氢化稀土和氢化锆制备泡沫铝的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫铝是一种由金属骨架和泡孔组成的新型多功能材料,具有质轻、吸声、隔声、电磁屏蔽、吸能缓冲、隔热、耐火等优良特性,可广泛应用于交通运输、建筑机械、冶金化工、电子通讯和航天航空等多个领域,其研究成为当今世界材料科学高技术领域的重要研究、开发内容之一。
     熔体发泡法是泡沫铝生产的主要方式之一,该法是在熔融的金属中,利用发泡剂分解产生的气体滞留在熔体内部而使金属发泡,经冷却后得到泡沫固体(闭孔泡沫)。在泡沫铝的生产中,发泡剂的选择尤为关键,不同的发泡剂具有不同的分解特性,在熔体中因分解产生气体而具有不同的发泡效果。本文采用氢化稀土和氢化锆作为发泡剂熔体直接发泡法制备纯铝基泡沫铝材料的实验研究。
     对于发泡剂氢化稀土,程序升温热重法研究了热分解行为。实验表明当温度超过760℃,氢化稀土开始呈现出大幅度失重现象。XRD结果表明氢化稀土易吸水形成氢氧化物,需要密封保存。对发泡剂ZrH2,利用程序升温热重法研究了其热分解行为,并与TiHH2进行了对比;详细考察了升温速率对DTA谱图的影响。分析了分解过程中的动力学与热力学特征,以及发泡气体与熔体之间可能的反应;研究了ZrH2在熔体中的分布对泡沫铝的影响。结果表明ZrH2于500℃出现较小的吸热峰,750℃时出现尖锐吸热峰。当升温速率较低时,ZrH2的氧化符合化学反应控制模式,当升温速率较高时,ZrH2的氧化符合固体产物层扩散控制模式。Zr和Ca元素在泡沫铝中分布具有明显差别,而气泡集体上浮则是引起泡沫铝中元素分布差异的主要原因。
     采用氢化稀土和氢化锆,熔体发泡法制备泡沫铝,讨论了工艺条件对泡沫铝孔径的影响。考察了发泡温度,发泡剂含量,增黏剂Ca的加入量,搅拌时间和保温时间对泡沫铝制品的影响;并对泡沫铝产品进行了孔径分析和力学性能测试。结果表明ZrH2制备的泡沫铝孔径均匀,平均孔径在1-2mm,适合制备小孔经的泡沫铝产品;氢化稀土制备的泡沫铝孔径较大,并不均匀。氢化稀土和氢化锆混合发泡具有较好的发泡效果,孔径较为均匀。优化了泡沫铝的最佳制备条件;对氢化稀土,氢化稀土发泡剂加入量为2%~2.5%(mass),发泡温度为750±10℃,搅拌时间1.00min~1.25min,保温时间2.50min;用氢化稀土+氢化钛混合发泡剂制备泡沫铝,叮以得到孔径及分布很均匀的样品,具体的工艺参数为:发泡剂加入量为2%(mass),发泡剂配比氢化稀土/氢化钛为8.5/1.5~8.0/2.0,发泡温度730±10℃,搅拌时间1.00min,保温时间3min;采用ZrH2作为发泡剂,在坩埚内制备泡沫铝材料的工艺条件和参数为:ZrH2发泡剂加入量为0.8%~1.0%(mass),金属钙的加入温度为850±10℃,金属钙的加入量为:2~3wt.%,发泡温度控制在为690±10℃,1000r/min的搅拌速度下,搅拌时间为1.00min~1.25min,保温时间2.50min左右。
     熔体发泡法中添加发泡剂过程实质为固体粒子与液体相混合的过程。颗粒的润湿性对泡沫的生成和稳定具有重要的影响。实验研究了氢化钛、氢化锆和铝合金的润湿行为。考虑到氢化物发泡剂高温分解过快问题,实验采用低温铝锗合金,在真空条件下,500-545℃温度范围内,采用改进的座滴法测量铝锗合金对氢化物发泡剂的接触角。考察了温度、合金中锗含量和接触时间对接触角的影响;采用XRD和SEM对润湿界面进行分析;结果表明铝锗合金滴在30s内润湿角呈现较大的变化,30s后润湿角即达到平衡。铝锗合金滴的润湿角随着温度表现良好的线性递增关系,对于TiH2,线性拟合方程为θTiH2=0.353℃-39.87;对ZrH2,线性拟合方程为θZrH2=0.22℃+28.3;润湿角随合金中Ge的含量表现出线性递减的趋势,对于TiH2,线性方程分别为θTiH2=214-200CGe(wt%);对于ZrH2,线性方程分别为θZrH2=198-163.5Ge(wt.%)。在实验设定温度范围内,ZrH2的润湿角均小于TiH2的润湿角,通过线性方程推测,在泡沫铝实验温度下,ZrH2的润湿能力要优于TiH2,因此在添加ZrH2或者TiH2后,ZrH2颗粒更容易分散到铝熔体中,形成均匀孔隙的泡沫铝材料。这可能是用ZrH2比TiH2作为发泡剂制备泡沫铝的均匀性更好的重要原因之一。界面研究结果表明,界面处除了液滴物理扩散外无合金化反应发生。
     对ZrH2比TiH2制备的闭孔泡沫铝材料进行了静态压缩实验研究,实验中发现,纯铝基闭孔泡沫铝材料在静态压缩过程中,均具有线弹性区、平台区和紧实区三个阶段,并显示出比较明显的塑性泡沫材料的特征;对闭孔泡沫铝的能量吸收性能进行了分析,从闭孔泡沫铝的能量吸收能力、能量吸收效率进行了详细的研究,结果表明:ZrH2制备的闭孔泡沫铝的能量吸收能力要大于TiH2制备基闭孔泡沫铝的能量吸收能力;纯铝基泡沫铝材料能量吸收效率最高可达90%;对纯铝基泡沫铝材料能量吸收图的研究发现,纯铝基闭孔泡沫铝材料作为缓冲吸能材料使用时,具有相当好的能量吸收能力。
