Smg1 knockdown和泛素—蛋白酶体抑制剂导致Upf1和Upf2表达的增加
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Smg1 konckdown导致Upf1和Upf2表达的升高
     背景及目的
     mRNA的降解是基因表达过程中一个很重要的调控方式。目前已知真核细胞mRNA的降解有三种途径,其中无义介导的mRNA降解(nonsense-mediated mRNA decay, NMD)是近年发现的一种在真核生物中广泛存在的高度保守的RNA监控(RNA surveillance)机制。NMD能够选择性地降解含有提前终止翻译密码子(premature termination condon, PTC,又称无义密码子)的mRNA,从而阻止异常的截短蛋白(truncated protein)的产生。这种截短蛋白不仅不具有正常的生理功能,而且能与正常蛋白发生竞争,从而影响细胞的正常生理功能。
     NMD途径需要有剪接、翻译、磷酸化过程以及特异蛋白质组分的参与。作为剪接的结果,在mRNA的外显子-外显子连接(exon-exon junction,EEJ)的上游20-24个核苷酸处装配有外显子连接复合物(exon junction complex,EJC),对于NMD是必需的。Upf(up-frameshift mutant)是目前研究较多的NMD反式作用因子,包括Upf1、Upf2和Upf3。当前体mRNA发生剪接后,EJC与核浆穿梭蛋白upf3和TAP结合,介导mRNA出核。出核后,Upf2通过与Upf3结合而补充到mRNA上,mRNA与核糖体结合并开始翻译。正常情况下,核糖体会沿着mRNA滑动将所有EJC清除,直至遇到正常终止密码子后终止翻译。如果核糖体在距EJC上游>50-55 nt处遇到PTC,翻译将提前终止,由Smg1、Upf1、eRF等组成的SURF(SMG1-Upf1-eRF)复合物与Upf2结合,最终导致mRNA的脱帽和降解。
     Smg1是NMD组分中一个很重要的因子,它作为一个PI-3激酶,与另一NMD组分Upf1相结合并对其进行磷酸化,同时形成SURF复合物。后者与Upf2结合并最终导致无义mRNA的降解。Smg1和Upf1不仅作为NMD的重要组分,而且还参与DNA代谢过程。有研究报道,抑制Upf1基因的表达可以导致S早期捕获和DNA损伤反应。Smg1也被报道参与细胞周期的运行和DNA损伤的关键步骤。这些报道说明NMD组分通过多途径参与基因信息稳定性的维持。然而,目前对NMD各组分的定量调节机制还所知甚少。
     方法
     为了探讨Smg1对Upf1及Upf2含量的影响,本研究用RNAi方法使Hela细胞Smg1 knockdown,然后利用western blot观察其对Upf1和Upf2的蛋白表达的影响,用免疫荧光观察Upf1和Upf2在细胞中的定位及其荧光强度的变化,用realtime-PCR方法观察其对Upf1和Upf2的mRNA水平的影响;并利用不同的细胞系和不同序列的RNAi片段,对实验结果加以证实。
     结果
     (1) Western blotting结果显示,和Luciferase SiRNA转染的细胞相比,用SMG1 5032 SiRNA转染的Hela细胞中,Smg1的蛋白含量明显降低,说明Smg1被成功地knockdown,基因受到抑制;
     (2)在Smg1 5032、2999、5202几种SiRNA转染的细胞中,Upf1和Upf2的蛋白表达明显增高,说明Smg1 knockdown能够导致Upf1和Upf2蛋白的表达增加。
     (3) Smg1 SiRNA同样能够导致A549和HE-4细胞中Upf1和Upf2的蛋白表达升高,说明Smg1 knockdown对Upf1和Upf2蛋白的上调作用在培养的人类细胞系中是一个普遍现象。
     (4)经过Smg1 5032 SiRNA和Smg1 2999 SiRNA转染的细胞,分别提取细胞核和细胞浆蛋白,western blotting显示Upf1和Upf2蛋白表达的增高同时出现于胞浆蛋白和胞核蛋白中。结果说明,Smg1 knockdown能够导致胞浆和胞核中的Upf1和Upf2蛋白同时增加。
     (5)免疫荧光染色结果显示,Smg1主要位于胞浆内,在胞核内也有少量表达;Upf1蛋白为胞浆蛋白,主要位于细胞浆内;Upf2则主要位于围绕核膜的核周区,荧光染色显示一条绿色的细线。与Luciferase SiRNA转染的细胞相比,Smg1 knockdown的细胞中Smg1的荧光强度明显降低,而Upf1和Upf2的荧光强度均明显升高。此结果与前面的结果一致,从形态学上进一步证实了Smg1 knockdown能够导致Upf1和Upf2蛋白表达的升高。
     (6)经过Smg1 knockdown的细胞,其细胞中Smg1的mRNA水平明显降低,证实了Smg1 SiRNA的基因抑制作用;同时,细胞中Upf1和Upf2的mRNA水平没有显著升高或降低,说明Smg1 knockdown不能影响细胞中Upf1和Upf2的mRNA水平,其所导致的Upf1和Upf2表达增高可能是翻译后水平的升高。
     结论
     本研究首次阐明了Upf1和Upf2的定量调节机制,提示Smg1 knockdown导致人细胞系中Upf1和Upf2蛋白的表达升高,亦即Smg1参与Upf1和Upf2蛋白的下调。
     第二部分泛素-蛋白酶体抑制剂导致Upf1和Upf2表达的升高
     背景及目的
     泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)是真核细胞内主要的蛋白水解酶体系,由泛素(ubiquitin,Ub)、泛素活化酶(ubiquitin-activating enzyme,E1)、泛素耦联酶(ubiquitin-conjugating enzymes,E2s)、泛素一蛋白连接酶(ubiquitin-protein ligating enzymes,E3s)、26S蛋白酶体(26S proteasome)以及泛素再循环酶(ubiquitin recycling enzymes)等组成。泛素分子主要通过泛素活化酶、泛素结合酶和泛素-蛋白连接酶与靶蛋白结合形成一条多泛素链,将底物蛋白泛素化,使靶蛋白被26S蛋白酶体所识别和降解。泛素一蛋白酶体系统是细胞内三磷酸腺苷(adeno-sine triphosphate,ATP)依赖的非溶酶体蛋白降解机制,可高效并高选择性地降解细胞内蛋白质,参与细胞的多种生理活动过程,比如细胞凋亡、MHC I类抗原的递呈、细胞周期以及细胞内信号传导等,对维持细胞正常的生理功能具有十分重要的意义。
     UPS对蛋白质的降解包括两个连续的步骤:(1)在多种蛋白酶的作用下,多个Ub分子与底物蛋白结合,从而标记底物蛋白;(2)标记了的底物蛋白,被26S蛋白酶体识别而降解。在第一步Ub标记底物蛋白的过程中,目前认为至少需要3个接连反应来完成:首先,Ub与E1结合,形成高能硫脂键,使Ub活化;而后通过转脂作用,Ub从El转移到E2s上;活化的Ub再从E2s转移到E3s,并与底物结合,形成底物一E3s复合物,使底物发生Ub化,即多个Ub分之通过异肽键与底物蛋白链接,形成多聚泛素链。第二步:首先由26S蛋白酶体两端的19s调节亚基识别、结合并展平Ub化的底物蛋白,然后.由26S蛋白酶体的催化核心20S亚基,将蛋白质水解为多肽;最后,多聚Ub链在泛素再循环酶的作用下,释放出Ub,以重新利用,从而形成Ub的再循环途径。
     为了探讨泛素-蛋白酶体系统这一被机体广泛应用的蛋白降解机制是否也适用于NMD系统,本研究采用泛素-蛋白酶体抑制剂MG132和lactacystin作用于Hela细胞,观察其对Upf1和Upf2蛋白表达的影响。
     方法
     利用泛素-蛋白酶体抑制剂MG132和lactacystin作用于Hela细胞,用western blot观察其对Upf1和Upf2蛋白表达的影响,用免疫荧光观察Upf1和Upf2在细胞中荧光强度的变化,用realtime-PCR方法观察其对Upf1和Upf2的mRNA水平的影响,同时用免疫共沉淀方法检测Upf1和泛素分子之间的相互作用。为了探讨Smg1和泛素-蛋白酶体系统对Upf1和Upf2作用之间的关系,本研究同时利用SMG1 knockdown和泛素-蛋白酶体抑制剂作用于Hela细胞,观察Upf1和Upf2的表达是否有所改变。
     结果
     (1)Western blotting结果显示,利用泛素-蛋白酶体抑制剂MG132和Lactacystin,Hela细胞中的Upf1和Upf2蛋白表达明显增加;免疫荧光染色结果中,二者的荧光强度也相应增加;但是,通过realtime-PCR的检测,我们不能观察到二者mRNA水平的变化。
