雷帕霉素抑制胆管缺血后代偿性增生的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着器官移植技术的发展、移植手术成功率的不断提高.移植物、移植受体术后长期生存及生存质量成为学界研究的焦点。抗排异是术后治疗的主要组成部分,其不良反应影响移植物、移植受体的长期生存,降低患者生活质量。近年来,为减少免疫抑制剂导致的不良反应,新型免疫抑制药物、新的抗排异方案以及给药剂量的合理调节备受关注。在诸多抗排异策略中,钙神经蛋白抑制剂(calcineurin inhibitor,CNI)曾处于基础地位,但可能导致肾功能不全,神经毒性等严重不良反应。1999年,美国FDA批准雷帕霉素作为肾移植术后抗排异用药。雷帕霉素是mTOR(mammaliantagert of rapamycin)特异性抑制剂,与细胞内受体FKBP12结合,形成FKBP—rapamycin复合物,该复合物与mTOR分子结合,抑制mTOR活性,阻断其下游信号p70S6k及4EBP1的活化,影响细胞G_1期至S期关键蛋白mRNA的转录,最终导致细胞G_1期停滞,抑制细胞增殖。进入临床后,大量资料显示雷帕霉素无明显肾毒性,这使得雷帕霉素常常与CNI类药物联合应用,甚至替代CNI成为免疫抑制方案的基础用药。最近的研究发现雷帕霉素具有抗肿瘤活性,降低移植术后新发恶性肿瘤患病风险;雷帕霉素还可以防治冠脉成型术后的再狭窄;在动物模型中,雷帕霉素明显减少肝硬化大鼠肝细胞外基质的沉积,改善肝功能,提高生存率;还有一些研究显示,雷帕霉素对蛋白尿性肾小球肾病,多囊肾病,顽固性葡萄膜炎等疾病有一定的治疗作用。
     然而,随着雷帕霉素在临床越来越广泛的应用,其副作用也逐渐引起人们的注意。除了可以引起血液学变化,如贫血,低白细胞血症,低血小板血症,高胆固醇血症;关节痛;肢体水肿;切口愈合不良等副作用外,研究发现,雷帕霉素能导致肺毒性等严重并发症。最近有资料显示雷帕霉素抑制边缘供肾内皮细胞的自身修复;抑制细胞增殖关键蛋白p70S6激酶的活化,影响受损肾小管上皮细胞的增生修复。这提示雷帕霉素抗增殖活性可能对组织自身修复造成影响。
     肝脏外科领域中,手术操作、肝脏移植、脏器保存、介入治疗等都可能造成肝组织损伤。作为代偿机制,肝细胞、胆管上皮细胞出现增生反应。此时应用雷帕霉素是否会抑制代偿性增生、影响肝组织自身修复,目前还不明确。本研究将探讨雷帕霉素对胆管缺血后代偿性增生的影响。
     第一部分雷帕霉素对胆管缺血后代偿性增生的影响
     目的
     观察离断大鼠胆管动脉血供后,肝内胆管代偿性增生反应,探讨雷帕霉素对于该反应是否存在抑制作用。
     方法
     雄性SD大鼠随机分配到:(1)缺血组(n=32);(2)缺血+雷帕霉素组(n=32);(3)假手术组(对照组,n=28);(4)假手术+雷帕霉素处理组(n=28)。缺血组完全离断胆管动脉血供,假手术组仅给予开关腹手术,雷帕霉素处理组自手术当日始每日给予雷帕霉素2.0mg/kg灌胃,非雷帕霉素处理组予生理盐水2ml/kg灌胃。各实验组于术后第1、3、7天分别处死6只实验动物,术后14天处死全部动物。取肝脏组织行H-E及Ki-67免疫组化染色。高倍镜视野下,每只实验动物病理切片观察15~20个汇管区。H-E切片分别计数每个汇管区内小叶间胆管及汇管区周围小胆管数目,分析单个汇管区内小叶间胆管平均数目及单个汇管区周围小胆管平均数目。Ki-67染色切片分别计数每个汇管区内Ki-67阳性及阴性胆管细胞,计算阳性—阴性胆管细胞比值,分析单个汇管区内Ki-67阳性—阴性胆管细胞平均比值。
     统计学处理采用SPSS 13.0软件,结果以X±S_X表示,多个独立样本比较采用Kruskal-Wallis H检验,多个独立样本间的两两比较采用秩转换处理后行ONEWAY ANOVA检验,P<0.05时认为存在统计学差异。
     结果
     H-E染色切片显示:对照组及假手术+雷帕霉素组术后未见明显胆管增生,缺血组胆管增生明显,既包括汇管区内小叶间胆管增生,也包括汇管区周围小胆管增生。汇管区内小叶间胆管计数结果显示:与对照组比较,缺血组术后汇管区小叶间胆管数目明显增加,术后2周内与时间变化呈现正相关趋势,雷帕霉素处理胆管缺血大鼠后,小叶间胆管数目增加幅度下降,术后7天、14天与缺血组间表现出显著差异(P分别为0.034及0.026)。汇管区周围小胆管计数结果显示:与对照组比较,缺血组术后汇管区周围小胆管数目增加;给予雷帕霉素后,胆管缺血大鼠汇管区周围小胆管数目增加幅度下降,术后1、7天与缺血组差异明显(P分别为0.042及0.009)。Ki-67染色结果显示:对照组及假手术+雷帕霉素组术后汇管区内未见明显Ki-67阳性染色胆管细胞,缺血组术后汇管区内Ki-67阳性胆管细胞明显增多,但肝细胞染色无明显增强。术后3天缺血组Ki-67阳性—阴性胆管细胞数目比值达到峰值,雷帕霉素处理后该峰值水平下降37.74%(P=0.002)。
     结论
     雷帕霉素抑制缺血后肝内胆管上皮细胞Ki-67抗原表达,明显抑制汇管区内小叶间胆管的代偿性增生反应;对于汇管区周围小胆管的增生,雷帕霉素也具有一定抑制作用。
     第二部分雷帕霉素对肝功能及生存率的影响
     目的
     探讨雷帕霉素对于实验大鼠胆管缺血后肝功能、体重及生存率变化的影响。
     方法
     雄性SD大鼠随机分配到缺血组、缺血+雷帕霉素组、对照组及假手术+雷帕霉素组。缺血组完全离断胆管动脉血供,假手术组仅给予开关腹手术,雷帕霉素处理组自手术当日始每日予雷帕霉素2.0mg/kg灌胃,非雷帕霉素处理组予生理盐水2ml/kg灌胃。术前、术后7天及14天测量动物体重,计算术后7天、14天相对术前体重变化。各实验组于术后第1、3、7天分别处死6只实验动物,术后14天处死全部动物,下腔静脉抽血2~3ml,检测血清TBIL、ALP、GGT及ALT。
     统计学处理采用SPSS13.0软件,结果以X±S_X表示,多个独立样本比较采用Kruskal-Wallis H检验,多个独立样本间的两两比较采用秩转换处理后行ONE WAYANOVA检验,P<0.05时认为存在统计学差异。Kaplan—Meier分析生存率,组间生存差异采用log-rank检验,P<0.05时认为存在统计学差异。
     结果
     与对照组比较,缺血组术后血清TBIL升高明显。雷帕霉素处理胆管缺血大鼠,术后7、14天血清TBIL水平显著高于缺血组(P=0.005及0.003)。术后1-7天,缺血组ALP明显升高,术后14天升高趋势缓和。缺血+雷帕霉素组术后血清ALP持续升高,至术后14天仍保持上升趋势,此时ALP水平明显高于缺血组(P=0.012)。根据体重测量结果,缺血组术后体重下降明显;给予雷帕霉素后,术后7、14天体重下降幅度增加(P<0.01)。Kaplan—Meier生存分析结果显示:缺血组生存率较对照组无明显下降,但同时给予雷帕霉素后,生存率下降明显(P<0.05)。
     结论
