微波法合成高效纳米复合光催化剂及其在光催化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术作为一种新型的环境治理技术,具有氧化能力强、降解彻底、对污染物没有选择性、无二次污染、能耗低、操作简单、催化剂可以重复利用等优点,在产氢、有机物降解和空气净化等领域展现了广阔的应用前景,成为当前研究的热点。基于光催化机理,影响光催化性能的主要因素是污染物吸附、光吸收和光生电子-空穴的复合。本论文主要围绕高效光催化剂的制备和性能进行研究,以提高光催化过程中光催化剂表面污染物吸附和光吸收,抑制光生电子-空穴的复合为目的,主要研究内容如下:
     一、使用微波法制备了ZnO、Bi2O3和SnO2,用于光催化领域,并对不同反应条件对光催化性能的影响进行了研究和分析。当微波反应时间为5min时,合成的ZnO光催化还原Cr(Ⅵ)的效率达到最大值81%;当Bi2O3前驱体溶液pH值为7时,合成的Bi203光催化降解甲基蓝(MB)的效率达到最大值76%;当SnO2前驱体溶液pH值为5时,合成的SnO2光催化降解MB的效率达到最大值90%。
     二、使用微波法制备了ZnO-光致发光材料Y3Al5O12:Ce3+、Y2O2S:Eu3+和NaSrBO3:Eu3+复合物,用于可见光催化领域,并研究了不同掺杂比例对光催化性能的影响。这些光致发光材料能作为较好的下转换材料,吸收高能光子,发射低能可见光子,从而提高染料对光的吸收,增强染料的自敏化降解。当掺杂Y3Al5O12:Ce3+的比例为3wt.%时,ZnO-Y3Al5O12:Ce3+复合物光催化降解MB的效率达到最大值93%;当掺杂Y2O2S:Eu3+的比例为0.5wt.%时,ZnO-Y2O2S:Eu3+复合物光催化降解MB的效率达到最大值95%;当掺杂NaSrBO3:Eu3+的比例为1wt.%时,ZnO-NaSrBO3:Eu3+复合物光催化降解MB的效率达到最大值97%。
     三、使用微波和紫外辅助光催化还原法制备了ZnO-石墨烯(RGO)、TiO2-RGO、 ZnO-TiO2-RGO、CdS-RGO、Bi2O3-RGO和ZnO-TiO2-CNTs复合物,用于光催化领域,并研究了不同掺杂比例对光催化性能的影响。在半导体中掺杂RGO或CNTs,不仅可以提高光吸收,也有利于光生电荷的转移,抑制光生电子-空穴的复合,从而提高光催化性能。当掺杂RGO的比例为1.0wt.%时,微波法制备的ZnO-RGO复合物光催化还原Cr(Ⅵ)的效率达到最大值98%,而紫外辅助光催化还原法制备的ZnO-RGO复合物光催化还原Cr(Ⅵ)的效率为96%;当掺杂RGO的比例为0.8wt.%时,TiO2-RGO复合物光催化还原Cr(Ⅵ)的效率达到最大值91%;当掺杂TiO2的比例为10wt.%时,ZnO-TiO2-RGO复合物光催化还原Cr(Ⅵ)的效率达到最大值99.4%;当掺杂RGO的比例为1.5wt.%时,CdS-RGO复合物光催化还原Cr(Ⅵ)的效率达到最大值92%;当掺杂RGO的比例为2wt.%时,Bi2O3-RGO复合物光催化降解MO和MB的效率达到最大值,分别为93%和96%;当掺杂CNTs的比例为3wt.%时,ZnO-TiO2-CNTs复合物光催化还原Cr(Ⅵ)的效率达到最大值90%。
     四、使用溶胶凝胶法制备了Au-TiO2和Au/N-TiO2复合物,用于光催化领域,并研究了不同掺杂比例对光催化性能的影响。在Ti02中掺杂Au和N,不仅可以将TiO2的光吸收拓展到可见光区域,也有利于光生电荷的转移,抑制光生电子-空穴的复合,从而提高光催化性能。当掺杂Au的比例为0.5wt.%时,TiO2-Au复合物光催化还原Cr (VI)的效率达到最大值91%;当掺杂Au的比例为0.3wt.%时,Au/N-TiO2复合物光催化还原Cr(Ⅵ)的效率达到最大值90%。
Semiconductor photocatalysis as a novel and environmentally-friendly technology has attracted considerable attention due to its wide applications such as in the degradation of organic pollutants, reduction of heavy metals, air purification, and hydrogen production. Based on the working mechanism of photocatalysis, the crucial factors for the photocatalytic activity are the adsorption of pollutants, the light absorption and the charge transportation and separation. In the thesis, we explored and synthesized the novel photocatalysts to improve the adsorption of pollutants and the visible light absorption as well as the reduction of electron-hole pair recombination, and the major contents of the thesis is summarized as follows:
     1. ZnO, Bi2O3and SnO2were fabricated via microwave-assisted method for photocatalysis. ZnO synthesized in5min achieves a highest Cr(VI) removal efficiency of81%under UV light irradiation; Bi2O3synthesized at pH value of7and SnO2QDs synthesized at pH value of5achieve the highest MB degradation rate of76%and90%under visible light irradiation.
