用户名: 密码: 验证码:
工业木质素分级分离的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国家“863”计划项目(项目编号:2002AA322050)资助下,针对现有工业木质素因成分复杂、分子量多分散性而导致其熔融加工困难、工业规模化应用价值低的问题,本论文从分子量这一基本物理性质入手,应用现代研究手段,分别采用改进的酸析沉淀法、有机溶剂连续萃取法、逐步沉淀法等分级分离工业木质素,使其分子量分布可控,并对影响各级分应用加工中的纯度、热稳定能力以及热塑性能等关键因素进行测试分析。研究结果如下:
     (1)改进的酸析沉淀法分级纯化工业木质素的过程中受酸的种类、碱液浓度、酸析温度、分级pH、离心转速多因素共同作用。通过二次旋转正交组合设计实验获得优化的工艺条件为15%NaOH(W/W),分级温度50-60℃,酸析终点pH值3-5,离心转速3000-4000rpm,可控制级分的分散度在1.6-2.3之间,比原料降低了69.17%-55.68%。IR、UV、TG、DSC等方法对所得级分特性表征,结果表明:与原料相比,被表征的级分中灰分含量最高降幅为59.65%,含糖量最高降幅为53.69%,纯度最高增幅为13.27%。游离羟基、非共轭羰基和酯键中C-O-C的伸缩振动随着分子量增大而增加,酚羟基和芳环上C-H伸缩振动随着分子量增大而减小。高分子量级分紫丁香基结构较少,并且存在较多与羰基相连的苯环。随着分子量的增加,木质素级分最大失重峰往高温区移动,分解温度Tdmax由294.7升高到380.2℃,热稳定性逐渐增强。玻璃化温度最高的级分为206℃,比原料提高了24.8%。改进的酸析沉淀法可用于直接从碱法制浆黑液中分级提取出木质素,同时可避免在传统酸析法中因引入无机酸、SO2、CO2和电解质等化合物而造成的二次污染,为碱法制浆黑液处理工艺改造提供一定的参考依据。
     (2)通过进行不同有机溶剂对木质素的溶解能力和溶解特性研究,在此基础上探索有机溶剂连续分级纯化法,对分级效果进行评价,并形成确定的工艺流程。结果表明:有机溶剂对木质素的溶解能力大小依次为二氧六环>丙酮>乙酸乙酯>甲醇>正丁醇。正丁醇对于低分子量级分溶出性较好,分子量<500的低分子量部分占11.29%;乙酸乙酯对于高分子量级分溶出性较好,分子量>10000的高分子量部分占11.91%。采用按极性从小到大的顺序,用溶剂抽提木质素,可以实现对木质素的分级。有机溶剂萃取分级法可以获得纯度>95%,玻璃化温度>150℃,热稳定性良好,可热塑,可降解的系列木质素产品,提高木质素附加经济效益。有机溶剂萃取分级法利用不同有机溶剂对木质素的溶解能力实现分级,工艺流程处理量大、分级速度快、综合成本低,无三废排放,为有机溶
     剂制浆造纸企业资源化生产木质素提供一定的参考依据。(3)对木质素/溶剂/沉淀剂的三元沉淀分级体系进行研究,使用丙酮作为溶剂,水作为沉淀剂,对纯化后的工业木质素进行逐步沉淀分级。获得的级分重均分子量Mw逐渐降低,随着重均分子量的增加去除了低分子量尾端,随着重均分子量的降低去除了高分子量尾端,从而有效降低了分散系数,各级分的分散系数在1.1-1.9之间,比分级前降低了63.39%-78.71%,分级回收率R为94.82%。分级使得木质素灰分、多戊糖、水分等杂质含量都有效降低。与原样相比,分级后级分纯度最高增幅为16.67%,Td_(max)最大增幅为22%,玻璃化温度(Tg)最高增幅为29.7%,热稳定性和加工性能加强。
All the works of this research were supported by the Hi-Tech Research and Development Program of China(NO. 2002AA322050). Due to condensation or degradation occurred in isolation process, industrial lignin has the characteristics of low purity, complicated composition and broad molecular weight distribution. Therefore, industrial lignin is is hard to processing and utilization. From the point of molecular weight which is one of the basic physical properties, industrialized classification method of lignin have been studied systematically in this paper. The results are as follows:
     (1) Classification process of industrial lignin used the improved acid precipitation method were influenced by the acid type, alkali concentration, temperature, classification pH and rotation speed. Four factors quadratic orthogonal combination experiment demonstrated that the optimal condition of fractionation are 15% sodium hydroxide solution(mass ratio), 50-60℃, pH 3-5 and 3000-4000 rpm centrifuge speed. Molecular weight distribution could be controlled between 1.6-2.3. Characterization of the fractions are as followers: ash and sugar farthest decreased 59.65% and 53.69%, lignin purity farthest increased 13.27%. Free OH, non-conjugated carbonyl and ester bonds in the C-O-C stretching vibration increase with increasing molecular weight, aromatic C-H stretching