     雷帕霉素加重胆管缺血后肝内胆汁淤积,影响肝功能恢复,并对实验动物术后生存状态及生存率造成影响。
     第三部分雷帕霉素对VEGF mRNA、p70S6激酶及磷酸化p70S6激酶的影响
     目的
     探讨雷帕霉素对实验大鼠胆管缺血后肝内VEGF mRNA、p70S6激酶及磷酸化p70S6激酶含量的影响。
     方法
     雄性SD大鼠随机分配到缺血组、缺血+雷帕霉素组、对照组(假手术组)以及假手术+雷帕霉素组。缺血组完全离断胆管动脉血供,假手术组仅给予开关腹手术,雷帕霉素处理组自手术当日始每日予雷帕霉素2.0mg/kg灌胃,非雷帕霉素处理组予生理盐水2ml/kg灌胃。各实验组于术后第1、3、7天分别处死6只实验动物,术后14天处死全部动物,取肝脏标本于-80℃或10%中性甲醛中保存。免疫组化染色观察肝内VEGF表达情况,实时定量PCR检测VEGF mRNA水平,Western-blot检测p70S6k及其磷酸化物的含量。
     统计学处理采用SPSS13.0软件,结果以X±S_X表示,多个独立样本比较采用Kruskal-Wallis H检验,多个独立样本间的两两比较采用秩转换处理后行ONE WAYANOVA检验,P<0.05时认为存在统计学差异。
     结果
     免疫组化染色结果显示:对照组及假手术+雷帕霉素组未见明显VEGF阳性染色;缺血组及缺血+雷帕霉素组汇管区内可见VEGF阳性染色,主要定位于血管内皮细胞。实时定量PCR结果显示:缺血组VEGF mRNA升高明显,术后3天达到峰值,为对照组7.57倍,术后1~14天,缺血组VEGF mRNA含量均明显高于对照组(P<0.001)。用雷帕霉素处理胆管缺血大鼠,VEGF mRNA含量变化趋势虽与缺血组相似,但峰值水平仅为缺血组54%(P=0.005);另外,术后1、7天缺血+雷帕霉素组VEGF mRNA含量明显低于缺血组(P<0.05)。Western-blot结果显示,缺血组p70S6k表达上调,其峰值水平为对照组的4.43倍(P<0.001);同时,磷酸化p70S6k表达上调,峰值水平为对照组9.64倍(P<0.01)。用雷帕霉素处理胆管缺血大鼠,术后p70S6k含量虽有增加,但是峰值水平仅为缺血组峰值50%(P=0.004);术后1、7、14天,缺血+雷帕霉素组p70S6k含量明显低于缺血组(P<0.005)。用雷帕霉素处理胆管缺血大鼠,术后磷酸化p70S6k含量无增高趋势;术后3、7天,缺血+雷帕霉素组磷酸化p70S6k含量明显低于缺血组(P<0.005)。
     结论
     雷帕霉素抑制VEGF mRNA表达,下调p70S6激酶及其磷酸化物含量。这在一定程度上解释了雷帕霉素对胆管缺血后代偿性增生的抑制作用。
As technical improvement in organ transplantation field,more and more researches concentrated on postoperative long-term survival and better quality of life.Side-effects of immunosuppressant,which is the most important element in post-operative therapy,may harm postoperative survival and life quality.In recent years,numerous researches have been carried out to explore new-type immunosuppressant,new anti-rejection strategies and optimal dosage adjusting according to blood concentration of drug.Calcineurin inhibitor (CNIs),fundamental agent in a varity of anti-rejection strategies,increased incidence of renal dysfunction and neural disorder postoperatively.In 1999,rapamycin was permitted into immunosuppressant therapy after renal transplantation.As a mTOR specific inhibitor, rapamycin binds to its intracellular receptor FKBP12 to form FKBP—rapamycin compounds,which conjugate to FRB domain on mTOR moleculi,inactivate mTOR,block downstream signal activation of p70S6k and 4EBP1,hamper transcription of key mRNA answered for transformation from G_1 to S phase,and finally arrest cells in G_1 phase and inhibit cell proliferation.Since its initiation of clinical use,rapamycin caused less burden to renal function in contrast to CNIs.In combination with CNIs,or even in replacement of CNIs,rapamycin gradually occupied the fundamental place in postoperative anti-rejection. Recently,it has been reported that rapamycin had anti-tumor activity and lowered malignancy incidence after transplantation.What's more,rapamycin prevented coronary arteries from re-stenosis after coronary arterioplasty.In a animal model,rapamycin reduced extracellular matrix deposit,improved liver function and increased survival.Some clinical data indicated that rapamycin contributed to treatment of proteinuric glomerulopathy,polycystic renal pathy and refractory uveitis.