Aluminum foam is a new multi-functional materials consisting of metallic frame and bubble holes. It has an extensive application in different areas, including automotive, transportation, architecture, machinery, metallurgy, chemical engineering, communication and aerospace, due to its advantages such as, high strength, fire-resistance, sound and energy absorption, sound isolation, impact absorption and interception of electric wave. At present, tremendous research activities concerning aluminum foam have been implemented.
     Melt foaming method is one of the production ways of the aluminum foam, which make molten metal foaming by use of decomposition gas with blowing agent, and the gas was remained in the melt. Expansion of foam mainly was produced by decomposition of hydride hydrogen as a source of foam bubbles. The choice of the blowing agent is particularly crucial in the production of aluminum foam. In this paper, both laboratory of the direct foaming in melt method for fabricating pure aluminum matrix foam are investigated and discussed in details using of different blowing agent system, such as, rare earth hydride and ZrH2.
     The thermal decomposition behaviors of rare earth hydride were studied by using temperature-programmed thermogravimetry method. Result shows that rare earth hydride begin to show a substantial weight loss phenomenon when the temperature was above 760℃Rare earth hydride was easy to absorbent and become rare earth hydroxide, so to keep under seal. The thermal decomposition behaviors of ZrH2 and TiH2 were studied by using temperature-programmed thermogravimetry method. The DTA profiles were obtained at heating rates of 10,20,30,40 K/min respectively; The thermodynamics characteristic and potential reaction in the progress of foaming were analyzed; The effect of the hydride particles dispersion on foams aluminum was investigated in the alloy melt. Results indicated that decomposition behaviors of the hydride was controlled by chemical reaction process under low heating rate, On the contrary, controlled by diffusion controlled of solid product under high heating rate. The distributions of metal elements were impacted by thermal decomposition of hydride, the bubble of floating upward lead to the non-uniform distribution of the elements.