vibration and phenolic hydroxyl decrease with increasing molecular weight. There are smaller syringyl units and more carbonyl connected to the benzene ring in the high mol.wt fraction. With the increase of molecular weight, maximum weight loss peak of lignin fractions move to the high temperature, decomposition temperature Tdmax increase from the 294.7 to 380.2℃, the thermal stability gradually. The highest glass transition temperature is 206℃and increased by 24.8% than the raw materials. The improved acid precipitation method can be used directly to fractional isolation and purification of lignin from alkaline pulping black liquor. The classification process of lignin by organic acids could avoid secondary pollution which produced by the residues of lignin separation such as inorganic acid, SO2, CO2, electrolytes and other compounds in the traditional separation method. Providing a reference for transformation of alkaline pulping black liquor treatment process.
     (2) Organic solvents classification process of lignin has been explored on the basis of the study of different organic solvents’dissolving capacities and characteristics to lignin. Classification results show that: the order of organic solvents on the solubility of lignin is dioxane > acetone > ethyl acetate > methanol > n-butanol. N-butanol is better for low molecular weight party(<500) and 11.29% this part in the fraction. Ethyl acetate is better for high molecular weight party(>10000) and 11.91% this part in the fraction. Lignin can be classified used organic solvents by small to large order of polarity. The lignin fraction obtained through this new process, which purity and glass transition temperature higher than 95% and 150℃, have good thermal and thermoplastic stability. The new process has such advantages as large throughput, fast processing speed, low cost and no waste and could provide a reference for organic solvent pulping papermaking enterprises.
     (3) Using acetone as the solvent and water as precipitating agent, purified grade industrial lignin step by step. Fractions obtained by molecular weight Mw decreased, low molecular weight part can be removed with the increase of molecular weight and high molecular weight part can be removed with the decrease of molecular weight. Thus, the dispersion coefficient could be reduced effectively and the molecular weight distribution are between 1.1-1.9. Recovery rate of classification is 94.82%. Classification makes the ash, pentosan, water and other impurities are effectively reduced. The fraction’purity, Tdmax and glass transition temperature are farthest increased 16.67%, 22% and 29.7%. The thermal stability and processing properties of lignin are enhanced. The study could provide theoretical basis for preparation of lignin standard sample and research of lignin macromolecular condensed state.