     However,as increasing clinical use of rapamycin,its side-effects attracted more and more concern.Besides arthralgia,extremity edema,insufficient wound healing and hematologic changes,such as anemia,hypercholestemia,thrombocytopenia and leukocytopenia,rapamycin caused pulmonary toxity and angioedema according to updated data.Further more,some papers held that rapamycin harmed self-repair of marginal renal donor,inhibit activation of p70S6k and put obstacle to repair of injured renal tubuli.It seemed that anti-proliferative nature of rapamycin could cause negative effect on tissue repair.
     In field of liver surgery,operation,transplantation,organ reservation and intervention may cause injury to liver tissue.As a compensatory mechanism,hepatocytes and cholangiocytes proliferate.Whether rapamycin inhibits proliferation,hampers self-repair of liver tissue remains unclear.In the present,paper,effect of rapamycin on adaptive bile duct proliferation in response to ischemia will be explored.
     PartⅠEffect of Rapamycin on Adaptive Bile Duct Proliferation in Response to Ischemia
     Aim
     Observe intra-hepatic adaptive bile duct proliferation after complete deprivation of bile duct arterial supply.Explore the effect of rapamycin on the proliferation of bile ducts.
     Method
     Male SD rates were randomly assigned into 4 groups:ischemia(n=32), ischemia+rapamycin(n=32),sham(n=28) and sham+rapamycin(n=28).In ischemia groups,complete deprivation of bile duct arterial supply was performed while in sham groups,open-close operation was carried out.Daily intake of rapamycin(2mg/kg) was given in rapamycin groups and the same volume of saline was given in non-rapamycin groups.On day 1,3,7 and 14,fresh live tissue were obtained,followed by H-E and Ki-67 immunohistochemical staining.In high magnification fields,15~20 portal areas were examined per animal.In H-E sections,interlobular bile duct within portal areas and ductuli at periphery of portal areas were counted separately and average number of bile ducts per portal area were calculated.In Ki-67 sections,Ki-67 positive and negative bile duct cells were counted and ratio of Ki-67 positive to negative bile duct cells per portal area were calculated.
     Statistic analysis was performed by SPSS 13.0 software,results showed as X±S_X. Kruskal-Wallis H test was used for comparison of multiple independent samples and the following pair-wise comparisons were performed by rank transformation and ONE WAY ANOVA.Statistic difference was considered when P<0.05.
     Results
     For H-E sections,there were no obvious bile duct proliferation in sham and sham+rapa group,while bile duct proliferation were observed obviously in ischemia group, including proliferation of interlobular bile duct within portal areas and ductuli at periphery of portal areas.Compared with sham,a sharp increase of interlobular bile duct number was found within 2 weeks postoperatively.When rapamycin was administrated,the increase shrunk and obvious differences appeared on day 7 and 14 in contrast to ischemia group (P=-0.034 and 0.026,respectively).Compared with sham,number of peri-portal ductuli increased in ischemia group.When rapamycin was given,the increase also shrunk and resulted statistic differences on day1 and 7(P=0.042 and 0.009,respectively).Ki-67 stained sections showed there was no obvious positive staining within portal area in sham group,while a large number of Ki-67 positive bile duct cells were found in ischemia group. On postoperative day 3,ratio of Ki-67 positive to negative bile duct cells reached peak level,which descended by 37.74%(P=0.002) due to rapamycin administration.
     Conclusion
     Rapamycin inhibits expression of Ki-67 antigen in bile duct epithelium,inhibits interlobular bile duct proliferation within portal areas and as for peri-portal ductuli, rapamycin may also put obstacle to their proliferation.
     PartⅡEffect of Rapamycin on Liver Function and Survival
     Aim
     Explore the effect of rapamycin on liver function,body weight and survival of experimental rats.
     Method
     Male SD rates were randomly assigned into 4 groups as previously described.In ischemia groups,complete deprivation of bile duct arterial supply was performed while in sham groups,open-close operation was carried out.Daily intake of rapamycin(2mg/kg) was given in rapamycin groups and the same volume of saline was given in non-rapamycin groups.Body weight was measured before operation,postoperative day 7 and postoperative day 14.On day 1,3,7 and 14,blood sample(2~3ml) were obtained, followed by liver function examination including TBIL,ALP,GGT and ALT.
     Statistic analysis was performed by SPSS 13.0 software,results showed as X±S_X. Kruskal-Wallis H test was used for comparion of multiple independent samples and the following pairwise comparisons were performed by rank transformation and ONE WAY ANOVA.Kaplan—Meier survival analysis was performed followed by log-rank test. Statistic difference was considered when P<0.05.
     Results
     Serum TBIL in ischemia group ascended sharply postoperatively.When rapamycin administrated,TBIL of bile duct ischemic rats reached higher levels on day 7(P=0.005) and day 14(P=0.003) compared with ischemia group.Serum ALP of ischemia group increased from day 1 to day 7 postoperatively and on day 14,increasing tendency ceased. In ischemia+rapamycin group,serum ALP ascended continuously,without any remission even on day 14,when ALP was higher than ischemia group(P=0.012).Based on measurement of body weight,in ischemia group,experimental rats experienced weight loss after operation.While in ischemia+rapamycin group,animals suffered more weight loss than in ischemia group(P<0.01).Kaplan—Meier survival analysis showed compared with sham,there was no statistical decrease of cumulative survival in ischemia group,while decrease in ischemia+rapamycin group was significant(P<0.05).
     Conclusion
     After ischemia injury,liver experienced cholestasis.Rapamycin exaggerated intra-hepatic cholestasis,deteriorated liver function and affected negatively on postoperative nutrition and survival
     PartⅢEffect of Rapamycin on VEGF mRNA,p70S6k and phosphorylated p70S6k
     Aim
     Explore the effect of rapamycin on expression of VEGF mRNA and content of p70S6k and phosphorylated p70S6k in liver tissue of experimental rats.