     (2)用泛素-蛋白酶体抑制剂MG132作用于Hela细胞,收集细胞后分别用anti Upf1抗体和anti ubiquitin抗体进行免疫沉淀检测,实验结果显示,与DMSO组细胞相比,MG132处理后的细胞与Upf1共沉淀时,Upf1的蛋白表达明显升高,但是不能观察到Upf1的条带迁移,而且也不能检测到ubiquitin的存在;在与ubiquitin共沉淀时,我们也不能观察到与Upf1分子量大小相当的条带出现。结果表明,泛素-蛋白酶体系统抑制剂不能直接导致Upf1分子的多泛素化。
     (3)将泛素-蛋白酶体抑制剂MG132作用于经过SMG1 knockdown的Hela细胞中,结果发现,随着抑制剂浓度的增加,Upf1和Upf2的蛋白表达也随之增高,说明SMG1 knockdown和泛素-蛋白酶体抑制剂对Upf1和Upf2的调节具有累加作用,虽然并不排除有部分的重叠。
     结论
     泛素-蛋白酶体系统抑制剂导致Upf1和Upf2蛋白表达的增加,亦即泛素-蛋白酶体系统对Upf1和Upf2蛋白有下调作用。但是,Upf1分子不能被直接泛素化,推测泛素-蛋白酶体系统可能是通过其靶分子来间接地导致Upf1的降解。
     Smg1 knockdown和泛素-蛋白酶体抑制剂的同时作用使Upf1和Upf2的蛋白升高具有累加效应,说明Smg1和泛素-蛋白酶体系统是通过不同的机制和通路对Upf1和Upf2进行调节的。
Part I Smg1 knockdown caused accumulation of Upf1 and Upf2 proteins in human cells
     Gene expression is regulated by various mechanisms in which RNA decay pathway is one of the most important regulators. Nonsense mediated mRNA decay (NMD) is a highly conserved pathway which degrades the nonsense mutation (also called premature termination codon) containing mRNA selectively. NMD suppresses the expression of nonsense mutation derived truncated proteins which would be deleterious by competing with activity of full-length normal proteins and thus plays an important protective role for heterozygous carriers. In addition to nonsense-mutation in genome, transcription error, alternative splicing and RNA editing can also bear targets of NMD. It is thought to function as an important member of quality control in genetic information.
     NMD activity requires various RNA metabolic mechanisms such as splicing, capping, and translation. As a result of splicing, exon junction complex (EJC) is assembled 20–24 nt upstream of the exon–exon junction on the mRNA, which is essential for NMD. Upf3, a member of NMD factors, is actually a component of EJC; and Upf2, another NMD factor, is recruited onto mRNA molecule by binding to Upf3. When ribosome stops at premature termination codon present at least 50–55 nt upstream of an EJC, a complex named Smg1-Upf1-eRF (SURF) binds to Upf2. Smg1 is a member of PI-3 kinases and is also an essential component for NMD. It phosphorylates Upf1 helicase during NMD reaction. Finally, this interaction causes decapping of mRNA followed by degradation.
     Upf1 and Smg1 are also known to participate in DNA metabolism. Actually, knockdown of Upf1 in human cells causes arrest in early S phase and DNA-damage response by ATR. Smg1 is also known to work in cell cycle progression and DNA damage checkpoint pathway. These reports showed the multi-function of NMD components which are required for the stability of genomic information. However, their quantitative regulation of each component is largely unknown.
     Hela cells were transfected with 5032 siRNA against Smg1 mRNA and their lysates were analyzed by western blotting with specific antibodies. Smg1 was down-regulated by siRNA transfection successfully as compared to control cells transfected with anti-Luciferase siRNA. We observed that both Upf1 and Upf2 proteins increased significantly in Smg1 knockdown cells. Next, we tested various Smg1 siRNA molecules with different target sequences. All of them caused similar accumulations of Upf1 and Upf2 proteins. From these results, we concluded Smg1 knockdown could cause the accumulation of Upf1 and Upf2 proteins in human cells. Similar up-regulation of Upf1 and Upf2 proteins in Smg1 knockdown cells was also observed in A549 and skin derived normal fibroblast HE-4 cells. Then we concluded that this up-regulation might be a general phenomenon in culturing human cells.
     To determine the cellular fraction where Upf1 and Upf2 accumulated, western blotting was performed with fractionated cellular lysates. By Smg1 siRNA transfection, both Upf1 and Upf2 proteins increased in nuclear and cytoplasmic fractions. Then, it seemed that Smg1 could down-regulate the amounts of Upf1 and Upf2 proteins in nuclear and cytoplasmic fraction. However, we could not detect significant augmentation in mRNAs of Upf1 and Upf2 from our real-time PCR results.