引文
[1]朱清时,阎立峰,郭庆祥.生物质洁净能源[M],北京:化学工业出版社, 2002
    [2] Mohanfty A. K., Misra M., Drzal L. T.. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World[J]. Journal of Polymers and the Environment, 2002, 10: 19-25
    [3]张俐娜.天然高分子改性材料及应用[M],北京:化学工业出版社, 2006
    [4]戈进杰.生物降解高分子材料及其应用[M],北京:化学工业出版社, 2002
    [5]蒋挺大.木质素[M],北京:化学工业出版社, 2001
    [6]周强,陈中豪,陈铭烈.草类碱木素在采油中的作用[J].纸和造纸, 1998(2): 47-48
    [7]谌凡更,丁培芳,马宝岐.木质素/栲胶高强度堵剂的制备[J].西安石油学院学报, 1992, 7(4): 84-88
    [8]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化工, 2005, 22(4): 152-249
    [9]徐淑莺.利用木素制各功能性肥料[J].中华纸业, 2003(6):59-62
    [10] Gandini A., Belgacem N. M.. Recent advances in the elaboration of polymeric materials derived from biomass components[J]. Polymer Internationl, 1998, 47(3): 267-276
    [11] Thlelmans W, Can E, Morye S S, et al. Novel application of lignin in composity materials[J]. Journal of Applied Polymer Science, 2002, 83: 323-331
    [12] Forintek Canada Corp. Development of Lignin Adhesive[M], Ottawa: Forintek Canada Corp, 1982
    [13]金永灿.工业木质素的开发利用[J].林业科技开发, 2002, 16(3):9-10
    [14] Li Yan, Sarkanen Simo. Alkylated kraft lignin-based thermoplastic blends with aliphatic polyesters[J]. Macromolecules, 2002, 35(26): 9707-9715
    [15]黎先发,罗学刚.增容剂PE-LD-g-MAH对低密度聚乙烯/木质素共混体系性能的影响[J].中国塑料, 2005, 19(7): 41-44
    [16]周建,黎先发,林晓艳等.木质素在高分子行业的产业化应用[J].河南化工, 2006, 23(10): 1-3
    [17] Sarker S, et a1. Kraft lignins in the synthesis of modified polyurethane resin[J]. Europe Polymer Journal, 2001, 37(7): 1391-1401
    [18]罗学刚.高纯木质素提取与热塑改性[M].北京:化学工业出版社, 2008
    [19]孙勇,李佐虎,萧煌炘,陈洪章.木质素分离方法的研究进展[J].中华纸业, 2005, 36(10): 58-61
    [20] Freudenberg K., Neish A. C.. Constitution and Biosynthesis of Lignin[M]. Berlin: Springer-Verlag, 1968
    [21]南京林业大学.木材化学[M].北京:中国林业出版社, 1990
    [22]中野准三,高洁译.木质素的化学[M].北京:轻工业出版社, 1988
    [23] M Dawy, A A Shabaka, A M A Nada. Molecular structure and dielectric properties of 8ome treated lignins[J]. Polymer Degradation and Stability, 1998, 62: 455-462
    [24]谢建军,罗迎社.木质素的结构及其改性研究进展[J].功能材料, 2007, 38: 3296-3299
    [25]池玉杰,鲍甫成.木质素生物降解与生物制浆的研究现状分析[J].林业科学, 2004, 40(3): 167-174
    [26]何曼君.高分子物理[M].上海:复旦大学出版社, 1990, 9-15
    [27]郑昌仁.高聚物分子量及其分子量分布[M].北京:化学工业出版社, 1986, 17-35
    [28]杨玉良.高分子物理[M].北京:化学工业出版社, 2001, 3-25
    [29]虞志光.高聚物分子量及其分布的测定[M].上海:上海科学技术出版社, 1984, 10-45
    [30]邱学青,周明松,王卫星,谢宝东,杨东杰.不同分子质量木质素磺酸钠对煤粉的分散作用研究[J].燃料化学学报, 2005, 33(2): 179-184
    [31]郑大峰,邱学青,楼宏铭,杨东杰.不同相对分子质量木质素磺酸钙在盾构砂浆中的应用[J].化工学报, 2007, 58(9): 2383-2387
    [32]张树彪,乔卫红,李宗石.木质素分散剂的分散性能研究[J].染料工业, 1999, 36(4): 39-41
    [33]刘纲勇,邱学青,杨东杰.不同分子量麦草碱木素性能及其对LPF胶性能的影响[J].化工学报, 2008, 59(6): 1590-1594
    [34] Shinya Mitsuhashi, Takao Kishimoto, Yasumitsu Uraki, et al. Low molecular weight lignin suppresses activation of NF-jB and HIV-1 promoter[J]. Bioorganic & Medicinal Chemistry, 2008, 16: 2645-2650
    [35] Jonsson G. Boundary-layer phenomena during ultrafiltration of dextran and whey-protein solutions[J]. Desalination, 1984, 51(1): 61-77