     2. ZnO-Y3Al5O12:Ce3+, ZnO-Y2O2S:Eu3+and ZnO-NaSrBO3:Eu3+composites were synthesized via a microwave-assisted method for visible light photocatalysis. When phosphors are doped into ZnO, they can absorb the high energy photons well and emit the low energy photons, which can be easily absorbed by the dye and thus effectively excite the dye to generate more electron-hole pairs, resulting in the obvious improvement of the self-sensitized degradation of dye. ZnO-Y3Al5O12:Ce3+composite with3wt.%Y3Al5O12:Ce3+, ZnO-Y2O2S:Eu3+composite with0.5wt.%Y2O2S:Eu3+, and ZnO-NaSrBO3:Eu3+composite with1wt.%NaSrBO3:Eu3+achieve the highest MB degradation rate of93%,95%, and97%under visible light irradiation.
     3. ZnO-reduced grapheme oxide (RGO), TiO2-RGO, ZnO-TiO2-RGO, CdS-RGO, Bi2O3-RGO and ZnO-TiO2-CNTs composites were synthesized via microwave-assisted method and UV-assisted photocatalytic synthesis for photocatalysis. The RGO or CNTs can act as an excellent electron-acceptor/transport material to effectively facilitate the migration of photo-induced electrons and hinder the charge recombination, which is beneficial for the photocatalytic performance. ZnO-graphene composite fabricated by microwave-assisted method and UV-assisted photocatalytic synthesis with1.0wt.%RGO achieve the highest Cr(VI) removal rate of98%and96%under UV light irradiation; TiO2-graphene composite with0.8wt.%RGO, ZnO-TiO2-RGO composite with10wt.%TiO2, and ZnO-TiO2-CNTs composite with3wt.%CNTs achieve the highest Cr(VI) removal rate of91%,99.4%, and90%under UV light irradiation; CdS-graphene composite with1.5wt.%RGO achieves a highest Cr(VI) removal rate of92%under visible light irradiation; Bi2O3-RGO composite with2wt.%RGO achieves a highest MO degradation rate of93%and a MB degradation rate of96%under visible light irradiation.
     4. Au-TiO2and AU/N-T1O2composites were synthesized via a simple sol-gel method for photocatalysis. In the photocatalysis process, Au can act as excellent electron-acceptor/transport materials to effectively facilitate the migration of photo-induced electrons and hinder the charge recombination, which enhances the photocatalytic performance, while N elements can tune the band gap and extend the photo-response of TiO2into the visible light region. Au-TiO2composite with0.5wt.%Au achieves a highest Cr(VI) reduction rate of91%under UV light irradiation; Au/N-TiO2composite with0.3wt.%Au achieves a highest Cr(VI) reduction rate of90%under visible light irradiation.
引文
1. Y. G Zhao, H. Y. Shen, S. D. Pan, et al. Synthesis, characterization and properties of ethylenediamine-functionalized Fe3O4 magnetic polymers for removal of Cr(Ⅵ) in wastewater [J]. J. Hazard. Mater.,2010,182(1-3):295-302.
    2. P. Yuan, D. Liu, M. D. Fan, et al. Removal of hexavalent chromium (Cr(Ⅵ)) from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles [J]. J. Hazard. Mater.,2010,173(1-3):614-621.
    3. V. K. Gupta, S. Agarwa, T. A. Saleh. Chromium removal combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes [J]. Water Res.,2011,45(6):2207-2212.