     To get the morphologic proofs of our results, we preformed immunofluorescence staining to test the location of Upf1 and Upf2 proteins. By using specific antibodies, we observed that Upf1 was evenly distributed throughout the cytoplasm, while Upf2 showed strong perinuclear staining. With Smg1 SiRNA knockdown, the fluorescence signals of Smg1 in cells weakened significantly, which suggested the successful knockdown of Smg1. At the same time, we found the fluorescence signals of Upf1 and Upf2 increased respectively, which confirmed our results.
     Conclusion:Smg1-knockdown caused accumulation of Upf1 and Upf2 proteins in human cells.
     PartⅡUbiquitin-proteasome inhibitors caused accumulation of Upf1 and Upf2 proteins in human cells
     The generation and degradation of intracellular proteins must keep dynamic balance, which playsa key role to maintain cellular stable and normal functions. The ubiquitin proteasome system(UPS)is an important pathway for the intracellular proteins target degradation.Polymers of ubiquitin can be covalently attached to protein targets by a three-step(ubiquitin-activating enzymes,ubiquitin conjugating enzymes,ubiquitin-protein ligases)conjugated cascade responses . The resulting ubiquitylated proteins are then recognized and degraded by the 26S proteasome.UPS can degrade intracellular proteins with high effeciency and selectivity,especially for cell cycle regulated proteins, oncoproteins,tumor suppressor proteins,and denaturalized proteins.UPS is assential for many cellular processes,including apoptosis,MHC class I antigen presentation,cell cycle and intracellular signal transferring,which has a closed relationship with the cellular physiology and pathology.
     Ubiquitin-proteasome system is a principal mechanism for protein catabolism in the mammalian cytosol and nucleus. It plays an important role in a wide variety of cellular processes including cell cycle, differentiation, DNA repair, transcriptional regulation, response to stress, and many other basic cellular processes. MG132, a kind of peptide aldehyde, is a more potent and selective proteasome inhibitor. In our present studies, MG132 treatment caused the accumulation of Upf1 and Upf2 proteins, indicating that ubiquitin-proteasome might participate in the down-regulation of the amount of Upf1 and Upf2.
     These results prompted us to speculate that Upf1 and Upf2 would be target molecules of ubiquitination. To investigate this possibility, we tried detection of higher band shift caused by polyubiquitination of Upf1 proteins. However, we detected no band shift of either unpurified Upf1 or immuno-precipitated Upf1, and no signal of ubiquitin conjugation was detected even in immuno-purified Upf1. At least, the accumulation of Upf1 could not be accounted by the fraction of very little band shift in MG132 treated cells. In conclusion, our experiments provided no clear evidence for polyubiquitination of Upf1 and proposed that the target molecule(s) of ubiquitin-proteasome might down-regulate the amount of Upf1 directly or indirectly.
     To test whether Smg1 knockdown and ubiquitin-proteasome inhibitors share the same pathway to cause the accumulation of Upf1 and Upf2, we treated Smg1-knockdowned cells with proteasome inhibitors and the lysates for immunoblot were obtained. If they affect on the increments in Upf1 and Upf2 independently, an additional accumulation should be expected. Smg1 knockdown and proteasome inhibitor MG132 caused accumulation of Upf1 and Upf2 respectively. Moreover, in Smg1 knockdowned cells,we detected additive effects of Upf1 and Upf2 accumulation with proteasome inhibitors treatment, which suggested the possibility that SMG1 and ubiquitin-protesome system shared a different, if not all, pathway that regulated the amounts of Upf1 and Upf2.
     Conclusion:Ubiquitin-proteasome inhibitors caused accumulation of Upf1 and Upf2 proteins in human cells, which shared a different pathway with Smg1 knockdown.
引文
1. Aderson JS, Parker RP. The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex. EMBO J, 1998, 17(5): 1497-1506
    2. Bhattacharya, A., Czaplinski, K., Trifillis, P., He, F., Jacobson, A., Peltz, S. W. Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA, 2000, 6: 1226-1235
    3. Cali, B. M., and Anderson, P. mRNA surveillance mitigates genetic dominance in Caenorhabditis elegans. Mol. Gen. Genet, 1989, 260: 176-184
    4. Czaplinski, K., Ruiz-Echevarria, M. J., Paushkin, S. V., Han, X., Weng, Y., Perlick, H. A., Dietz, H. C., Ter-Avanesyan, M. D., Peltz, S. W. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev, 1998, 12: 1665-1677
    5. Mendell, J. T. and Dietz, H. C. When the message goes Awry: Disease-Producing mutations that influence mRNA content and performance. Cell, 2001, 107: 411-414
    6. Noensie EN, Dietz HC. A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition.Nature Biotechnol, 2001, 19: 434
    7. Peltz SW, Brown AH, Jacobson A. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans2acting factor. Genes Dev, 1993, 7 (9): 1737-1754
    8. Muhlrd D, Parker R. Premature translational termination triggers mRNA decapping. Nature, l994, 370: 578-581
    9. Maquat LE. Nonsense-mediated mRNA decay in mammals. J Cell Sci, 2005, 118(9): 1773-1776.
    10. Baek D, Green P. Sequence conservation, relative isoform frequencies, and nonsense2mediated decay in evolutionarily conserved alternative splicing. Proc Natl Acad Sci, 2005, 102(36): 12813-12718.