    [36]潘学军,谢来苏,隆言泉.草浆废液的超滤浓缩草浆废液的超滤浓缩[J].中国造纸, 1995, 3: 27-32
    [37] Qiu Xueqing, Yang Dongjie, Ouyang Xingping. Adsorption performance of calcium lignosulfonates on surface of solid particle[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(8): 1155-1159
    [38]徐和德,梁好,王瑞香等.离子交换法分离提纯木质素[J].离子交换与吸附, 1992, 8(4): 325-328
    [39] M. N. Vanderlaan, R. W. Thring. Polyurethanes from ALCELL? Lignin Fractions Obtained by Sequential Solvent Extraction[J]. Biomass and Bioenergy, 1998, 14(5): 525-531
    [40] Thring R.W., Vanderlaan M.N., Griffin S.L.. Fractionation of ALCELL? lignin by sequential solvent extraction[J]. Journal of wood chemistry and technology, 1996, 16(2): 139-154
    [41] Koshijima T, Taniguchi T, Tanaka R. Lignin-carbohydrate complex, part I. Influences of milling of wood Upon Bj?rkman LCC[J]. Holzorschung, 1972, 23: 211-215
    [42]张桂梅,廖双泉,蔺海兰等.木质素的提取方法及综合利用研究进展[J].热带农业科学, 2005, 25(1): 66-70
    [43] Xue GangLuo, Xiao Yan Lin, Feng Liu. Key Technology for Extraction, Thermoplastic Modification and Application of Lignin[J]. Materials Science Forum, 2009(620-622): 241-246
    [44]谌凡更,李静.凝胶色谱法测定木素分子量及其分布[J].纤维素科学与技术, 1999, 7(3): 47-53
    [45]李静,付时雨,张汉英.水溶性凝胶渗透色谱法测定碱木素分子量[J].色谱, 1998, 16(3): 235-237
    [46]成跃祖.凝胶渗透色谱的进展及其应用[M].北京:中国石化出版社, 1993
    [47]刘铭祥,魏鹏月.用凝胶色谱法研究木素的分子量分布及其应用[J].中国造纸, 1988, 10(5): 48-52
    [48]欧义芳,谌凡更,李忠正.乙酰溴法测定富含多酚类化合物的桉木木质素[J].中国造纸, 1998, 9(5): 42-44
    [49] Zhao LIU, Xuegang LUO. Extraction of Lignin from Pulping Black Liquor by Organic Acid[J]. Materials Science Forum. 2009(620-622 ): 571-574.
    [50]沈宇斌,王旭,朱颖芝,沈青.微纳米木质素颗粒在酸碱溶液中的溶解行为[J].纤维素科学与技术, 2005, 13(4): 32-36
    [51] A. Toledano, L. Serrano, A. Garcia, I. Mondragon, J. Labidi. Comparative study of lignin fractionation by ultrafiltration and selective precipitation[J]. Chemical Engineering Journal, 2010, 157: 93-99
    [52]沈青.蒸煮液的物理化学特征及在制浆过程中的行为.Ⅲ.木素对蒸煮液的粘度、密度及Hamaker常数的影响[J].纤维素科学与技术, 2003, 11(3): 12-16.
    [53]杨卫明,石颐.酸析木素法处理造纸黑液的改进与应用[J].环境工程, 1997, 15(2): 3-6.
    [54] Hon D. N. S. (Ed. ). Chemical Modification of Lignocellulosic Materials[M]. New York: Dekker, 1996
    [55]冯绪胜.胶体化学[M].北京:化学工业出版社, 2005, 32-45
    [56]郭京波,陶宗娅,罗学刚.不同提纯方法对竹木质素结构特性的影响分析[J].分析测试学报, 2005, 24(3): 77-81
    [57] Brandt Chridtopher W, Fridley Kenneth J. Effect of loadrate on flexural properties of wood-plastic composities[J]. Polymer-Plastics Technology and FiberScience, 2003, 35(1): 135-147
    [58]高洁,唐烈贵.纤维素科学[M].北京:科学出版社, 1996
    [59] A.M.Barros, A.Dhanabalan, C.J.L.Constantino, et al. Langmuir monolayers of lignins obtained from different isolation methods[J]. Thin Solid Films, 1999, 354: 215-221
    [60] Anderson Guerra, AndréFerraz. Molecular weight distribution andstructural characteristics of polymers obtained from acid soluble lignin treated by oxidative enzyme[J]. Enzyme and Microbial Technology, 2001, 28: 308-313