    4. R. A. K. Rao, F. Rehman. Adsorption studies on fruits of Gular (Ficus glomerata): Removal of Cr(Ⅵ) from synthetic wastewater [J]. J. Hazard. Mater.,2010,181(1-3): 405-412.
    5. S. Gupta, B. V. Babu. Experimental, kinetic, equilibrium and regeneration studies for adsorption of Cr(Ⅵ) from aqueous solutions using low cost adsorbent (activated flyash) [J]. Desal. Wat. Treat.,2010,20(1-3):168-178.
    6. M. Bansal, D. Singh, V. K. Garg. Chromium (Ⅵ) uptake from aqueous solution by adsorption onto timber industry waste [J]. Desal. Wat. Treat.,2009,12(1-3):238-246.
    7. I. Marzouk, C. Hannachi, L. Dammak, et al. Removal of chromium by adsorption on activated alumina [J]. Desal. Wat. Treat.,2011,26(1-3):279-286.
    8. S. S. Liu, Y. Z. Chen, D. L. Zhang, et al. Enhanced Removal of Trace Cr(Ⅵ) Ions from Aqueous Solution by Titanium Oxide-Ag Composite Adsorbents [J]. J. Hazard. Mater., 2011,190(1-3):723-728.
    9. G Q. Chen, W. J. Zhang, G M. Zeng, et al. Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr(Ⅵ)-contaminated wastewater [J]. J. Hazard. Mater.,2011,186(2-3):2138-2143.
    10. H. J. Cui, M. L. Fu, S. Yu, et al. Reduction and removal of Cr(Ⅵ) from aqueous solutions using modified byproducts of beer production [J]. J. Hazard. Mater.,2011, 186(2-3):1625-1631.
    11. T. Sardohan, E. Kir, A. Gulec, et al. Removal of Cr(Ⅲ) and Cr(Ⅵ) through the plasma modified and unmodified ion-exchange membranes [J]. Sep. Purif. Technol.,2010, 74(1):14-20.
    12. S. Edebali, E. Pehlivan. Evaluation of Amberlite IRA96 and Dowex 18 ion-exchange resins for the removal of Cr(Ⅵ) from aqueous solution [J]. Chem. Eng. J.,2010, 161(1-2):161-166.
    13. M. S. Bhatti, A. S. Reddy, R. K. Kalia, et al. Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium [J]. Desalination,2011,269(1-3):157-162.
    14. M. S. Bhatti, A. S. Reddy, A. K. Thukral. Electrocoagulation removal of Cr(Ⅵ)from simulated wastewater using response surface methodology [J]. J. Hazard. Mater., 2009,172(2-3):839-846.
    15. F. Akbal, S. Camci. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation [J]. Desalination,2011,269(1-3):214-222.
    16. W. D. Zhang, J. T. Liu, Z. Q. Ren, et al. Kinetic study of chromium (Ⅵ) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier [J]. Chem. Eng. J.,2009,150(1):83-89.
    17. A. O. Acosta, C. Ulanes, J. Marchese. Removal and recovery of Cr(Ⅲ) with emulsion liquid membranes [J]. Desal. Wat. Treat,2009,7(1-3):18-24.
    18. M. Sankir, S. Bozkir, B. Aran. Preparation and performance analysis of novel nanocomposite copolymer membranes for Cr(Ⅵ) removal from aqueous solutions [J]. Desalination,2010,251(1-3):131-136.
    19. S. Alpaydin, A. Saf, S. Bozkurt, et al. Kinetic study on removal of toxic metal Cr(Ⅵ) through a bulk liquid membrane containing p-tert-butylcalix [4] arene derivative [J]. Desalination,2011,275(1-3):166-171.
    20. A. H. Sulaymon, S. E. Ebrahim, S. M. Abdullah, et al. Removal of lead, cadmium, and mercury ions using biosorption [J]. Desal. Wat. Treat.,2011,24(1-3):344-352.
    21. A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38.
    22. S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. J. Phys. Chem.,1977,81(15): 1484-1488.
    23. S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder [J]. J. Am. Chem. Soc.,1977,99(1): 303-304.
    24. A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis [J]. J. Photochem. Photobiol. C:Photochem. Rev.,2000,1(1):1-21.
    25. A. Fujishima, X. T. Zhang, D. A. Tryk. TiO2 photocatalysis and related surface phenomena [J]. Surf. Sci. Rep.,2008,63(12):515-582.