    11. Weischenfeldt J, Lykke2Andersen J, Porse B. Messenger RNA surveillance: neutralizing natural nonsense. Curr Biol, 2005, 15(14): R559-R562
    12. Gonzalez CI, Ruiz-Echevarria MJ, Vasudevan S. The yeast hnRNP-like protein Hrp1/Nab4 marks a transcript for nonsense-mediated mRNA decay. Mol Cel1, 2000, 5: 489-499
    13. Hentze MW, Kulozik AE. A perfect message: RNA surveillance and nonsense-mediated decay. Cell, 1999, 96(3): 307
    14. Thomas Schell, Thomas Kocher. Complexes between the nonsense-mediated mRNA decay pathway factor human upfl (up-frameshift protein 1) and essential nonsense-mediated mRNA decay factors in HeLa cells. Biochem J, 2003, 373: 775
    15. Maquat, L.E. and Carmichael, G.G. Quality Control of mRNA Function. Cell, 2001, 104: 173-176
    16. Brocke, K. S., Neu-Yilik, G., Gehring, N. H., Hentze, M. W., Kulozik, A. E. The human intronless melanocortin 4-receptor gene is NMD insensitive. Hum. Mol. Genet, 2002, 11: 331-335
    17. Gonzalez CI, Bhattacharya A, WangW, et al. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene, 2001, 274(1-2): 15-25
    18. Maquat LE.Nonsense-mediated mRNA decay. Curr Biol, 2002, 12(6):R196-197
    19. Mendell, JT, ap Rhys CM, Dietz, HC. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science, 2001, 298: 419-422
    20. Perrin-Vidoz L, Sinilnikova OM. The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Hum Mol Genet, 2002, 11(23): 2805
    21. Abraham RT. The ATM-related kinase, hSMG-1, bridges genome and RNA surveillance pathways. DNA Repair(Amst), 2004, 3(8-9):919
    22. Culbertson MR. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet, 1999, 15(2): 74-80
    23. Baserga, S. J., Benz Jr, E. J. Nonsense mutations in the human beta-globin gene affect mRNA metabolism. Proc. Natl. Acad. Sci. U. S. A., 1988, 85: 2056-2060
    24. Beelman, C. A., Stevens, A., Caponigro, G., LaGrandeur, T. E., Hatfield, L., Fortner, D. M., Parker, R. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature, 1996, 382: 642-646
    25. Lewis, J. D., and Izaurralde, E. The role of the cap structure in RNA processing and nuclear export. Eur. J. Biochem., 1997, 247: 461-469
    26. Baserga, S. J., Benz Jr, E. J. Nonsense mutations in the human beta-globin gene affect mRNA metabolism. Proc. Natl. Acad. Sci. U. S. A., 1988, 85: 2056-2060
    27. Dreyfuss, G., Kim, V. N., Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol., 2002, 3: 195-205
    28. Maquat, L. E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol, 2004, 5: 89-99
    29. Le Hir, H., Izaurralde, E., Maquat, L. E. Moore, M. J. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J, 2000, 19: 6860-6869
    30. Le Hir, H., Gatfield, D., Izaurralde, E., Moore, M. J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated decay. EMBO J, 2001, 20: 4987-4997
    31. Ballut, L., Marchadier, B., Baguet, A., Tomasetto, C., Seraphin, B., Le Hir, H. The exon junction core complex is locked onto RNA by inhibition of eIF4AⅢATPase activity. Nat. Struct. Mol. Biol, 2005, 12: 861-869
    32. Bono, F., Ebert, J., Unterholzner, L., Guttler, T., Izaurralde, E., Conti, E. Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep., 2004, 5: 304-310
    33. Lewis BP, Green RE. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA, 2003, 100(1): 189
    34. Lykke-Andersen, J., Shu, M. D., Steitz, J. A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell, 2000, 103: 1121-1131
    35. Mendell, J. T., Medghalchi, S. M., Lake, R. G., Noensie, E. N., Dietz, H. C. Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes. Mol. Cell. Biol, 2000, 20: 8944-8957
    36. Serin, G., Gersappe, A., Black, J. D., Aronoff, R., Maquat, L. E. Identification andcharacterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol Cell Biol, 2001, 21: 209-223
    37. Hosoda, N., Kim, Y. K., Lejeune, F., Maquat, L. E. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-medited mRNA decay in mammalian cells. Nat Struct Mol Biol, 2005, 12: 893-901
    38. Minvielle SL, Beyer K, Krecic AM, et al. Control of cleavage site selection during mRNA 3' end formation by a yeast hnRNP. EMBO J, 1998, 17: 7454-7468
    39. Culbertson MR, Leeds PF, Looking at mRNA decay pathways through the window of molecular evolution. Curr Opin Genet Dev, 2003, 13: 207
    40. Sheila V, Graham. Nonsense-mediated decay breaks the circle? Biochem J, 2003, 373(pt 3): e5-6
    41. He, F., Peltz, S. W., Donahue, J. L., Rosbash, M., and Jacobson, A. Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1-mutant. Proc. Natl. Acad. Sci. USA, 1993, 90: 7034-7038
    42. Cui, Y., Hagan, K. W., Zhang, S., and Peltz, S. W. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination condon. Genes Dev, 1995, 9: 423-436
    43. Czaplinski, K., Ruiz-Echevaria, M. J., Gonzalez, C. I., and Peltz, S. W. Should we kill the messenger? The role of the surveillance complex in translation termination and mRNA turnover. Bioessays, 1999, 21: 685-696
    44. Zhang, J., Sun, X., Qian, Y., Maquat, L. E. Intron function in the nonsense-mediated decay of bete-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA, 1998, 4: 801-815
    45. Zhang, J., Sun, X., Qian, Y., LaDuca, J. P., Maquat, L. E. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol Cell Biol, 1998, 18: 5272-5283
    46. Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Moriya, R., Hoshino, S., Ohno, M., Dreyfuss, G., Ohno, S. Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediatedmRNA decay. Genes Dev, 2006, 20: 355-367
    47. Lejeune, F., Li, X., Maquat, L. E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell, 2003, 12: 675-687
    48. Denning, G., Jamieson, L., Maquat, L. E., Thompson, E. A., Fields, A. P. Cloning of a Novel Phosphatidylinositol Kinase-related Kinase:characterization of the human SMG-1 RNA surveillance protein. J. Biol. Chem. 2001, 276, 25: 22709-22714
    49. Brumbaugh, K. M., Otterness, D. M., Geisen, C., Oliveira, V., Brognard, J., Li X., Lejeune, F., Tibbetts, R. S., Maquat, L. E., Abraham, R. T. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol. Cell, 2004, 14: 585-598
    50. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y., and Ohno, S. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev, 2001, 15: 2215-2228
    51. Yamashita, A., Kashima, I., Ohno, S. The role of SMG-1 in nonsense-mediated mRNA decay. Biochim. Biophys. Acta, 2005, 1754: 305-315
    52. Brumbaugh, K. M., Otterness, D. M., Geisen, C., Oliveira, V., Brognard, J., Li X., Lejeune, F., Tibbetts, R. S., Maquat, L. E., Abraham, R. T. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol. Cell, 2004, 14: 585-598
    53. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev, 2001, 15: 2177-2196