     Aluminum foams were fabricated by the melt-based route using the ZrH2 and rare earth hydride as blowing agent. The relationship between the cell structures and the processing parameters such as the amount of Ca, foaming temperature, foaming agent content, stirring time and holding time was studied. Based on the effects of processing parameters on cell structure that was tested by software image-pro plus, optimized fabricating processing scheme was obtained. Results indicated that The foaming agent (ZrH2) suit for preparation for small aperture aluminum foams with average pore diameter of 1-2 mm; The foaming agent (rare earth hydride) suit for preparation for big aperture aluminum foams; the mix of TiH2 and rare earth hydride suit for preparation for small aperture and uniformity aluminum foams. Control proper processing parameters were good for the acquirement of the aluminum foams which contains uniform cell structure of high porosity. To rare earth hydride, the best process parameters were as follows, rare earth hydride 2%-2.5%(mass), the temperature 750±10℃, stiring time 1.00min~1.25min, holding time 2.50min; To the mixture of foaming agent, the best process parameters were as follows, the contents of foaming agent 2%(mass), the ratio of rare earth hydride/TiH2 8.5/1.5~8.0/2.0, the temperature 730±10℃, stiring time 1.00min, holding time 3min; To ZrH2, the best process parameters were as follows, the contents of ZrH2 0.8%1~1.0%(mass), the adding temperature of Ca 850±10℃, the contents of Ca 2-3%(mass), the temperature 690±10℃, stiring time 1.00min~1.25min, holding time 2.5min;
     The adding foaming agent proces was essentially mixing process of solid particles and liquid phase. Particle wettability had an important impact on bubble formation and stability.Wettability was measured by Al-Ge alloy instead of purity aluminum that can decrease the temperature of experiment and reduce the loss of ZrH2 and TiH2 was as little as possible. Al-Ge alloy was prepared by induction furnace in vacuum at 800℃. The concentration of Ge in Al-Ge alloy was determined by phenylfluorenone cetyltrimethylammonium bromide spectrophotometry without separation or extraction atλ=512nm. The contact angle of Al-Ge alloy on the vesicant was mesured by the improved-sessile drop technique in vacuum in the temperature range of 500-545℃. The effects of temperature, concentrations of Ge in alloy and contact time on the measurement of contact angles were investigated. The microstructure of interface between the alloy and vesicant was examined by XRD and SEM. The parameters of thermodynamics and spreading kinetics of liquid Al-Ge alloy on the surface of TiH2 and ZrH2 were calculated at different condition. The contact angles of Al-Ge alloy on the surface of TiH2 and ZrH2 were investigated by the AUTO-CAD. The results showed that the wetting angle of Al-Ge alloy droplets showed a larger change in the 30s, and rapidly arrived in balance after 30s. The contact angles of TiH2 and ZrH2 decreased with increasing the temperature and increased with decreasing concentrations of Ge in alloy. Linear equations were as follows, to TiH2,θTiH2=0.353℃-39.87 andθTiH2=214-200CGe(wt%). To ZrH2, Linear equations were as follows,θzrH2=0.22℃+28.3 andθZrH2= 198-163.5Ge(wt.%). According to the result of XRD and SEM analysis, there was no reaction happened exceptthe physical droplet diffusion outside. The wettability of liquid Al-Ge alloy on the surface of TiH2 and ZrH2 was affected by the diffusion on the surface.The results showed that the contact angle of Al-Ge/ZrH2 was less than Al-Ge/TiH2. Uniformity of pore has been improved with the ZrH2 as vesicant compared to TiH2 that may be explained.
     Researches on static compressions of pure aluminum matrix foam have been conducted. Results showed that there were three compression processes.The compression curves of pure aluminum matrix foam were flat, indicating that more obvious characteristics of the plastic foam; apparently showing that more obvious characteristics of the brittleness foam. Energy absorption characteristic of closed-cell aluminum foam was systematically analyzed, with energy absorption capabilities ang efficiencies of aluminum foams were studied. The results showed that the energy absorption capability of foam aluminum with ZrH2 as bubble agent were more bigger than that of foam aluminum with ZrH2 as bubble agent under the same compressing condition; The energy absorption efficiency of foam aluminum could be as high as 90%; it is also found, from the energy absorption figure of foam aluminum, that pure aluminum matrix foam had goodish energy absorption capability and the maximal allowable stress as energy absorption material.
引文
1. Lorna J.Gibson, Michael F.Ashby,刘培生译,多孔固体结构与性能[M],北京:清华大学出版社,2003,2.
    2. Sosnik B. Process for making foamlike mass of metal [P], US 2434775,1948.
    3. Elliott J C. Method of producing metal foam [P], US2751289,1956.
    4.韩福生.一种新型的物理功能材料—泡沫铝[J],中外技术情报,1996,6:3-6
    5. B.B.Allen. Method of making foamed metal [P], US 3087807,1963.
    6.武小娟,孙伟成,隋志成.泡沫铝的制备与应用[J],新技术新工艺,2002,4:49-51.
    7.崔舜,曾庆学,张维玉.泡沫铝制备工艺的试验研究[J],江苏冶金,1998,(2):31-35.
    8. Gara B A, Bogetti T A, Fink B K, Chin-Jye Y, Dennis C T, Harald H E, John W G J r. Aluminum foam integral armor:A new dimension in armor design [J], Composite Structures,2001,52(3/4):381-395.
    10.今川耕治,上野英俊,秋山茂.发泡金属巴多孔性金属[J],工业材料,1982,30(10):69-75.
    12.谷克人.发泡金属[J],工业材料,1982,30(10):83-88.
    15.柿泽纪世雄.特许出愿かち发泡材料の动向[J],工业材料,1987,35(14):51-53.