    26. A. Di Paola, E, Garcia-Lopez, G. Marci, et al. A survey of photocatalytic materials for environmental remediation [J]. J. Hazard. Mater.,2012,211-212:3-29.
    27. X. Xu, C. Random, P. Efstathiou, et al. A red metallic oxide photocatalyst [J]. Nat. Mater.,2012,11(7):595-598.
    28. P. D. Tran, L. H. Wong, J. Barber, et al. Recent advances in hybrid photocatalysts for solar fuel production [J]. Energy Environ. Sci.,2012,5(3):5902-5918.
    29. M. Pelaez, N. T. Nolan, S. C. Pillai, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications [J]. Appl. Catal. B:Environ., 2012,125:331-349.
    30. S. Ahmed, M. G. Rasul, R. Brown, et al. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater:A short review [J]. J. Environ. Manage.,2011,92(3):311-330.
    31. U. G. Akpan, B. H. Hameed. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:A review [J]. J. Hazard. Mater.,2009,170(2): 520-529.
    32. H. Tong, S. X. Ouyang, Y. P. Bi, et al. Nano-photocatalytic Materials:Possibilities and Challenges [J]. Adv. Mater.,2012,24(2):229-251.
    33. H. L. Zhou, Y. Q. Qu, T. Zeid, et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures [J]. Energy Environ. Sci.,2012,5(5):6732-6743.
    34. J. L. Zhang, Y. M. Wu, M. Y. Xing, et al. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides [J]. Energy Environ. Sci.,2010, 3(6):715-726.
    35. S. G. Kumar, L. G. Devi. Review on Modified TiO2 Photocatalysis under UV/Visible Light:Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics [J]. J. Phys. Chem. A,2011,115(46):13211-13241.
    36. S. Bingham, W. A. Daoud. Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping [J]. J. Mater. Chem.,2011,21(7):2041-2050.
    37. Z. H. Xu, J. G. Yu. Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays [J]. Nanoscale,2011,3(8):3138-3144.
    38. V. M. Menendez-Flores, D. W. Bahnemann, T. Ohno. Visible light photocatalytic activities of S-doped TiO2-Fe3+ in aqueous and gas phase [J]. Appl. Catal. B:Environ., 2011,103(1-2):99-108.
    39. P. Kundu, P. A. Deshpande, G Madras, et al. Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation [J]. J. Mater. Chem.,2011,21(12):4209-4216.
    40. S. Cho, J. W. Jang, J. Kim, et al. Three-Dimensional Type Ⅱ ZnO/ZnSe Heterostructures and Their Visible Light Photocatalytic Activities [J]. Langmuir,2011, 27(16):10243-10250.
    41. J. Wang, Y. P. Xie, Z. H. Zhang, et al. Photocatalytic degradation of organic dyes by Er3+:YAlO3/TiO2 composite under solar light [J]. Environ. Chem. Lett.,2010,8(1): 87-93.
    42. J. Wang, J. Li, Y. F. Xie, et al. Investigation on solar photocatalytic degradation of various dyes in the presence of Er3+:YAlO3/ZnO-TiO2 composite [J]. J. Environ. Manage.,2010,91(3):677-684.
    43. C. H. Li, F. Wang, J. Zhu, et al. NaYF4:Yb, Tm/CdS composite as a novel near-infrared-driven photocatalyst [J]. Appl. Catal. B:Environ.,2010,100(3-4): 433-439.
    44. J. H. Yoon, J. S. Kim. Investigation of photocatalytic reaction for thetitanium dioxide-phosphor composite [J]. Ionics,2010,16(2):131-135.
    45. J. H. Yoon, S. C. Jung, J. S. Kim. Photocatalytic effects for the TiO2-coated phosphor materials [J]. Mater. Chem. Phys.,2011,125(3):342-346.
    46. N. Udawatte, M. Lee, J. Kim, et al. Well-Defined Au/ZnO Nanoparticle Composites Exhibiting Enhanced Photocatalytic Activities [J]. ACS Appl. Mater. Interfaces,2011, 3(11):4531-4538.
    47. J. J. Wu, C. H. Tseng. Photocatalytic properties of nc-Au/ZnO nanorod composites [J]. Appl. Catal. B:Environ.,2006,66(1-2):51-57.