    54. Azzalin, C.M. and Lingner, J. The human RNA surveillance factor UPF1 is required for S phase progression and genome stability. Curr. Biol, 2006, 16: 433-439
    55. Zhao XF, Nowak NJ, Shows TB, et a1. MAGOH interacts with a novel RNA-binding protein. Genomics, 2000, 63: 145
    56. Frischmeyer, P. A. and Dietz, H. C. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet, 1999, 8: 1893-1900
    57. Holbrook JA, Neu-Yilik G, Hentze MW, et al. Nonsense-mediated decay approachesthe clinic. Nat Genet, 2004, 36(8): 801-808
    58. Byers PH. Killing the messenger: new insights into nonsense-mediated mRNA decay. J Clin Invest, 2002, 109(1): 3
    59. Kim VN, Yong J. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO, 2001, 20: 2062
    60. Abraham RT. The ATM-related kinase, hSMG-1, bridges genome and RNA surveillance pathways. DNA Repair(Amst), 2004, 3(8-9):919
    61. Perrin-Vidoz L,Sinilnikova OM.The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Hum Mol Genet, 2002, 11(23):2805
    62. LewisBP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci, 2003, 100(1): 189-192
    63. He F, Jacobson A. Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense-containing mRNAs and wild-type mRNAs. Mol Cell Biol, 2001, 21(5): 1515-1530
    64. Culbertson MR, Neeno-Eckwall E. Transcript selection and the recruitment of mRNA decay factors for NMD in Saccharomyces cerevisiae. RNA, 2005, 11(9): 1333-1339
    65. Kim VN, Kataoka N, Dreyfuss G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science, 2001, 293(5536): 1832-1836
    66. Bhattacharya, A., Czaplinski, K., Trifillis, P., He, F., Jacobson, A., and Peltz, S. W. Characterization of the biochemical properties of the human upf1 gene product that is involved in nonsensemedianted mRNA decay. RNA, 2000, 6: 1226-1235
    67. Pal, M., Ishigaki, Y., Nagy, E., Maquat, L. E. Evidence that phosphorylation of human Upf1 protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA, 2001, 7: 5-15
    68. Denning, G., Jamieson, L., Maquat, L. E., Thompson, E. A., and Fields, A. P. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the humanSMG-1 RNA surveillance protein. J. Biol. Chem., 2001, 276: 22709-22714
    69. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y., and Ohno, S. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev, 2001, 15: 2215-2228
    70. Rehwinkel J, Letunic I, Raes J, et al. Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA, 2005, 11(10): 1530-1544
    71. Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol, 2005, 17(3): 309-315
    72. Tange, T. O., Nott, A., Moore, M. J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol, 2004, 16: 279-284
    73. Culbertson MR, Leeds PF. Looking at mRNA decay pathways through the window of molecular evolution. Curr Opin Genet Dev, 2003, 13(2): 207
    1. Murray A. Cyclin ubiquitination: the destructive end of mitosis. Cell, 1995, 81: 149-152
    2. Musti AM, Treier M, Peverali FA, et a1. Differential regulation of c-Jun and Jun D by ubiquitin-dependent protein degradation. Biol Chem Hoppe Seyler, 1996, 377: 619-624
    3. Aaron C. Schwartz AI. Ubiquitin mediated degradation of cellular proteins in health and disease. Hepatology, 2002, 35:36
    4. Doherty FJ, Dawson S, Mayer RJ. The ubiquitin proteasome pathway of intracellular proteolysis. Essays Biochem, 2002, 38: 51-63
    5. Koegl M, Hoppe T, Shlenker S, et a1. A novel ubiquitination factor,E4,is involved in mutiubiquitin chain assembly. Cell, 1999, 96: 635-634
    6. Pagano M, Tam SW, Theodoras AM, et a1. Role of the Ubiquitin-proteasome pathway in regulating abundance of cyclin dependent kinase inhibitor p27. Science, 1995, 269: 682 685
    7. Hochstrasser M. Ubiquitin dependent protein degradation.Annu Rev Genet, 1996, 30: 405-439
    8. Ciechanover A. The ubiquitin-proteasome proteolitic pathway. Cell, 1994, 79: 1321
    9. Glickman, M. H., Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev, 2002, 82: 373-428
    10. Hilt W, and Wolf DH. Proteasomes: The World of Regulatory Proteolysis. Georgetown, TX: Landes Bioscience, 2000.
    11. Peters J-M, Harris JR, and Finley D. Ubiquitin and the Biology of the Cell. New York: Plenum, 1998, 1-472
    12. Deshaies RJ. SCF and Cullin/RING H2-based ubiquitin ligases. Annu Rev Cell Dev Biol, 1999, 15: 435-467
    13. Jackson PK, Eldridge AG, Freed E, Frustenthal L, Hsu JY, Kaiser BK, and Reimann JDR. The lore of the RINGS: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol, 2000, 10: 429-439
    14. Joazeiro CAP, and Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity. Cell, 2000, 102: 549-552
    15. Page AM, and Hieter P. The anaphase-promoting complex: new substrates and regulators. Annu Rev Biochem, 1999, 68: 583-609
    16. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001, 70: 503-533
    17. Weissman AM. Themes and variations on ubiquitylation. Nature Rev Cell Mol Biol, 2001, 2: 169-179
    18. Peoski M D, Deshaies R J. Function and regulation of culling-RING ubiquitin ligases. Nat Rev Mol Cell Biol, 2005, 6(1): 9-20
    19. Zheng N. A closer look of the HECTic ubiquitin ligases. Structure, 2003, ll(1): 5-6
    20. Voges D, Zwickl P, and Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem, 1999, 68: 1015-1068
    21. Glickman MH. Getting in and out of the proteasome. Semin Cell Dev Biol, 2000, 11: 149-158
    22. Mukhopadhyay D, Riezm an H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science, 2007, 3l5(5809): 201-205
    1. Reed, R. Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol. 2003, 15: 326–331.
    2. Reed, R. and Cheng, H. TREX, SR proteins and export of mRNA. Curr. Opin. Cell Biol. 2005, 17: 269–273.
    3. Maquat, L.E. Nonsense-mediated mRNA decay in mammals. J. Cell Sci. 2005, 118: 1773–1776.
    4. Amrani, N., Sachs, M.S., and Jacobson, A. Early nonsense: mRNA decay solves a translational problem. Nat. Rev. Mol. Cell Biol. 2006, 7: 415–425.
    5. Baker, K.E. and Parker, R. Nonsense-mediated mRNA decay: Terminating erroneous gene expression. Curr. Opin. Cell Biol. 2004, 16: 293–299.
    6. Behm-Ansmant, I. and Izaurralde, E. Quality control of gene expression: A stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes & Dev. 2006, 20: 391–398.
    7. Behm-Ansmant, I., Kashima, I., Rehwinkel, J., Sauliére, J., Wittkopp, N., and Izaurralde, E. mRNA quality control: An ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett. 2007, 581: 2845–2853.
    8. Chang, Y.F., Imam, J.S., and Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 2007, 76: 51–74.
    9. Conti, E. and Izaurralde, E. Nonsense-mediated mRNA decay: Molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 2005, 17: 316–325.