    16.今川耕治,秋山茂,上野英俊.发泡金属の开发·利用动向[J],工业材料,1987,35(14):45-46.
    18. Akiyama S, Ueno H, Imagawa K, Kitahara A, Nagata S, Morimoto K, Nishikawa T, Itoh M. Foamed metal and method of producing same [P], US4713277,1987.
    19. Miyoshi T, Itoh M, Mukai T, M. Mabuchi, T. G. Nieh, K. Higashi. Enhancement of energy absorption in a closed-cell aluminum by the modification of cellular structures [J], Scripta Materialia,1999,41(10):1055-1060.
    20. Wen C E, Mabuchi M, Yamada Y. Processing of fine-grained aluminum foam by spark plasma sintering [J], Journal of Materials Science Letters,2003,22 (20):1407-1409.
    21. Hideo N. Fabrication, properties and application of porous metal with directional pores [J], Progress in Materials Science,2007,52(7):1091-1173.
    22. Baumgartner F, Duarte I, Banhart J. Industrialization of powder compact foaming process [J], Advanced Engineering Materials,2000,2(4):168-174.
    23. Beals J T, Thompson M S. Density gradient effects on aluminum foam compression behavior [J], Journal of Materials Science,1997,32 (13):3595-3600.
    24. Baumeister J, Banhart J, Weter M. Aluminium foams for transport industry [J], Materials & Design,1997,18(4/6):217-220
    25. Banhart J. Industrialisation of aluminium foam Ttechnology [C]. Proceedings of the 9th International Conference on Aluminium Alloys,2004:764-770.
    26. Miller R E. A continuum plasticity model for the constitutive and indentation behaviour of foamed metals [J], International Journal of Mechanical Sciences,2000,42(4): 729-754.
    27.张晓明,姚广春.连通孔泡沫铝材料的研究[J],轻合金加工技术,1999,27(5):36-39.
    28.罗洪杰.熔体发泡法制备泡沫铝材料的研究[D],沈阳:东北大学,2005.
    29.郭志强,姚广春,尉海军,李红斌.泡沫铝材的泡体演化过程[J],过程工程学报,2006,6(6):978-982.
    30.祖国胤,张敏,姚广春,李红斌.轧制复合-粉末冶金发泡工艺制备泡沫铝夹心板[J],过程工程学报,2006,6(6):974-977.
    31.张敏,祖国胤,姚广春,段水亮.泡沫铝芯火心板的制备及泡沫孔的研究[J],东北大学学报(自然科学版),2006,27(5):519-519.
    32.张敏,祖国胤,姚广春,段水亮.泡沫铝夹心板的制备及其界而结合机理的研究[J],功能材料,2006,37(2):281-283.
    33王永,祖国胤,李兵,姚广春.颗粒增强铝合金基泡沫铝材料压缩性能的研究[J],功能材料,2008,7(2):1174-1177.
    34. Zhuo-Kun C, Bing L, Guang-Chun Y, Yong W. Fabrication of aluminum foam stabilized by copper-coated carbon fibers [J], Materials Science and Engineering A, 2008,486 (1-2):350-356.
    35.王兵.新型泡沫铝材料目前在东北大学研制成功[J],功能材料信息,2006,3(4):41.
    36.马立群,何德坪.新型泡沫铝的制备及其孔结构的控制[J],材料研究学报,1994,8(1):11-17.
    37.李子全,吴炳尧,赵子文.渗流铸造法制备ZL104泡沫铝合金[J],特种铸造及有色合金,1997,1:1-3.
    38.程桂萍,陈锋,何德坪.用渗流法制备通孔泡沫金属时几个工艺因素的探讨[J],铸造,1997,2:1-4.
    39.何德坪,马立群,余兴泉.新型通孔泡沫铝的传热性质[J],材料研究学报,1997,11(4):431-434.
    40.宋振纶,何德坪.铝熔体泡沫形成过程中粘度对孔结构的影响[J],材料研究学报,1997,11(3):275-279.
    41.王斌,何德坪,舒光冀.铝合金泡沫化过程中影响成核的两个工艺因素对孔结构的影响[J],铸造,1998,4:8-11.
    42.王怡红,赵军,宋苇,等.TiH2的SiO2凝胶包裹对其释氢的影响[J],东南大学学报,1999,29(6):145-148.
    43. Zhen-lun S, Jin-song Z, Li-qun M, De-ping H. Evolution of foamed aluminum structure in foaming process [J], Materials Science and Engineering A,2001,298 (1-2):137-143.
    44.吴照金,何德坪.泡沫铝凝固过程中孔隙率的变化[J],科学通报,2000,45(8):825-835.