     Method
     Male SD rates were randomly assigned into 4 groups as previously described.In ischemia groups,complete deprivation of bile duct arterial supply was performed,while in sham groups,open-close operation was carried out.Daily intake of rapamycin(2mg/kg) was given in rapamycin groups and the same volume of saline was given in non-rapamycin groups.On day 1,3,7 and 14,fresh liver tissue were obtained,followed by VEGF immunohistochemical staining,real-time PCR(dye method) and Western-blot to detect content of VEGF mRNA,p70S6k and phosphorylated p70S6k.
     Statistic analysis was performed by SPSS 13.0 software,results showed as X±S_X. Kruskal-Wallis H test was used for comparion of multiple independent samples and the following pairwise comparisons were performed by rank transformation and ONE WAY ANOVA.Statistic difference was considered when P<0.05.
     Results
     In ischemia group,obvious VEGF positive staining was found within potal areas, which mainly located at bile duct epithelium and vessel endothelium.While in sham or sham+rapamycin groups,less obvious positive staining was found.Right after surgey, VEGF mRNA increased sharply in ischemia group and reached peak level on day 3 postoperatively,which was 7.57 folds to sham(P<0.001).On day1,3,7,and 14,content of VEGF mRNA in ischemia group was signifantly higher than in sham(P<0.001).During rapamycin administration,VEGF mRNA of ischemia+rapamycin rats fluctuated in a similar manner to ischemia group,with a peak level on day 3,which was only 54%of that in ischemia group(P=0.005).On day1 and day 7,VEGF mRNA was significantly lower in ischemia+rapamycin group than in ischemia group(P<0.05).According to Western-blot, p70S6k was up-regulated in ischemia group,with the peak level 4.43 folds to sham (P<0.001).Simultaneously phosphorylated p70S6k was up-regulated,with a peak level 9.64 folds to sham(P<0.01).Giving rapamycin to bile duct ischemia rats,though there was a increase of p70S6k content,the peak was only 50%of that in ischemia group (P=0.004).On day1,7 and 14,p70S6k was lower in ischemia+rapamycin group than in ischemia group(P<0.005).In addition,there was no obvious increase of p70S6k when bile duct ischemia rats were administrated with rapamycin.On day 3 and 7,obvious difference was found between ischemia+rapamycin and ischemia group(P<0.005).
     Conclusion
     Rapamycin inhibits VEGF expression at transcriptional level,down-regulated p70S6k and its phophorylated formation.These results provided explanation to negative effect of rapamycin on adaptive bile duct proliferation in response to ischemia.
引文
1. Beaussier M, Wendum D, Fouassier L, Rey C, Barbu V, Lasnier E, Lienhart A, Scoazec JY, Rosmorduc O, Housset C. Adaptative bile duct proliferative response in experimental bile duct ischemia. J Hepatol 2005; 42(2): 257-65.
    2. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. Raft1: A mammalian protein that binds to fkbp12 in a rapamycin-dependent fashion and is homologous to yeast tors. Cell 1994; 78(1): 35-43.
    3. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT. Isolation of a protein target of the fkbp12-rapamycin complex in mammalian cells. J Biol Chem 1995; 270(2): 815-22.
    4. Kahan BD, Yakupoglu YK, Schoenberg L, Knight RJ, Katz SM, Lai D, Van Buren CT. Low incidence of malignancy among sirolimus/cyclosporine-treated renal transplant recipients. Transplantation 2005; 80(6): 749-58.
    5. Kauffman HM, Cherikh WS, Cheng Y, Hanto DW, Kahan BD. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 2005; 80(7): 883-9.
    6. Markus N, Monika L, Hans S, al. e. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with estabilished liver cirrhosis. J Hepatol 2006; 45: 786-796.
    7. Tao Y, Kim J, Schrier RW, Edelstein CL. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 2005; 16(1): 46-51.
    8. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP. Inhibition of mtor with sirolimus slows disease progression in han:Sprd rats with autosomal dominant polycystic kidney disease (adpkd). Nephrol Dial Transplant 2006; 21(3): 598-604.
    9. Woods TC, Marks AR. Drug-eluting stents. Annu Rev Med 2004; 55:169-78.
    10. Rehm B, Keller F, Mayer J, Stracke S. Resolution of sirolimus-induced pneumonitis after conversion to everolimus. Transplant Proc 2006; 38(3): 711-3.
    11. Vlahakis NE, Rickman OB, Morgenthaler T. Sirolimus-associated diffuse alveolar hemorrhage. Mayo Clin Proc 2004; 79(4): 541-5.
    12. Wadei H, Gruber SA, El-Amm JM, Gamick J, West MS, Granger DK, Sillix DH, Migdal SD, Haririan A. Sirolimus-induced angioedema Am J Transplant 2004; 4(6): 1002-5.
    13. Pelle G, Xu Y, Khoury N, Mougenot B, Rondeau E. Thrombotic microangiopathy in marginal kidneys after sirolimus use. Am J Kidney Dis 2005; 46(6): 1124-8.
    14. Smith KD, Wrenshall LE, Nicosia RF, Pichler R, Marsh CL, Alpers CE, Polissar N, Davis CL. Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J Am Soc Nephrol 2003; 14(4): 1037-45.
    15. Gaudio E, Onori P, Pannarale L, Alvaro D. Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: A morphological study. Gastroenterology 1996; 111(4): 1118-24.
    16. Saxena R, Theise ND, Crawford JM. Microanatomy of the human liver-exploring the hidden interfaces. Hepatology 1999; 30(6): 1339-46.
    17. Batts KP. Ischemic cholangitis. Mayo Clin Proc 1998; 73(4): 380-5.
    1.Beaussier M,Wendum D,Fouassier L,Rey C,Barbu V,Lasnier E,Lienhart A,Scoazec JY,Rosmorduc O,Housset C.Adaptative bile duct proliferative response in experimental bile duct ischemia.J Hepatol 2005;42(2):257-65.
    2.Gaudio E,Onori P,Pannarale L,Alvaro D.Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis:A morphological study.Gastroenterology 1996;111(4):1118-24.
    3.Saxena R,Theise ND,Crawford JM.Microanatomy of the human liver-exploring the hidden interfaces.Hepatology 1999;30(6):1339-46.