    48. N. Wang, T. Tachikawa, T. Majima. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites [J]. Chem. Sci., 2011,2(5):891-900.
    49. Z. K. Zheng, B. B. Huang, X. Y. Qin, et al. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M= Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol [J]. J. Mater. Chem.,2011,21(25): 9079-9087.
    50. M. Logar, B. Jancar, S. Sturm, et al. Weak Polyion Multilayer-Assisted in Situ Synthesis as a Route toward a Plasmonic Ag/TiO2 Photocatalyst [J]. Langmuir,2010, 26(14):12215-12224.
    51. Y. Y. Wen, H. M. Ding, Y. K. Shan. Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite [J]. Nanoscale,2011,3(10):4411-4417.
    52. L. W. Zhang, Y. Man, Y F. Zhu. Effects of Mo Replacement on the Structure and Visible-Light-Induced Photocatalytic Performances of Bi2WO6 Photocatalyst [J]. ACS Catal.,2011,1(8):841-848.
    53. C. H. An, S. Peng, Y. G. Sun. Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst [J]. Adv. Mater.,2010,22(23):2570-2574.
    54. D. N. Ke, T. Y. Peng, L. Ma, et al. Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions [J]. Appl. Catal. A:Gen.,2008,350(1):111-117.
    55. L. W. Zhang, T. G. Xu, X. Zhao, et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities [J]. Appl. Catal. B:Environ.,2010,98(3-4):138-146.
    56. Z. Lei, W. You, M. Liu, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method [J]. Chem. Commun., 2003, (17):2142-2143.
    57. J. Jiang, L. Zhang. Rapid Microwave-assisted Nonaqueous Synthesis and Growth Mechanism of AgCl/Ag, and Its Daylight-driven Plasmonic Photocatalysis [J]. Chem.-A Eur. J.,2011,17(13):3710-3717.
    58. X. F. Wang, S. F. Li, H. G. Yu, et al. Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity [J]. Chem.-A Eur. J.,2011,17(28): 7777-7780.
    59. R. Leary, A. Westwood. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis [J]. Carbon,2011,49(3):741-772.
    60. N. Zhang, Y. H. Zhang, Y. J. Xu. Recent progress on graphene-based photocatalysts: Current status and future perspectives [J]. Nanoscale,2012,4(19):5792-5813.
    61. Y. H. Ng, I. V. Lightcap, K. Goodwin, et al. To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films? [J]. J. Phys. Chem. Lett.,2010,1(15):2222-2227.
    62. D. H. Wang, G. Q. Gao, Y. W. Zhang, et al. Nanosheet-constructed porous BiOCl with dominant{001} facets for superior photosensitized degradation [J]. Nanoscale,2012, 2(24):7780-7785.
    63. Q. J. Xiang, J. G. Yu, M. Jaroniec. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed{001} facets:synthesis, characterization and visible-light photocatalytic activity [J]. Phys. Chem. Chem. Phys.,2011,13(11):4853-4861.
    64. G. Liu, L. Z. Wang, H. G. Yang, et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring [J]. J. Mater. Chem.,2010,20(5):831-843.
    65. B. B. Kale, J. O. Baeg, S. M. Lee, et al. CdIn2S4 Nanotubes and "Marigold" Nanostructures:A Visible-Light Photocatalyst [J]. Adv. Funct. Mater.,2006,16(10): 1349-1354.
    66. S. L. Xiong, B. J. Xi, C. M. Wang, et al. Tunable Synthesis of Various Wurtzite ZnS Architectural Structures and Their Photocatalytic Properties [J]. Adv. Funct. Mater., 2007,17(15):2728-2738.
    67. K. Woan, G. Pyrgiotakis, W. Sigmund. Photocatalytic Carbon-Nanotube-Ti02 Composites [J]. Adv. Mater.,2009,21(21):2233-2239.
    68. L. Zhang, Y. Wang, H. Cheng, et al. Synthesis of Porous Bi2WO6 Thin Films as Efficient Visible-Light-Active Photocatalysts [J]. Adv. Mater.,2009,21(12): 1286-1290.
    69. J. S. Hu, L. L. Ren, Y. G. Guo, et al. Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44(8): 1269-1273.
    70. W. R. Zhao, Y. Wang, Y. Yang, et al. Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction:Preparation, characterization, and photocatalytic properties [J]. Appl. Catal. B:Environ.,2012,115-116:90-99.