    45.杨东辉,何德坪,杨上润.氢化钛热分解反应动力学及铝合金熔体泡沫化研究[J],中国科学B辑化学,2004,34(3):195-201.
    46.褚旭明,王辉,何德坪,何思渊.泡沫铝合金异型件形成过程中的冶金结合[J],材料研究学报,2009,23(1):27-31.
    47.褚旭明,王辉,何思渊,何德坪,泡沫铝合金球形件的二次发泡法制备成型[J],哈尔滨工程大学学报,2008,29(04):420-425.
    48.张钱城卢天健何思渊何德坪.闭孔泡沫铝的孔结构控制[J],西安交通大学学报,2007,41(3):255-270.
    49.卢天健,何德坪,陈常青,赵长颖方岱宁,王晓林.超轻多孔金属材料的多功能特 性及应用[J],力学进展,2006,36(4):517-535.
    50.卢天健,Dupere I D J, Dowling A P.多孔泡沫材料的声吸收特性[J],西安交通大学学报,2007,41(9):1003-1011.
    51.王月.压缩率和密度对泡沫铝吸声性能的影响[J],机械工程材料,2002,26(3):29-31.
    52.王月,王政红,付自来.新型船用吸声材料泡沫铝[J],2002,43(4):63-68.
    53.李道韫,徐连棠,赵庭良,战松江,吴林美.泡沫铝的孔隙结构和透流特性[J],吉林工业大学学报,1994,24(4):68-72.
    54.赵庭良,徐连棠,李道韫,战松江,吴林美,周为.泡沫铝的吸声特性[J],内燃机工程,1995,16(2):55-59.
    55.陆晓军,孙巍,梁杰.工业射芯机泡沫铝排气消声器实验研究[J],噪声与振动控制,2000,2(12):47-48.
    56.左孝青,张金娅,王茗,孙加林,史庆南,刘荣佩.泡沫铝发泡过程动力学[J],昆明理工大学学报,2003,8(5):45-51.
    57.左孝青,张金娅,王茗,孙加林,史庆南,刘荣佩.泡沫铝发泡过程热力学[J],昆明理工大学学报,2003,28(5):45-51.
    58.左孝青,潘晓亮,高芝.泡沫铝气泡长大动力学[J],中国有色金属学报,2006,16(12):2040-2046.
    59.毕于顺,左孝青,张帆.小孔径泡沫铝研究进展[J],2008,22(7):48-52.
    60.左孝青,Keenedy A R,毕业顺,陆建生,周芸,孙加林.小孔径泡沫铝的制备及孔结构细化机理[J],中国有色金属学报,2009,19(4):682-688.
    61.刘源,李言祥,张华伟.藕状多孔金属Mg的Gasar工艺制备[J],金属学报,2004,40(11):1121-1126.
    62.张华伟,李言祥.金属熔体中气泡形核的理论分析[J],物理学报,2007,56(8):4864-4871.
    63. He-fa C, Xiao-mei H, Guo-xian X, Jian-rong L, Fu-sheng H. Compressive deformation behavior and energy absorption characteristic of aluminum foam with elastic filler [J], Transactions of Nonferrous Metals Society of China,2004,14(5):928-933.
    64. Fusheng H, Hefa C, Jinxiang W, Qiang W. Effect of pore combination on the mechanical properties of an open cell aluminum foam [J], Scripta Materialia,2004, 50(1):13-17.
    65.何德平,马立群,余兴全.新型通孔泡沫铝的传热特性[J],材料研究学报,1997,11(4):431-434.
    66.凤仪,朱震刚,陶宁,郑海务.闭孔泡沫铝的导热性能[J],金属学报,2003,39(8):817-820.
    67.方正春,马章林.泡沫铝在噪声控制中的应用[J],材料开发与应用,1999,14(4):42-46.
    68. Hai-jun Y, Bing L, Guang-chun Y. Sound absorption and insulation property of closed-cell aluminum foam [J], Transactions of Nonferrous Metals Society of China, 2006,16(s3):1383-1387.
    69. Hai-jun Y, Guang-chun Y, Xiao-lin W. Sound insulation property of Al-Si closed-cell aluminum foam bare board material [J], Transactions of Nonferrous Metals Society of China,2007,17(1):93-98.
    70.王祝堂.泡沫铝材:生产工艺、组织性能及应用市场[J],轻合金加工技术,1999,27(12):1-5.
    71.刘培生,李铁藩,傅超.多孔金属材料的应用[J],功能材料,2001,32(1):12-15.