    4.Batts KP.Ischemic cholangitis.Mayo Clin Proc 1998;73(4):380-5.
    5. Howden B, Jablonski P, Grossman H, Marshall VC. The importance of the hepatic artery in rat liver transplantatioa Transplantation 1989; 47(3): 428-31.
    6. Zhao D, Zimmermann A, Wheatley AM. Morphometry of the liver after liver transplantation in the rat: Significance of an intact arterial supply. Hepatology 1993; 17(2): 310-7.
    7. Imamura H, Rocheleau B, Cote J, Huet PM, Long-term consequence of rat orthotopic liver transplantation with and without hepatic arterial reconstruction: A clinical, pathological, and hemodynamic study. Hepatology 1997; 26(1): 198-205.
    1.Keck PJ,Hauser SD,Krivi G,Sanzo K,Warren T,Feder J,Connolly DT.Vascular permeability factor,an endothelial cell mitogen related to pdgf.Science 1989;246(4935): 1309-12.
    2. Ziemer LS, Koch CJ, Maity A, Magarelli DP, Horan AM, Evans SM. Hypoxia and vegf mrna expression in human tumors. Neoplasia 2001; 3(6): 500-8.
    3. Assy N, Spira G, Paizi M, Shenkar L, Kraizer Y, Cohen T, Neufeld G, Dabbah B, Enat R, Baruch Y. Effect of vascular endothelial growth factor on hepatic regenerative activity following partial hepatectomy in rats. J Hepatol 1999; 30(5): 911-5.
    4. Gaudio E, Barbara B, Alvaro D, Glaser S, Francis H, Ueno Y, Meininger CJ, Franchitto A, Onori P, Marzioni M, Taffetani S, Fava G, Stoica G, Venter J, Reichenbach R, De Morrow S, Summers R, Alpini G. Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism. Gastroenterology 2006; 130(4): 1270-82.
    5. Beaussier M, Wendum D, Fouassier L, Rey C, Barbu V, Lasnier E, Lienhart A, Scoazec JY, Rosmorduc O, Housset C. Adaptative bile duct proliferative response in experimental bile duct ischemia. J Hepatol 2005; 42(2): 257-65.
    6. Luan FL, Ding R, Sharma VK, Chon WJ, Lagman M, Suthanthiran M. Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int 2003; 63(3): 917-26.
    7. Boffa DJ, Luan F, Thomas D, Yang H, Sharma VK, Lagman M, Suthanthiran M. Rapamycin inhibits the growth and metastatic progression of non-small cell lung cancer. Clin Cancer Res 2004; 10(1 Pt 1): 293-300.
    8. Sartelet H, Toupance O, Lorenzato M, Fadel F, Noel LH, Lagonotte E, Birembaut P, Chanard J, Rieu P. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. Am J Transplant 2005; 5(10): 2441-7.
    9. Jaeschke A, Dennis PB, Thomas G. Mtor: A mediator of intracellular homeostasis. Curr Top Microbiol Immunol 2004; 279: 283-98.
    10. Kim JE, Chen J. Cytoplasmic-nuclear shuttling of fkbpl2-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci U S A 2000; 97(26): 14340-5.
    11. Peng T, Golub TR, Sabatini DM. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 2002; 22(15): 5575-84.
    12. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL. Regulation of the tsc pathway by lkb1: Evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 2004; 18(13): 1533-8.
    13. Manning BD, Cantley LC. Rheb fills a gap between tsc and tor. Trends Biochem Sci 2003; 28(11): 573-6.
    14. Li Y, Corradetti MN, Inoki K, Guan KL. Tsc2: Filling the gap in the mtor signaling pathway. Trends Biochem Sci 2004; 29(1): 32-8.
    15. Inoki K, Li Y, Zhu T, Wu J, Guan KL. Tsc2 is phosphorylated and inhibited by akt and suppresses mtor signalling. Nat Cell Biol 2002; 4(9): 648-57.
    16. Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS, Ru B, Pan D. Tsc tumour suppressor proteins antagonize amino-acid-tor signalling. Nat Cell Biol 2002; 4(9): 699-704.
    17. Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mtor)-mediated downstream signaling. Proc Natl Acad Sci U S A 2002; 99(21): 13571-6.
    18. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002; 10(1): 151-62.
    19. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating tsc2. Nat Cell Biol 2002; 4(9): 658-65.
    20. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC. The lkb1 tumor suppressor negatively regulates mtor signaling. Cancer Cell 2004; 6(1): 91-9.
    21. Dennis PB, Pullen N, Kozma SC, Thomas G.The principal rapamycin-sensitive p70(s6k) phosphorylation sites, t-229 and t-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol 1996; 16(11): 6242-51.
    22. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J. Regulation of eif-4e bpl phosphorylation by mtor. J Biol Chem 1997; 272(42): 26457-63.
    23. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC, Jr., Abraham RT. Phosphorylation of the translational repressor phas-i by the mammalian target of rapamycin. Science 1997; 277(5322): 99-101.
    24. Manning BD. Balancing akt with s6k: Implications for both metabolic diseases and tumorigenesis. J Cell Biol 2004; 167(3): 399-403.
    25. Ruvinsky I, Meyuhas O. Ribosomal protein s6 phosphorylation: From protein synthesis to cell size. Trends Biochem Sci 2006; 31(6): 342-8.
    26. Smith KD, Wrenshall LE, Nicosia RF, Pichler R, Marsh CL, Alpers CE, Polissar N, Davis CL. Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J Am Soc Nephrol 2003; 14(4): 1037-45.
    27. Varma S, Khandelwal RL. Effects of rapamycin on cell proliferation and phosphorylation of mtor and p70(s6k) in hepg2 and hepg2 cells overexpressing constitutively active akt/pkb. Biochim Biophys Acta 2007; 1770(1): 71-8.
    1.Stein RC.Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment.Endocr Relat Cancer 2001;8(3):237-48.
    2.Ward SG,Finan P.Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents.Curr Opin Pharmacol 2003;3(4):426-34.
    3.Hidalgo M,Rowinsky EK.The rapamycin-sensitive signal transduction pathway as a target for cancer therapy.Oncogene 2000;19(56):6680-6.