    10. Kuzmiak, H.A. and Maquat, L.E. Applying nonsense-mediated mRNA decay research to the clinic: Progress and challenges. Trends Mol. Med. 2006, 12: 306–316.
    11. Lejeune, F. and Maquat, L.E. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr. Opin. Cell Biol. 2005, 17: 309–315.
    12. Maquat, L.E. Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 2004, 5: 89–99.
    13. Neu-Yilik, G., Gehring, N.H., Hentze, M.W., and Kulozik, A.E. Nonsense-mediatedmRNA decay: From vacuum cleaner to Swiss army knife. Genome Biol. 2004, 5: 218.
    14. Rehwinkel, J., Raes, J., and Izaurralde, E. Nonsense-mediated mRNA decay: Target genes and functional diversification of effectors. Trends Biochem. Sci. 2006, 31: 639–646.
    15. Stroupe, M.E., Tange, T.O., Thomas, D.R., Moore, M.J., and Grigorieff, N. The three-dimensional arcitecture of the EJC core. J. Mol. Biol. 2006, 360: 743–749.
    16. Yamashita, A., Kashima, I., and Ohno, S. The role of SMG-1 in nonsense-mediated mRNA decay. Biochim. Biophys. Acta 2005, 1754: 305–315.
    17. Li, S. and Wilkinson, M.F. Nonsense surveillance in lymphocytes? Immunity. 1998, 8: 135–141.
    18. Moriarty, P.M., Reddy, C.C., and Maquat, L.E. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell. Biol. 1998, 18: 2932–2939.
    19. Sun, X., Li, X., Moriarty, P.M., Henics, T., LaDuca, J.P., and Maquat, L.E. Nonsense-mediated decay of mRNA for the selenoprotein phospholipid hydroperoxide glutathione peroxidase is detectable in cultured cells but masked or inhibited in rat tissues. Mol. Biol. Cell. 2001, 12: 1009–1017.
    20. Mendell, J.T., Sharifi, N.A., Meyers, J.L., Martinez-Murillo, F., and Dietz, H.C. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 2004, 36: 1073–1078.
    21. Wittmann, J., Hol, E.M., and J?ck, H.M. hUPF2 silencing identifies physiologic substrates of mammalian nonsensemediated mRNA decay. Mol. Cell. Biol. 2006, 26: 1272–1287.
    22. Chan, W.K., Huang, L., Gudikote, J.P., Chang, Y.F., Imam, J.S., MacLean II, J.A., and Wilkinson, M.F. An alternative branch of the nonsense-mediated decay pathway. EMBO J. 2007, 26: 1820–1830.
    23. Lewis, B.P., Green, R.E., and Brenner, S.E. Evidence for the widespread coupling of alternative splicing and nonsensemediated mRNA decay in humans. Proc. Natl. Acad. Sci. 2003, 100: 189–192.
    24. Lareau, L.F., Green, R.E., Bhatnagar, R.S., and Brenner, S.E. The evolving roles of alternative splicing. Curr. Opin. Struct. Biol. 2004, 14: 273–282.
    25. Rehwinkel, J., Raes, J., and Izaurralde, E. Nonsense-mediated mRNA decay: Target genes and functional diversification of effectors. Trends Biochem. Sci. 2006, 31: 639–646.
    26. Le Hir, H., Izaurralde, E., Maquat, L.E., and Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 2000, 19: 6860–6869.
    27. Le Hir, H., Gatfield, D., Izaurralde, E., and Moore, M.J. The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsensemediated mRNA decay. EMBO J. 2001, 20: 4987–4997.
    28. Nagy, E. and Maquat, L.E. A rule for termination-codon position within intron-containing genes: When nonsense affects RNA abundance. Trends Biochem. Sci. 1998, 23: 198–199.
    29. Alkalaeva, E.Z., Pisarev, A.V., Frolova, L.Y., Kisselev, L.L., and Pestova, T.V. In vitro reconstitution of translation reveals cooperativity between eukaryotic release factors eRF1 and eRF3. Cell 2006, 25: 1125–1136.
    30. Dostie, J. and Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 2002, 12: 1060–1067.
    31. Andersen, C.B., Ballut, L., Johansen, J.S., Chamieh, H., Nielsen, K.H., Oliveira, C.L., Pedersen, J.S., Seraphin, B., Le Hir, H., and Andersen, G.R. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 2006, 313: 1968–1972.
    32. Ballut, L., Marchadier, B., Baguet, A., Tomasetto, C., Seraphin, B., and Le Hir, H. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 2005, 12: 861–869.
    33. Bachi, A., Braun, I.C., Rodrigues, J.P., Pante, N., Ribbeck, K., von Kobbe, C., Kutay, U., Wilm, M., Gorlich, D., Carmo-Fonseca, M., et al. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 2000, 6: 136–158.
    34. Bono, F., Ebert, J., Lorentzen, E., and Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 2006, 126: 713–725.
    35. Chan, C.C., Dostie, J., Diem, M.D., Feng, W., Mann, M., Rappsilber, J., and Dreyfuss, G. eIF4A3 is a novel component of the exon junction complex. RNA 2004, 10: 200–209.
    36. Chiu, S.Y., Lejeune, F., Ranganathan, A.C., and Maquat, L.E. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steadystate translation initiation complex. Genes & Dev. 2004, 18: 745–754.
    37. Degot, S., Le Hir, H., Alpy, F., Kedinger, V., Stoll, I., Wendling, C., Seraphin, B., Rio, M.C., and Tomasetto, C. Association of the breast cancer protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J. Biol. Chem. 2004, 279: 33702–33715.
    38. Ferraiuolo, M.A., Lee, C.S., Ler, L.W., Hsu, J.L., Costa-Mattioli, M., Luo, M.J., Reed, R., and Sonenberg, N. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. 2004, 101: 4118–4123.
    39. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W., and Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 2003, 11: 939–949.
    40. Katahira, J., Strasser, K., Podtelejnikov, A., Mann, M., Jung, J.U., and Hurt, E. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 1999, 18: 2593–2609.
    41. Kataoka, N., Yong, J., Kim, V.N., Velazquez, F., Perkinson, R.A., Wang, F., and Dreyfuss, G. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell 2000, 6: 673–682.
    42. Kim, V.N., Kataoka, N., and Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon–exon junction complex. Science 2001, 293: 1832–1836.
    43. Kim, V.N., Yong, J., Kataoka, N., Abel, L., Diem, M.D., and Dreyfuss, G. The Y14 protein communicates to the cytoplasm the position of exon–exon junctions. EMBO J. 2001, 20: 2062–2068.