    72.尉海军,姚广春,李兵,郭志强.Al-Si闭孔泡沫铝电磁屏蔽效能[J],功能材料,37(8):1239-1241.
    73.Chuba B. Electroless copper/nickel shielding:high performance solution to electromagnetic interference [J], Plating and Surface Finishing,1989, (9):30-33.
    74.凤仪,郑海务,朱震刚,陶宁.闭孔泡沫铝的电磁屏蔽性能[J],中国有色金属学报,2004,14(1):33-36.
    75. Jerry Lord &Pail Grant, National Physical Laboratory, Teddington, Middlesex, UK, Review of Indusrial Suevey on Metallic foam, December 2000.
    76. Deqing W, Xiangjun M, Weiwei X, Ziyuan S. Effect of processing parameters on cell structure of an aluminum foam [J]. Materials Science and Engineering A,2006,420(1-2) 235-239.
    77.周向阳,张华,刘希泉,刘宏专.泡沫铝两步法制备工艺用新型发泡剂的热分解行为[J],中国有色金属学报,2008,18(12):2265-2269.
    78.程合法,黄笑梅,陈国宏.渗流法制备泡沫铝合金工艺的研究[J],轻合金加工技术,2001,29(1):38-42.
    79.王庆德,石子源.泡沫金属的生产、性能与应用[J],大连铁道学院学报,2001,22(2):79-86.
    80. B. C. Allen. [P]. US Patent 3087807,1963
    81.Banhart J, Bellmann D, Clemens H. Investigation of metal foam formation by microscopy and ultra small-angle neutron scattering [J]. Acta Materialia,2001,49(17): 3409-3420.
    82. Dvarte I, Banhart J. A study of slumium foam formation kinetics and microstructure [J]. Acta Materialia,2000,48(2):2349-2362.
    83. Irretier A, Banhart J. Lead and lead alloy foams [J], Acta Materialia,2005,53, 4903-4917.
    84. Garc'ia-Moreno F, Banhart J. Foaming of blowing agent-free aluminium powder compacts [J],2006,309(1-3):264-269.
    85.刘菊芬,刘荣佩,史庆南,左孝青.新型泡沫铝制备工艺研究[J],材料导报,2002,16(8):65-67
    86.孙伟成,武小娟.电沉积泡沫铝[J],金属功能材料,2003,10(2):19-21.
    87. Shapovalov V. I. Method for manufacturing porous articles [P], US 5181549,1993.
    88. Degischer H P, Kriszt B. Handbook of Cellular Metals[M],左孝青,北京:化工工业出版社,2005,9-10.
    89. Miyoshi T, Itoh M, Akiyama S. Alporas Aluminum foam:Production process, properties, and applications [J], Advanced engineering materials,2000,2(4):179-183.
    90. Sims G L S, Jaafar H A S. A chemical blowing agent system (CBAS) based on azodicarbonamide [J], Journal of Cellular Plastics,1994, (30):175-188.
    91. Matijasevic B, Banhart J. Improvement of aluminium foam technology by tailoring of blowing agent [J]. Scripta Materialia,2006,54(4):503-508.
    92. Zeppelin F V, Hirscher M, Stanzick H. Banhart J. Desorption of hydrogen from blowing agents used for foaming metals [J], Composites Science and Technology,2003,63 (16): 2293-2300.
    93. Matijasevic-Lux B, Banhart J, Fiechter S, Go"rke O, Wanderka N. Modification of titanium hydride for improved aluminium foam manufacture [J], Acta Materialial,2006, 54(7):1887-1900.
    94.罗洪杰,吉海宾,杨国俊,姚广春.氢化钛的分解行为及其在制备泡沫铝中的应用 [J],东北大学学报,2007,28(1):87-90.
    95. Kennedy A R. The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 preforms [J], Scripta Materialia,2002,47(11):763-767.
    96. Gromov A R, Kouznetsova N N, Yudina S L, Lunin V V. The investigation of titanium hydride oxidation process [J], Journal of Alloys and Compounds,1997,261(1-2): 269-272.
    97.方吉祥,杨志懋,丁秉钧.SiO2/TiH2包覆粉体的制备及其释氢特性[J],高等学校化学学报,2005,26(7):1225-1227.
    98.李蓉华.氢化钛热分解动力学研究[D],东北大学,2002.
    99.王政红,马章林,陈派明,付自来,陈卫,鲁彦平,方正春.中国专利,99125331.0.1999.
    100.严富学,赵康,谷臣清.用新型发泡剂-氢化混合稀土制备泡沫铝的研究[J],中国稀土学报,2005,23(2):186-189.