    4.Rowinsky EK.Targeting the molecular target of rapamycin(mtor).Curr Opin Oncol 2004;16(6):564-75.
    5. Organ procurement and transplantation network/scientific registry of transplant recipients annual report: Transplant data 1993-2002. Washington, DC: US Department of Health and Human Services, Health Resources and Service Administration, Special Programs Bureau, Division of Transplantation; United Network of Organ Sharing; University Renal Research and Education Association;
    6. Cotterell AH, Fisher RA, King AL, Gehr TW, Dawson S, Sterling RK, Stravitz RT, Luketic VA, Sanyal AJ, Shiffman ML, Posner MP. Calcineurin inhibitor-induced chronic nephrotoxicity in liver transplant patients is reversible using rapamycin as the primary immunosuppressive agent Clin Transplant 2002; 16 Suppl 7: 49-51.
    7. Shenoy S, Hardinger KL, Crippin J, Desai N, Korenblat K, Lisker-Melman M, Lowell JA, Chapman W. Sirolimus conversion in liver transplant recipients with renal dysfunction: A prospective, randomized, single-center trial. Transplantation 2007; 83(10): 1389-92.
    8. Sebastian A AJ, Sher L, et al. Spare-the-nephron (stn) trial in liver transplant recipients: Interim efficacy and safety of mycophenolate mofetil/sirolimus maintenance therapy after calcineurin inhibitor withdrawal [abstract]. In: Abstracts of american transplant congress; 5-9 may 2007; san francisco. Mount laurel: American transplant congress; 2007. Abstract 1705.. 2007.
    9. Yang YJ, Li LX, He Q, Fan H, Jin ZK, Lang R, Kou JT, Li P, Xie DH, Chen DZ. Sirolimus as primary immunosuppressant for calcineurin inhibitor-related renal insufficiency after liver transplantation. Hepatobiliary Pancreat Dis Int 2007; 6(4): 376-8.
    10. Campbell MS, Rai J, Kozin E, Bloom RD, Markmann JF, Olthoff KM, Shaked A, Rajender Reddy K. Effects of sirolimus vs. Calcineurin inhibitors on renal dysfunction after orthotopic liver transplantation. Clin Transplant 2007; 21(3): 377-84.
    11. Forgacs B, Merhav HJ, Lappin J, Mieles L. Successful conversion to rapamycin for calcineurin inhibitor-related neurotoxicity following liver transplantation. Transplant Proc 2005; 37(4): 1912-4.
    12. Morard I, Dumortier J, Spahr L, Hadengue A, Majno P, Morel P, Mentha G, Giostra E. Conversion to sirolimus-based immunosuppression in maintenance liver transplantation patients. Liver Transpl 2007; 13(5): 658-64.
    13. Vivarelli M, Vetrone G, Zanello M, La Barba G, Cucchetti A, Lauro A, Grazi GL, Pinna AD. Sirolimus as the main immunosuppressant in the early postoperative period following liver transplantation: A report of six cases and review of the literature. Transpl Int 2006; 19(12): 1022-5.
    14. Maheshwari A, Torbenson MS, Thuluvath PJ. Sirolimus monotherapy versus sirolimus in combination with steroids and/or mmf for immunosuppression after liver transplantation. Dig Dis Sci 2006; 51(10): 1677-84.
    15. Di Benedetto F, Di Sandro S, De Ruvo N, Masetti M, Montalti R, Romano A, Guerrini GP, Ballarin R, De Blasiis MG, Gerunda GE. Sirolimus monotherapy in liver transplantation. Transplant Proc 2007; 39(6): 1930-2.
    16. Segundo DS, Ruiz JC, Izquierdo M, Fernandez-Fresnedo G, Gomez-Alamillo C, Merino R, Benito MJ, Cacho E, Rodrigo E, Palomar R, Lopez-Hoyos M, Arias M. Calcineurin inhibitors, but not rapamycin, reduce percentages of cd4+cd25+foxp3+ regulatory t cells in renal transplant recipients. Transplantation 2006; 82(4): 550-7.
    17. Avellino R, Romano S, Parasole R, Bisogni R, Lamberti A, Poggi V, Venuta S, Romano MF. Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood 2005; 106(4): 1400-6.
    18. Claxton DF, Ehmann C, Rybka W. Control of advanced and refractory acute myelogenous leukaemia with sirolimus-based non-myeloablative allogeneic stem cell transplantation. Br J Haematol 2005; 130(2): 256-64.
    19. Dancey JE. Mtor inhibitors in hematologic malignancies. Clin Adv Hematol Oncol 2003; 1(7): 419-23.
    20. Elsharkawi M, Staib L, Henne-Bruns D, Mayer J. Complete remission of postransplant lung metastases from hepatocellular carcinoma under therapy with sirolimus and mycophenolate mofetil. Transplantation 2005; 79(7): 855-7.
    21. Rizell M, Cahlin C, Friman S, Hafstrom L, Lonn L, Olausson M, Lindner P. Impressive regression of primary liver cancer after treatment with sirolimus. Acta Oncol 2005; 44(5): 496.
    22. Stippel DL, Kasper HU, Schleimer K, Tox U, Bangard C, Holscher AH, Beckurts KT. Successful use of sirolimus in a patient with bulky ovarian metastasis of hepatocellular carcinoma after liver transplantation. Transplant Proc 2005; 37(5): 2185-7.
    23. Liu M, Howes A, Lesperance J, Stallcup WB, Hauser CA, Kadoya K, Oshima RG, Abraham RT. Antitumor activity of rapamycin in a transgenic mouse model of erbb2-dependent human breast cancer. Cancer Res 2005; 65(12): 5325-36.
    24. Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O'Reilly T, Evans DB, Chen S, Lane HA. Dual inhibition of mtor and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res 2005; 11(14): 5319-28.
    25. Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS. Pim family kinases enhance tumor growth of prostate cancer cells. Mol Cancer Res 2005; 3(8): 443-51.
    26. van der Poel HQ Hanrahan C, Zhong H, Simons JW. Rapamycin induces smad activity in prostate cancer cell lines. Urol Res 2003; 30(6): 380-6.