    44. Luo, M.J. and Reed, R. Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl. Acad. Sci. 1999, 96: 14937–14942.
    45. Lykke-Andersen, J., Shu, M.D., and Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 2000, 103: 1121–1131.
    46. Lykke-Andersen, J., Shu, M.D., and Steitz, J.A. Communication of the position of exon–exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 2001, 293: 1836–1839.
    47. Le Hir, H., Gatfield, D., Braun, I.C., Forler, D., and Izaurralde, E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep. 2001, 2: 1119–1124.
    48. Lejeune, F., Ishigaki, Y., Li, X., and Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: Dynamics of mRNP remodeling. EMBO J. 2002, 21: 3536–3545.
    49. Ishigaki, Y., Li, X., Serin, G., and Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 2001, 106: 607–617.
    50. Mayeda, A., Badolato, J., Kobayashi, R., Zhang, M.Q., Gardiner, E.M., and Krainer, A.R. Purification and characterization of human RNPS1: A general activator of pre-mRNA splicing. EMBO J. 1999, 18: 4560–4570.
    51. Ballut, L., Marchadier, B., Baguet, A., Tomasetto, C., Seraphin, B., and Le Hir, H. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 2005,12: 861–869.
    52. Tange, T.O., Shibuya, T., Jurica, M.S., and Moore, M.J. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA 2005, 11: 1869–1883.
    53. Bono, F., Ebert, J., Lorentzen, E., and Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 2006, 126: 713–725.
    54. Stroupe, M.E., Tange, T.O., Thomas, D.R., Moore, M.J., and Grigorieff, N. Thethree-dimensional arcitecture of the EJC core. J. Mol. Biol. 2006, 360: 743–749.
    55. Gehring, N.H., Kunz, J.B., Neu-Yilik, G., Breit, S., Viegas, M.H., Hentze, M.W., and Kulozik, A.E. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 2005, 20: 65–75.
    56. Kim, Y.K., Furic, L., Desgroseillers, L., and Maquat, L.E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3_UTRs so as to elicit mRNA decay. Cell 2005, 120: 195–208.
    57. Rehwinkel, J., Raes, J. and Izaurralde, E. Nonsensemediated mRNA decay: target genes and functional diversification of effectors. Trends Biochem. Sci. 2006, 31: 639–646.
    58. Conti, E. and Izaurralde, E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 2005, 17: 316–325.
    59. Lejeune, F. and Maquat, L.E. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr. Opin. Cell Biol. 2005, 17: 309–315.
    60. Amrani, N., Sachs, M.S. and Jacobson, A. Early nonsense: mRNA decay solves a translational problem. Nat. Rev. Mol. Cell. Biol. 2006, 7: 415–425.
    61. Fukuhara, N., Ebert, J., Unterholzner, L., Lindner, D., Izaurralde, E. and Conti, E. SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol. Cell 2005, 18: 537– 547.
    62. Snow, B.E., Erdmann, N., Cruickshank, J., Goldman, H., Gill, R.M., Robinson, M.O. and Harrington, L. Functional conservation of the telomerase protein Est1p in humans. Curr. Biol. 2003,13: 698–704.
    63. Reichenbach, P., Hoss, M., Azzalin, C.M., Nabholz, M., Bucher, P. and Lingner, J. A human homolog of yeast est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 2003,13: 568–574.
    64. Pal, M., Ishigaki, Y., Nagy, E. and Maquat, L.E. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 2001, 7: 5–15.
    65. Denning, G., Jamieson, L., Maquat, L.E., Thompson, E.A. and Fields, A.P. Cloning of a novel phosphatidylinositol kinase-related kinase, characterization of the human SMG-1 RNA surveillance protein. J. Biol. Chem. 2001, 276: 22709–22714.
    66. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y. and Ohno, S. Human SMG-1, a novel phosphatidylinositol 3-kinaserelated protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev. 2001, 15: 2215–2228.
    67. Grimson, A., O’Connor, S., Newman, C.L. and Anderson, P. SMG-1 Is a phosphatidylinositol kinase-related protein kinase required for nonsense-mediated mRNA decay in Caenorhabditis elegans. Mol. Cell. Biol. 2004, 17: 7483–7490.
    68. Cali, B.M., Kuchma, S.L., Latham, J. and Anderson, P. smg-7 is required for mRNA surveillance in Caenorhabditis elegans. Genetics 1999, 151: 605–616.
    69. Anders, K.R., Grimson, A. and Anderson, P. SMG-5, required for C. elegans nonsense-mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J. 2003, 22: 641– 650.
    70. Chiu, S.Y., Serin, G., Ohara, O. and Maquat, L.E. Characterization of human Smg5/7a, a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 2003, 9: 77–87.
    71. Ohnishi, T., Yamashita, A., Kashima, I., Schell, T., Anders, K.R., Grimson, A., Hachiya, T., Hentze, M.W., Anderson, P. and Ohno, S. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7.Mol. Cell 2003, 12: 1187–1200.
    72. Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Morishita, R., Hoshino, S., Ohno, M., Dreyfuss, G. and Ohno, S. Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 2006, 20: 355–367.
    73. Wang, W., Cajigas, I.J., Peltz, S.W., Wilkinson, M.F. and Gonzalez, C.I. Role for Upf2p phosphorylation in Saccharomyces cerevisiae nonsense-mediated mRNA decay. Mol. Cell. Biol. 2006, 26:3390–3400.
    74. Behm-Ansmant, I. and Izaurralde, E. Quality control of gene expression, a stepwiseassembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes Dev. 2006, 20: 391–398.
    75. Czaplinski, K., Ruiz-Echevarria, M.J., Paushkin, S.V., Han, X., Weng, Y., Perlick, H.A., Dietz, H.C., Ter-Avanesyan, M.D. and Peltz, S.W. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 1998, 12: 1665–1677.
    76. Page, M.F., Carr, B., Anders, K.R., Grimson, A. and Anderson, P. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol. Cell. Biol. 1999, 19: 5943–5951.
    77. Unterholzner, L. and Izaurralde, E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell 2004, 16: 587–596.
    78. Kunz, J.B., Neu-Yilik, G., Hentze, M.W., Kulozik, A.E., and Gehring, N.H. Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA 2006, 12: 1015–1022.
    79. Serin, G., Gersappe, A., Black, J.D., Aronoff, R., and Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 2001, 21: 209–223.
    80. Kadlec, J., Izaurralde, E., and Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 2004, 11: 330–337.
    81. Kadlec, J., Guilligay, D., Ravelli, R.B., and Cusack, S. Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. RNA 2006, 12: 1817–1824.
    82. Hosoda, N., Kim, Y.K., Lejeune, F., and Maquat, L.E. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 2005, 12: 893–901.