    [61] Ayiguli Keyoumu, Ragnar Sj?dahl, Gunnar Henriksson, et al. Continuous nano and ultra filtration of kraft PulPing blaek liquor with ceramic filters A method for lowering the load on the recovery boiler while generating valuable side-produets[J]. Industrial Crops and Products, 2004, 20: 143-150
    [62] A. Bj?rkman. Studies on finely divided wood.PartⅠ. Extraction of lignin with neutral solvents[J]. Sven. Papperstidn., 1956, 59: 477-485
    [63] Lundqvist, K., Ohlsson, B., Simonson, R. Isolation of lig-nin by means of liquid-liquid extraction[J]. Svensk Papperstidn, 1977, 80: 143-144
    [64] Pye E. K., Lora J. H.. The Alcell process: a proven alternative to kraft pulping[J]. TAPPI, 1991, 74(3): 113-118
    [65] Lora, J. H., The ALCELL? process[J]. Pulping Symposium, TAPPI Press, 1992
    [66]许凤,孙润仓,詹怀宇.有机溶剂制浆技术研究进展[J].中国造纸学报, 2004, 19(2): 152-156
    [67] Aziz S, Sarkanen K. Organosolv pulping- a review[J]. Tappi Journal, 1989, 72(3): 169
    [68] Pan X J, et al. Atmospheric acetic acid pulpingof rice straw: Pulping con-ditions and properties of pulp[J]. Mokuzai Gakkaishi, 1998(3): 114
    [69]武书彬,向冰莲,刘江燕,郭伊丽.工业碱木素热裂解特性研究[J].北京林业大学学报, 2008, 30(5): 143-147
    [70]姚燕,王树荣,郑赟 ,骆仲泱,岑可法.基于热红联用分析的木质素热裂解动力学研究[J].燃烧科学与技术, 2007, 13(1): 50-54
    [71]楚增勇,刘辉,冯春祥,王应德等.沉淀分级法调制纺丝级高熔点聚碳硅烷[J].国防科技大学学报, 2002, 24(1): 39-43
    [72]韩学忠.五味子多糖提取纯化、分级及应用[J].中医药学报, 2005, 33(6): 35-36
    [73]谢小莉,曾钫,童真.聚(N-异丙基丙烯酰胺)的分级和表征[J].华南理工大学学报(自然科学版)[J]. 1998, 26(3): 65-67
    [74] Tung L H. Fraetionation of Synthetic Polymers, Prineiples and Practice. New York: Marcel Darkker, 1977
    [75]刘志强,益小苏.直链淀粉的分级制备研究[J].浙江大学学报(工学版), 2009, 34(5): 494-498
    [76] RunCang Sun a, Jeremy Tomkinson, ShiQing Wang. Characterization of lignins from wheat straw by alkaline peroxide treatment[J]. Polymer Degradation and Stability, 2000, 67: 101-109
    [77] David Ibarra, JoséC, del Rio, et al. Isolation of high-purity residual lignins from eucalypt paper pulps by cellulase and proteinase treatments followed by solvent extraction[J]. Enzyme and Microbial Technology, 2004, 35: 173-181
    [78] Shunliu Shao, Zhenfu Jin, Guifeng Wen. Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin[J]. Wood Sci Technol, 2009, 43: 643-652
    [79] Tanahashi M, Takada S, Aoki T, Goto T, et al. Characterization of explosion wood. Structure and physical properties[J]. Wood Res., 1983, 69: 36-51
    [80]卢新亚,姜炳政.高聚物玻璃化转变温度和分子参数的关系[J].高分子学报, 1990, 10(5): 532-536
    [81]王克强,黄红红.聚碳酸酯的分子量分布与热降解[J].石油化工, 1997, 26: 750-754
    [82]杜振霞,饶国瑛,南爱玲.聚碳酸酯分子量及其分布、热稳定性研究[J].高分子材料科学与工程, 2001, 17(2): 53-56
    [83]孙勇,张金平,杨刚,李佐虎.二氧化氯氧化云杉木质素的光谱研究[J].光谱学与光谱分析, 2007, 27(8):1551-1554
    [84]赵斌元,胡克鳌,范永忠,竺品芳.木质素磺酸钙热行为初步研究[J].纤维素科学与技术, 2000,8(1):33-37
    [85] Camarero S, Bocchini P, Galletti G C, et al. Pyrolysis-gas chromatography/mass spectrometry analysis of phenolic and etherified units in natural and industrial lignin[J]. Rapid Commun Mass Spectrom, 1999, 13(7): 291 84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700