    27. Boffa DJ, Luan F, Thomas D, Yang H, Sharma VK, Lagman M, Suthanthiran M. Rapamycin inhibits the growth and metastatic progression of non-small cell lung cancer. Clin Cancer Res 2004; 10(1 Pt 1): 293-300.
    28. Seufferlein T, Rozengurt E. Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res 1996; 56(17): 3895-7.
    29. Dilling MB, Dias P, Shapiro DN, Germain GS, Johnson RK, Houghton PJ. Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type i insulin-like growth factor receptor. Cancer Res 1994; 54(4): 903-7.
    30. Mateo-Lozano S, Tirado OM, Notario V. Rapamycin induces the fusion-type independent downregulation of the ews/fli-1 proteins and inhibits ewing's sarcoma cell proliferation. Oncogene 2003; 22(58): 9282-7.
    31. Wan X, Mendoza A, Khanna C, Helman LJ. Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 2005; 65(6): 2406-11.
    32.Mukohara T,Civiello G,Johnson BE,Janne PA.Therapeutic targeting of multiple signaling pathways in malignant pleural mesothelioma.Oncology 2005;68(4-6):500-10.
    33.Kauffman HM,Cherikh WS,Cheng Y,Hanto DW,Kahan BD.Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies.Transplantation 2005;80(7):883-9.
    34.Kahan BD,Knight R,Schoenberg L,Pobielski J,Kerman RH,Mahalati K,Yakupoglu Y,Aki FT,Katz S,Van Buren CT.Ten years of sirolimus therapy for human renal transplantation:The university of texas at houston experience.Transplant Proc 2003;35(3Suppl):25S-34S.
    35.Campistol JM,Eris J,Oberbauer R,Friend P,Hutchison B,Morales JM,Claesson K,Stallone G,Russ G,Rostaing L,Kreis H,Burke JT,Brault Y,Scarola JA,Neylan JF.Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation.J Am Soc Nephrol 2006;17(2):581-9.
    36.周俭,樊嘉,王征,吴志全,邱双健,黄晓武,孙健,肖永胜,汤钊猷,王玉琦.雷帕霉素转换治疗在肝癌肝移植中的初步经验.中华肝胆外科杂志2006;12(4):280-1.
    37.Toso C,Meeberg GA,Bigam DL,Oberholzer J,Shapiro AM,Gutfreund K,Ma MM,Mason AL,Wong WW,Bain VG,Kneteman NM.De novo sirolimus-based immunosuppression after liver transplantation for hepatocellular carcinoma:Long-term outcomes and side effects.Transplantation 2007;83(9):1162-8.
    38.Zimmerman MA,Trotter JF,Wachs M,Bak T,Campsen J,Wright F,Steinberg T,Bennett W,Kam I.Predictors of long-term outcome following liver transplantation for hepatocellular carcinoma:A single-center experience.Transpl Int 2007;20(9):747-53.
    39.Guba M,von Breitenbuch P,Steinbauer M,Koehl G,Flegel S,Hornung M,Bruns CJ,Zuelke C,Farkas S,Anthuber M,Jauch KW,Geissler EK.Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis:Involvement of vascular endothelial growth factor.Nat Med 2002;8(2):128-35.
    40.Luan FL,Ding R,Sharma VK,Chon WJ,Lagman M,Suthanthiran M.Rapamycin is an effective inhibitor of human renal cancer metastasis.Kidney Int 2003;63(3):917-26.
    41. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. Mtor controls cell cycle progression through its cell growth effectors s6kl and 4e-bp1/eukaryotic translation initiation factor 4e. Mol Cell Biol 2004; 24(1): 200-16.
    42. Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H, Houghton PJ. Sustained activation of the jnk cascade and rapamycin-induced apoptosis are suppressed by P53/p21(cipl). Mol Cell 2003; 11(6): 1491-501.
    43. Ai W, Bertram PQ Tsang CK, Chan TF, Zheng XF. Regulation of subtelomeric silencing during stress response. Mol Cell 2002; 10(6): 1295-305.
    44. Zhang JF, Liu JJ, Lu MQ, Cai CJ, Yang Y, Li H, Xu C, Chen GH. Rapamycin inhibits cell growth by induction of apoptosis on hepatocellular carcinoma cells in vitro. Transpl Immunol 2007; 17(3): 162-8.
    45. Semela D, Piguet AC, Kolev M, Schmitter K, Hlushchuk R, Djonov V, Stoupis C, Dufour JF. Vascular remodeling and antitumoral effects of mtor inhibition in a rat model of hepatocellular carcinoma. J Hepatol 2007; 46(5): 840-8.
    46. Sieghart W, Fuereder T, Schmid K, Cejka D, Werzowa J, Wrba F, Wang X, Gruber D, Rasoul-Rockenschaub S, Peck-Radosavljevic M, Wacheck V. Mammalian target of rapamycin pathway activity in hepatocellular carcinomas of patients undergoing liver transplantation. Transplantation 2007; 83(4): 425-32.
    47. Dharancy S, Catteau B, Mortier L, Boleslawski E, Declerck N, Canva V, Piette F, Mathurin P, Pruvot FR. Conversion to sirolimus: A useful strategy for recalcitrant cutaneous viral warts in liver transplant recipient Liver Transpl 2006; 12(12): 1883-7.
    48. Samonakis DN, Cholongitas E, Triantos CK, Griffiths P, Dhillon AP, Thalheimer U, Patch DW, Burroughs AK. Sustained, spontaneous disappearance of serum hcv-rna under immunosuppression after liver transplantation for hcv cirrhosis. J Hepatol 2005; 43(6): 1091-3.
    49. Markiewicz M, Kalicinski P, Teisseyre J, Ismail H, Kaminski A, Teisseyre M. Rapamycin in children after liver transplantation. Transplant Proc 2003; 35(6): 2284-6.
    50. Montalbano M, Neff GW, Slapak-Green G, Berney T, Meyer D. Sirolimus therapy in orthotopic liver transplant (olt) recipients with acute renal insufficiency. Dig Dis Sci 2004; 49(11-12): 1986-9.
    51. Kahn J, Muller H, Iberer F, Kniepeiss D, Duller D, Rehak P, Tscheliessnigg K. Incisional hernia following liver transplantation: Incidence and predisposing factors. Clin Transplant 2007; 21(3): 423-6.