    101. Niebyski L M, Jarema C P, Lee T E. Preparation of meal foams with viscosity increasing gases [P], US 3816952,1974.
    102. Matijasevis B, Gorki O, Schubert H, et al. Zirconium hydride-a possible blowing agent for making alu-minium alloy foams[C]. Nakajima H, Kanetake N. Porous metals and metal foaming technology. Japan:The Japan In-stitute of Metals,2006.107.
    103. Gergely V, Curran D C, Clyne T W. The foamcarp process:foaming of aluminium MMCs by the chalk-aluminium reaction in precursors [J], Composites Science and Technology,2003,63(16):2301-2310.
    104.邱竹贤,王兆文,高炳亮,等.一种泡沫铝的制造方法[P].CN,97115220.9.1997-02-24.
    105.左孝青,周芸,赵国宾,等.CaCO3发泡剂制备泡沫铝工艺研究[J].稀有金属,2004,28(1):19.
    106. Nakamura.T, Gnyloskurenko.S.V, Sakamoto.K, Byakova.A.V, Ishikawa.R. Development of new foaming agent for metal foam [J], Materials Transactions,2002, 43(5):1191-1196.
    107.大角泰章著,吴永宽,苗艳秋译.金属氢化物的性质与应用[M],北京:化学工业出版社,1990,36
    108.伊赫桑·巴伦主编,程乃良,牛四通,徐桂英等译.纯物质热化学数据手册(下 卷)[M],北京:科学出版社,2003,932
    109.于赞,季诚昌,李建国等.微量氢在金属镧中存在形式及分析[J],稀土,2004,25(4):44-46
    110. Duarte I, Banhart J. A study of aluminum foam formation kinetics and microstructure [J], Acta Materialia,2000,48(9):2349-2362.
    111.周全,吴蒙.碳酸镁发泡剂制备泡沫铝的研究[J],铸造技术,2009,30(2):257-259.
    112. Mukai T, Miyoshi T, Nakano S, SomekaWA H, Higashi K. Compressive response of a closed-cell aluminum foam at high strain rate [J]. Scripta Materialia,2006,54 (4): 533-537.
    113.周向阳,刘希泉,李劫,刘宏专.泡沫铝泡体均匀性的定量表征[J],中国有色金属学报,2008,18(1):85-89.
    114. Shunji H, Shinji O, Jiro K, Shiro M. Gas-solid reaction model for a shrinking spherical particle with unreacted shrinking core. Chemical Engineering Science,2005,60 (18): 4971-4980
    115.莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987,179-208.
    116.华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004:218-301.
    117. Irfan A, Gulsen D. Calcination kinetics of high purity limestones[J], Chemical Engineering Journal,2001,83(2):131-137.
    118. Bo-youn H., Soo-han P., Arai H. Viscosity and surface tension of Al and effects of additional element [J], Materials Science Forum,2003,439:51-56.
    119. Laik A, Bhanumurthy K, Kale G B. Intermetallics in the Zr-Al diffusion zone [J]. Intermetallics 2004,12:69-74.
    120.李华昌,符斌.实用化学手册[M],北京:化学工业出版社,2006:222-247
    121.戴戈,何德坪,尚金堂.铝合金熔体泡沫化过程中粘度的变化[J],材料研究学报,2005,19(1):35-41.
    122. Babcsan N, Leitlmeier D, Banhart J. Metal foams-high temperature collids part Ⅰ.Ex situ analysis of metal foams [J], Colloids and Surfaces A,2005,261(1-3):123-130.
    123.杨东辉.氢化钛热分解反应动力学与铝合金熔体泡沫化过程研究[D],南京:东南 大学材料科学与工程学院,2005:70-78.
    124.许玲,黄笑梅,程和法.几种不同性质基体泡沫铝的压缩性能研究[J],合肥工业大学学报(自然科学版),2003,5:138-141.
    125. Gergely V, Clyne T W. Drainage in standing liquid metal foam:modeling and experiment observations [J], Acta Materialia,2004,52(10):3047-3058.
    126. Ashok B, Eli R. Decay of standing foams:drainage, coalescence and collapse [J], Advances in Colloid and Interface science,1997,70(7):1-124.
    127. Haijun Yu, Zhiqiang Guo, Bing Li, Guangchun Yao, Hongjie Luo, Yihan Liu. Research into the effect of cell diameter of aluminum foam on its compressive and energy absorption properties [J], Materials Science and Engineering A,2007(454-455): 542-546
    128.张听,程华,刘汝宏,牟影.对铝及铝合金电解着色方法的研究[J],电刷镀技术,2005,(2):16-17.