    71. U. Sulaeman, S. Yin, T. Sato. Solvothermal synthesis of designed nonstoichiometric strontium titanate for efficient visible-light photocatalysis [J]. Appl. Phys. Lett.,2010, 97(10):103102.
    72. P. F. Wang, Y. H. Ao, C. Wang, et al. A one-pot method for the preparation of graphene-BJ2MoO6 hybrid photocatalysts that are responsive to visible-light and have excellent photocatalytic activity in the degradation of organic pollutants [J]. Carbon, 2012,50(14):5256-5264.
    73. D. Lin, H. Wu, R. Zhang, et al. Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers [J]. Chem. Mater.,2009,21(15):3479-3484.
    74. X. B. Chen, S. H. Shen, L. J. Guo, et al. Semiconductor-based photocatalytic hydrogen generation [J]. Chem. Rev.,2010,110(11):6503-6570.
    75. A. Kudo, Y. Miseki. Heterogeneous photocatalyst materials for water splitting [J]. Chem. Soc. Rev.,2008,38(1):253-278.
    76. Q. J. Xiang, J. G. Yu, M. Jaroniec. Graphene-based semiconductor photocatalysts [J]. Chem. Soc. Rev.,2012,41(2):782-796.
    77. D. E. Wang, H. F. Jiang, X. Zong, et al. Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation [J]. Chem.-A Eur. J.,2011,17(4): 1275-1282.
    78. H. Zhang, X. F. Fan, X. Quan, et al. Graphene Sheets Grafted Ag@AgCl Hybrid with Enhanced Plasmonic Photocatalytic Activity under Visible Light [J]. Environ. Sci. Technol.,2011,45(13):5731-5736.
    79. F. Y. Shen, W. X. Que, Y. L. Liao, et al. Photocatalytic activity of TiO2 nanoparticles sensitized by CuInS2 quantum dots [J]. Ind. Eng. Chem. Res.,2011,50(15): 9131-9137.
    80. C. Hu, T. W. Peng, X. X. Hu, et al. Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-AgI/Al2O3 under Visible-Light Irradiation [J]. J. Am. Chem. Soc., 2009,132(2):857-862.
    81. H. Park, W. Choi, M. R. Hoffmann. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production [J]. J. Mater. Chem.,2008,18(20):2379-2385.
    82. R. Asahi, T. Morikawa, T. Ohwaki, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293(5528):269-271.
    83. T. Lv, L. K. Pan, X. J. Liu, et al. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction [J]. J. Alloys Compd.,2011,509(41):10086-10091.
    84. T. Lv, L. K. Pan, X. J. Liu, et al. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide-carbon nanotube composites synthesized via microwave-assisted reaction [J]. Catal. Sci. Technol.,2012,2(11):2297-2301.
    85. Z. H. Ai, Y. H. Huang, S. C. Lee, et al. Monoclinic Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation [J]. J. Alloys Compd.,2011,509(5):2044-2049.
    86. V. Kumar, A. Govind, R. Nagarajan. Optical and Photocatalytic Properties of Heavily F-Doped SnO2 Nanocrystals by a Novel Single-Source Precursor Approach [J]. Inorg. Chem.,2011,50(12):5637-5645.
    87. A. Hameed, V. Gombac, T. Montini, et al. Photocatalytic activity of zinc modified Bi2O3 [J]. Chem. Phys. Lett.,2009,483(4-6):254-261.
    88. A. Kar, S. Kundu, A. Patra. Photocatalytic properties of semiconductor SnO2/CdS heterostructure nanocrystals [J]. RSC Adv.,2012,2(27):10222-10230.
    89. H. B. Lu, S. M. Wang, L. Zhao, et al. Surfactant-assisted hydrothermal synthesis of Bi2O3 nano/microstructures with tunable size [J]. RSC Adv.,2012,2(8):3374-3378.
    90. G. Q. Zhu, W. X. Que, J. Zhang. Synthesis and photocatalytic performance of Ag-loaded Bi2O3 microspheres under visible light irradiation [J]. J. Alloys Compd., 2011,509(39):9479-9486.
    91. B. J. Li, H. Q. Cao. ZnO@graphene composite with enhanced performance for the removal of dye from water [J]. J. Mater. Chem.,2011,21(10):3346-3349.