    52. Zhou J, Fan J, Wang Z, Wu ZQ, Qiu SJ, Huang XW, Yu Y, Sun J, Xiao YS, He YF, Wang YQ, Tang ZY. Conversion to sirolimus immunosuppression in liver transplantation recipients with hepatocellular carcinoma: Report of an initial experience. World J Gastroenterol 2006; 12(19): 3114-8.
    53. Maramattom BV, Wijdicks EF. Sirolimus may not cause neurotoxicity in kidney and liver transplant recipients. Neurology 2004; 63(10): 1958-9.
    54. Backman L, Reisaeter AV, Wramner L, Ericzon BG, Salmela K, Brattstrom C. Renal function in renal or liver transplant recipients after conversion from a calcineurin inhibitor to sirolimus. Clin Transplant 2006; 20(3): 336-9.
    55. Smith AD, Bai D, Marroquin CE, Tuttle-Newhall JE, Desai DM, Collins BH, Muir A, Kuo PC, McHutchison J, Rockey DC. Gastrointestinal hemorrhage due to complicated gastroduodenal ulcer disease in liver transplant patients taking sirolimus. Clin Transplant 2005; 19(2): 250-4.
    56. Tracey C, Hawley C, Griffin AD, Strutton G, Lynch S. Generalized, pruritic, ulcerating maculopapular rash necessitating cessation of sirolimus in a liver transplantation patient. Liver Transpl 2005; 11(8): 987-9.
    57. Schaffellner S, Jakoby E, Kniepeiss D, Stadlbauer V, Duller D, Iberer F, Tscheliessnigg KH. Center experience in liver transplantation (1tx): Management of dermal side effects caused by sirolimus. Int Immunopharmacol 2005; 5(1): 137-40.
    58. Morelon E, Stern M, Israel-Biet D, Correas JM, Danel C, Mamzer-Bruneel MF, Peraldi MN, Kreis H. Characteristics of sirolimus-associated interstitial pneumonitis in renal transplant patients. Transplantation 2001; 72(5): 787-90.
    59. Haydar AA, Denton M, West A, Rees J, Goldsmith DJ. Sirolimus-induced pneumonitis: Three cases and a review of the literature. Am J Transplant 2004; 4(1): 137-9.
    60. Rehm B, Keller F, Mayer J, Stracke S. Resolution of sirolimus-induced pneumonitis after conversion to everolimus. Transplant Proc 2006; 38(3): 711-3.
    61. Weiner SM, Sellin L, Vonend O, Schenker P, Buchner NJ, Flecken M, Viebahn R, Rump LC. Pneumonitis associated with sirolimus: Clinical characteristics, risk factors and outcome a single-centre experience and review of the literature. Nephrol Dial Transplant 2007; 22(12): 3631-7.
    62. Lennon A, Finan K, FitzGerald MX, McCormick PA. Interstitial pneumonitis associated with sirolimus (rapamycin) therapy after liver transplantation. Transplantation 2001; 72(6): 1166-7.
    63. Howard L, Gopalan D, Griffiths M, Mahadeva R. Sirolimus-induced pulmonary hypersensitivity associated with a cd4 t-cell infiltrate. Chest 2006; 129(6): 1718-21.
    64. Roberts RJ, Wells AC, Unitt E, Griffiths M, Tasker AD, Allison ME, Bradley JA, Watson CJ. Sirolimus-induced pneumonitis following liver transplantation. Liver Transpl 2007; 13(6): 853-6.
    65. Imokawa S, Colby TV, Leslie KO, Helmers RA. Methotrexate pneumonitis: Review of the literature and histopathological findings in nine patients. Eur Respir J 2000; 15(2): 373-81.
    66. Copper JA, Jr. Drug-induced lung disease. Adv Intern Med 1997; 42: 231 -68.
    67. Champion L, Stern M, Israel-Biet D, Mamzer-Bruneel MF, Peraldi MN, Kreis H, Porcher R, Morelon E. Brief communication: Sirolimus-associated pneumonitis: 24 cases in renal transplant recipients. Ann Intern Med 2006; 144(7): 505-9.
    68. DiJoseph JF, Sharma RN, Chang JY. The effect of rapamycin on kidney function in the sprague-dawley rat. Transplantation 1992; 53(3): 507-13.
    69. Morales JM, Wramner L, Kreis H, Durand D, Campistol JM, Andres A, Arenas J, Negre E, Burke JT, Groth CG. Sirolimus does not exhibit nephrotoxicity compared to cyclosporine in renal transplant recipients. Am J Transplant 2002; 2(5): 436-42.
    70. Olyaei AJ, de Mattos AM, Bennett WM. Nephrotoxicity of immunosuppressive drugs: New insight and preventive strategies. Curr Opin Crit Care 2001; 7(6): 384-9.
    71. Pelle G, Xu Y, Khoury N, Mougenot B, Rondeau E. Thrombotic microangiopathy in marginal kidneys after sirolimus use. Am J Kidney Dis 2005; 46(6): 1124-8.
    72. Smith KD, Wrenshall LE, Nicosia RF, Pichler R, Marsh CL, Alpers CE, Polissar N, Davis CL. Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J Am Soc Nephrol 2003; 14(4): 1037-45.
    73. Sartelet H, Toupance O, Lorenzato M, Fadel F, Noel LH, Lagonotte E, Birembaut P, Chanard J, Rieu P. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. Am J Transplant 2005; 5(10): 2441-7.
    74. Pintavorn P, Cook WJ. Acute renal failure in a liver transplant patient after treatment with sirolimus. Am J Kidney Dis 2006; 47(4): 692-6.
    75. Boletis J, Balitsari A, Filiopoulos V, Stamataki E, Lionaki S, Zavos G, Kostakis A. Delayed renal graft function: The influence of immunosuppression. Transplant Proc 2005; 37(5): 2054-9.
    76. Amer H, Fidler ME, Myslak M, Morales P, Kremers WK, Larson TS, Stegall MD, Cosio FG. Proteinuria after kidney transplantation, relationship to allograft histology and survival. Am J Transplant 2007; 7(12): 2748-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700