    129. Raj R E, Daniel B S S, Structural and compressive property correlation of closed-cell aluminum foam [J], Journal of Alloys and Compounds,2009,467 (1-2):550-556.
    130. Mondal D P, Goel M D, Das S. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam [J], Materials Science and Engineering A,2009,507(1-2):102-109.
    131. Edwin Raj R, Daniel B S S. Structural and compressive property correlation of closed-cell aluminum foam [J], Journal of Alloys and Compounds,2009,467(1-2) 550-556.
    132. Parkash O, Sang H, Embury J D. Structure and properties of Al SiC foam [J], Materials science & engineering A,1995,199(2):192-203.
    133. Ashby M F, Evans A, Fleck N A,Gibson L J, Hutchinson J W, Wadley H N G. Metal foams:A Design guide [M], Boston:Butterworth-einemann,2000:50
    134. Harders H, Hupfer K, Rosler J. Influence of cell wall shape and density on the mechanical behaviour of 2D foams tructures [J], Acta Materialia,2005,53(5): 1335-1345.
    135. Kenesei P, Kadar C, Rajkovits Z, Lendvai J. The influence of cell-size distribution on the plastic deformation in metal foams [J], Scripta Materialia,2004,50(2):295-300.
    136. Mohamed S. Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures:Experimental results [J], Materials Letters,2007,61(14-15): 3138-3141.
    137. Cao, Z K, Li, B, Yao, G C, Wang Y. Fabrication of aluminum foam stabilized by copper-coated carbon fibers [J], Materials Science and Engineering:A,2008,486(1-2): 350-356.
    138. Hunter T N, R. Pugh J, Franks G V, Jameson G J. The role of particles in stabilizing foams and emulsions [J], Advances in Colloid and Interface Science,2008,137(2): 57-81.
    139. Horozov T S. Foams and foam films stabilised by solid particles [J], Current Opinion in Colloid & Interface Science,2008,13(3):134-140.
    140. Andreas J K, Guillermo M S, Robin A L D. Wetting of pure aluminum and selected alloys on polycrystalline alumina and sapphire [J], Materials Science and Engineering: A,2008,495(1-2):147-52.
    141. Gonzenbach U T, Studart A R, Tervoort E, Gauckler L J. Ultrastable particle-stabilized foams [J], Angewandte Chemie,2006,45(21):3606-3610.
    142. Kaptay G. Interfacial criteria for stabilization of liquid foams by solid particles [J], Colloids and Surfaces A,2003,230(1-3):67-80.
    143. Sun Y Q, Gao T. The optimum wetting angle for the stabilization of liquid-metal foams by ceramic particles:experimental simulations [J], Metallurgical and Materials Transactions A,2002,33(10):3285-3292.
    144.任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005:204-207.
    145.何继敏.新型聚合物发泡材料及技术[M],北京:化学工业出版社,2008:9-12
    146.吴林丽,姚广春,罗天骄,张晓明.镁对铝与粉煤灰润湿性的影响[J],中国有色金属学报,2004,14(10):1700-1704.
    147.高翱,王强,王春江等.强磁场条件下Mn2Sb梯度复合材料的制备[J],物理学报,2008,57(2):768-772.
    148.回瑞华,侯冬岩,李铁纯.苯芴酮-分光光度法测定紫苏茎、叶、籽中的锗[J],食品工业科技,2004,25(6):126-127.
    149.林春.苯基荧光酮光度法测定煤矸石中微量锗[J],光谱实验室,2004,21(6):1215-1217.
    150. Taranets N Y, Nizhenko V I, Poluyanskaya V V, Naidich Y V. Ge-Al and Sn-Al alloys capillary properties in contact with aluminum nitride, Acta Materialia,2002; 50(20): 5147-5154
    151. Eustathopoulos N, Joud J C, Desre P, Hicter J M. The wetting of carbon by aluminium and aluminium alloys [J], Journal of Materials Science,1974,9(8):1233-1242.
    152. Madeleno U, Liu H, Shinoda T, Mishima Y, Suzuki T. Compatibility between alumina fibres and aluminium [J], Journal of Materials Science.1990,25(7):3273-3280
    153. Kahl W., Fromm E. Examination of the strength of oxide skins on aluminum alloy melts [J], Metall Trans,1985,16B:47.
    154.李戈扬,中江秀雄,羽根哲哉,汪磊,戴嘉维.液态铝润湿性测量[J],理化检验,1999,35(5):212.
    155.雷霆,张玉霖,王少龙.锗的提取方法[M],冶金工业出版社,2007,11-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700