颖颖,衣守志.氢氧化镁在水处理中应用研究新进展[J],盐业与化工,2007,36(2):39-41.
    6. Wu Qingzhong, Bishop, Paul L, et al. BiologicalPhosphate uptake and release:effect of pH and Magnesium ions[J]. Water environ ment research,2006,78(2):196-201.
    7.赵建海,宋兴福,陆强,汪瑾,于建国,张大年.氢氧化镁在环境污染治理中的应用研究进展[J],环境污染治理技术与设备,2002,3(5):66-69.
    8.何昌洪,张密林,刘俊国.氢氧化镁在环保领域的应用[J],化学工程师,2003,6:49-50.
    9.周辉,刘忠,马滢,魏亚静.氢氧化镁及其在造纸工业中的应用[J],黑龙江造纸,2008,(4):31-34.
    10.李环,于景坤,匡世波.菱镁石轻烧水化法制备高密度烧结镁砂[J],耐火材料,2007,41(2):122-125,129.
    11.郑水林,杜高翔,李杨,高峰,高斌.用水镁石制备超细氢氧化镁的研究[J],矿冶,2004,13(2):43-46.
    12. Qian Hai-yan, Deng Min, Zhang Shao-ming, Xu Ling-ling. Synthesis of superfine Mg(OH)2 particles by magnesite[J], Materials Science and Engineering:A,2007, 445.446:600-603.
    13.胡庆福,宋丽英,刘宝树,刘景泽.轻烧粉水化法制取阻燃级氢氧化镁新工艺[J],无机盐工业,2006,38(70):30-32.
    14. Henrist C., Mathieu J. P., Vogels C, Rulmont A., Cloots R.. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution[J], J. Crystal Growth,2003,249(1-2),321-330.
    15. Q.L. Wu, L. Xiang, Y. Jin. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2[J], Powder Technology,2006,165(2):100-104.
    16. Du Gaoxiang, Wang Baikun. Preparation of plate-shape nano-Mg(OH)2 powder from magnesite tailing[J], Earth Science Frontiers,2008,15(4):142-145.
    17.刘友仁.以含镁卤水和硫化碱浓卤为原料制取硫化氢和氢氧化镁[P].中国专利:CN1145575.
    18.金永成,向兰,金涌.硫氢化物—水热法制备氢氧化镁的过程研究[J],海湖盐与化工,2003(2):1-4.
    19.张克从,张乐惠.晶体生长[M],北京:科学出版社,1981.
    1.邢守渭.中国耐火材料的发展[J],99全国连铸与电炉用耐火材料学术年会论文集.1999.
    2.梁训裕译.碱性耐火材料的发展和水泥工业窑炉进步的关系[J],国外耐火材料,1995,4:2.
    3.刘秉金.水泥窑用碱性砖趋向无铬化[J].新世纪水泥导报,2002,4:43-44.
    4.刘锡俊,秦飞涛.水泥窑高温带无铬砖的研究与应用[J],中国建材科技,2000,6:26-28.
    5.朱秀英,孙钦英,廖闯新.锆英石加入物对MgO-CaO系材料结构与性能的影响[J],耐火材料,1995,29(6):317-320,323.
    6.侯谨张义先,王诚训,等.新型耐火材料[M],北京:冶金工业出版社,2007,p72-76.
    7.陈敏,于景坤,王楠.耐火材料与燃料燃烧[M],沈阳:东北大学出版社,2005,p14-15,45.
    8. A. Shirogawa. Sintering and hydration properties of CaO containing composite[J], Nagoya Institute of Technology, Japan,1996.
    9. I.B. Cutler, R.L. Felix, L.P. Jr. Caywood. Increasing hydration resistance of calcia[J], Am. Cwram. Soc. Bull.,1970,49:531-533.
    10. Y. Oda. Preventive methods for hydration of calcia and dolomite clinkers[J], Taikabustsu(Japan),19889,41:690-700.
    1. Hua Gui, Xiaohong Zhang, Weifu Dong, Qingguo Wang, Jianming Gao, Zhihai Song, Jinmei Lai, Yiqun Liu, Fan Huang, Jinliang Qiao. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites[J], Polymer Communication,2007,48:2537-2541.
    2. Xu Hui, Deng Xin-rong. Preparation and properties of superfine Mg(OH)2 flame retardant[J], Transactions of Nonferrous Metals Society of China,2006,16:488-492.
    3. Longzhen Qiu, Rongcai Xie, Peng Ding, Baojun Qu. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retard ant property of its nanocomposites with EVA[J], Composite Structures,2003,62:391-395.
    4.陈玉坤,徐传辉,贾德民,陈克复Mg(OH)2阻燃聚合物的研究进展[J],合成树脂及塑料,2007,24(2):64-68.
    5.张清辉,郑水林,张强,邹勇,吴良方.氢氧化镁/氢氧化铝复合阻燃剂的制备及其在EVA材料中的应用[J],北京科技大学学报,2007,29(10):1027-1030.
    6. Q.L. Wu, L. Xiang, Y. Jin. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2[J], Powder Technology,2006,165(2):100-104.
    7. Du Gaoxiang, Wang Baikun. Preparation of plate-shape nano-Mg(OH)2 powder from magnesite tailing[J], Earth Science Frontiers,2008,15(4):142-145.
    8.吴会军,向兰,金永成,金涌.高分散氢氧化镁粉体的制备及其影响因素[J],无机材料学报,2004,19(5):1181-1185.
    9. C. Henrist, J.-P. Mathieu, C. Vogels, A. Rulmont, R. Cloots. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution[J], Journal of Crystal Growth,2003,249(1-2):321-330.
    10.胡传训.定量分析化学[M],成都:四川大学出版社,2002:50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700