    83. Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Morishita, R., Hoshino, S., Ohno, M., Dreyfuss, G., and Ohno, S. Binding of a novel SMG-1–Upf1–eRF1–eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes & Dev. 2006, 20: 355–367.
    84. Wittmann, J., Hol, E.M., and J?ck, H.M. hUPF2 silencing identifies physiologic substrates of mammalian nonsensemediated mRNA decay. Mol. Cell. Biol. 2006, 26: 1272–1287.
    85. Durand, S., Cougot, N., Mahuteau-Betzer, F., Nugyen, C.H., Grieson, D.L., Bertrand, E., Tazi, J., and Lejeune, F. Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J. Cell Biol. 2007, 2007, 178(7): 1145-60.
    86. Chan, W.K., Huang, L., Gudikote, J.P., Chang, Y.F., Imam, J.S., MacLean II, J.A., and Wilkinson, M.F. An alternative branch of the nonsense-mediated decay pathway. EMBO J. 2007, 26: 1820–1830.
    87. Nagy, E. and Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 1998, 23: 198–199.
    88. Le Hir, H., Gatfield, D., Izaurralde, E. and Moore, M.J. The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 2001, 20: 4987–4997.
    89. Amrani, N., Ganesan, R., Kervestin, S., Mangus, D.A., Ghosh, S. and Jacobson, A. A faux 30-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 2004, 432: 112–118.
    90. Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. and Izaurralde, E. A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay.EMBO J. 2007, 26: 1591–1601.
    91. Longman, D., Plasterk, R.H., Johnstone, I.L. and Caceres, J.F. Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway. Genes & Dev. 2007, 21: 1075–1085.
    92. Weng, Y., Czaplinski, K., and Peltz, S.W. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol. Cell. Biol. 1996, 16: 5491–5506.
    93. Bhattacharya, A., Czaplinski, K., Trifillis, P., He, F., Jacobson, A., and Peltz, S.W. Characterization of the biochemical properties of the human Upf1 gene product that isinvolved in nonsense-mediated mRNA decay. RNA 2000, 6: 1226–1235.
    94. Page, M.F., Carr, B., Anders, K.R., Grimson, A., and Anderson, P. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol. Cell. Biol. 1999, 19: 5943–5951.
    95. Denning, G., Jamieson, L., Maquat, L.E., Thompson, E.A., and Fields, A.P. Cloning of a novel phosphatidylinositol kinase-related kinase: Characterization of the human SMG-1 RNA surveillance protein. J. Biol. Chem. 2001, 276: 22709–22714.
    96. Pal, M., Ishigaki, Y., Nagy, E., and Maquat, L.E. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 2001, 7: 5–15.
    97. Ohnishi, T., Yamashita, A., Kashima, I., Schell, T., Anders, K.R., Grimson, A., Hachiya, T., Hentze, M.W., Anderson, P., and Ohno, S. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 2003, 12: 1187–1200.
    98. Brumbaugh, K.M., Otterness, D.M., Geisen, C., Oliveira, V., Brognard, J., Li, X., Lejeune, F., Tibbetts, R.S., Maquat, L.E., and Abraham, R.T. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol. Cell 2004, 14: 585–598.
    99. Grimson, A., O’Connor, S., Newman, C.L., and Anderson, P. SMG-1 is a phosphatidylinositol kinase-related protein kinase required for nonsense-mediated mRNA decay in Caenorhabditis elegans. Mol. Cell. Biol. 2004, 24: 7483–7490.
    100. Cali, B.M., Kuchma, S.L., Latham, J., and Anderson, P. smg-7 is required for mRNA surveillance in Caenorhabditis elegans. Genetics 1999, 151: 605–616.
    101. Anders, K.R., Grimson, A., and Anderson, P. SMG-5, required for C. elegans nonsense-mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J. 2003, 22: 641–650.
    102. Chiu, S.Y., Serin, G., Ohara, O., and Maquat, L.E. Characterization of human Smg5/7a: A protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 2003, 9: 77–87.
    103. Fukuhara, N., Ebert, J., Unterholzner, L., Lindner, D., Izaurralde, E., and Conti, E. SMG7 is a 14–3–3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol. Cell 2005, 17: 537–547.
    104. Pulak, R. and Anderson, P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes & Dev. 1993, 7: 1885–1897.
    105. Chen, Z., Smith, K.R., Batterham, P., and Robin, C. Smg1 nonsense mutations do not abolish nonsense-mediated mRNA decay in Drosophila melanogaster. Genetics 2005, 171: 403–406.
    106. Metzstein, M.M. and Krasnow, M.A. Functions of the nonsense-mediated mRNA decay pathway in Drosophila development. PLoS Genet. 2006, 2: e180. doi: 10.1371/journal. pgen.0020180.
    107. Templeton, G.W. and Moorhead, G.B. The phosphoinositide-3-OH-kinase-related kinases of Arabidopsis thaliana. EMBO Rep. 2005, 6: 723–728.
    108. Parker, R. and Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 2007, 25: 635–646.
    109. Sheth, U. and Parker, R. Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 2006, 125: 1095–1109.
    110. Azzalin, C.M. and Lingner, J. The human RNA surveillance factor UPF1 is required for S phase progression and genome stability. Curr. Biol. 2006, 16: 433–439.
    111. Kim, Y.K., Furic, L., Desgroseillers, L. and Maquat, L.E. Mammalian Staufen1 recruits Upf1 to specific mRNA 30UTRs so as to elicit mRNA decay. Cell 2005, 120: 195–208.
    112. Kaygun, H. and Marzluf, W.F. Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1. Nat. Struct. Mol. Biol. 2005, 12: 794–800.
    113. Rehwinkel, J., Letunic, I., Raes, J., Bork, P. and Izaurralde, E. Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 2005, 11: 1530–1544.
    114. He, F., Li, X., Spatrick, P., Casillo, R., Dong, S. and Jacobson, A. Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 50 to 30 mRNA decay pathways in yeast. Mol. Cell 2003, 12: 1439–1452.
    115. Metzstein, M.M. and Krasnow, M.A. Functions of the nonsense-mediated mRNA decay pathway in Drosophila development. PLoS Genet. 2006, 2: e180.
    116. Rehwinkel, J., Letunic, I., Raes, J., Bork, P. and Izaurralde, E. Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 2005, 11: 1530–1544.
    117. Medghalchi, S.M., Frischmeyer, P.A., Mendell, J.T., Kelly, A.G., Lawler, A.M. and Dietz, H.C. Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum. Mol. Genet. 2001, 10: 99–105.
    118. Holbrook, J.A., Neu-Yilik, G., Hentze, M.W. and Kulozik, A.E. Nonsense-mediated decay approaches the clinic. Nat. Genet. 2004, 36: 801–808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700