    92. G. C. C. Yang, S. W. Chan. Photocatalytic reduction of chromium (Ⅵ) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation [J]. J. Nanopart. Res.,2009,11(1):221-230.
    93. S. Chakrabarti, B. Chaudhuri, S. Bhattacharjee, et al. Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst [J]. Chem. Eng. J.,2009,153(1-3):86-93.
    94. M. Qamar, M. A. Gondal, Z. H. Yamani. Laser-induced efficient reduction of Cr(Ⅵ) catalyzed by ZnO nanoparticles [J]. J. Hazard. Mater.,2011,187(1-3):258-263.
    95. A. V. Murugan, T. Muraliganth, A. Manthiram. Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage [J]. Chem. Mater.,2009,21(21):5004-5006.
    96. C. T. Lee, F. S. Chen, C. H. Lu. Microwave-assisted solvothermal synthesis and characterization of SnO2:Eu3+ phosphors [J]. J. Alloys Compd.,2010,490(1-2): 407-411.
    97. F. Y. Jiang, C. M. Wang, Y. Fu, et al. Synthesis of iron oxide nanocubes via microwave-assisted solvolthermal method [J]. J. Alloys Compd.,2010,503(2): L31-L33.
    98. G. Zhu, L. K. Pan, T. Xu, et al. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells [J]. Nanoscale,2011,3(5):2188-2193.
    99. X. J. Liu, L. K. Pan, T. Lv, et al. Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for photocatalytic reduction of Cr(Ⅵ) [J]. RSC Adv.,2011, 1(7):1245-1249.
    100. Y. Zhang, J. C. Crittenden, D. W. Hand, et al. Fixed-bed photocatalysts for solar decontamination of water [J]. Environ. Sci. Technol.,1994,28(3):435-442.
    101. J. L. Wu, X. P. Shen, L. J. Jiang, et al. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites [J]. Appl. Surf. Sci.,2010,256(9): 2826-2830.
    102. J. Lin, M. Penchev, G. Wang, et al. Heterogeneous Graphene Nanostructures:ZnO Nanostructures Grown on Large-Area Graphene Layers [J]. Small,2010,6 (21): 2448-2452.
    103. R. A. Street, Hydrogenated amorphous silicon. Cambridge University Press:1991.
    104. S. Y. Ai, J. Q. Li, Y. Yang, et al. Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2-K2Cr2O7 system [J]. Anal. Chim. Acta 2004,509(2):237-241.
    105. A. Kubacka, M. Fernandez-Garcia, G. Colon. Advanced Nanoarchitectures for Solar Photocatalytic Applications [J]. Chem. Rev.,2012,112(3):1555-1614.
    106. A. A. Madhavan, G. G. Gopa Kumar, S. Kalluri, et al. Effect of Embedded Plasmonic Au Nanoparticles on Photocatalysis of Electrospun TiO2 Nanofibers [J]. J. Nanosci. Nanotechnol.,2012,12(10):7963-7967.
    107. L. Wang, Y. Han, G. Jia, et al. Facile Preparation, Characterization and Photocatalytic Properties of Multifunctional BiFeO3 Nanocrystals [J]. J. Nanosci. Nanotechnol., 2011,11(6):5207-5209.
    108. L. Y. Chen, W. D. Zhang, B. Xu, et al. A Facile Hydrothermal Strategy for Synthesis of SnO2 Nanorods-Graphene Nanocomposites for High Performance Photocatalysis [J]. J. Nanosci. Nanotechnol.,2012,12(9):6921-6929.
    109. D. S. Li, Y. J. Wang, Y. S. Xiong, et al. In Situ Conversion of ZnO Microsphere from ZnS Complex Microstructure and Photocatalytic Study [J]. J. Nanosci. Nanotechnol., 2012,12(9):7371-7375.
    110. T. G. Xu, L. W. Zhang, H. Y. Cheng, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study [J]. Appl. Catal. B:Environ.,2011,101(3-4):382-387.
    111. J. Tang, Z. Zou, J. Ye. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation [J]. Angew. Chem. Int. Ed.,2004,43(34):4463-4466.
    112. Y. Bessekhouad, M. Mohammedi, M. Trari. Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst [J]. Sol. Energy Mater. Sol. Cells,2002,73(3): 339-350.
    113. G. Li, D. Zhang, J. C. Yu, et al. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide [J]. Environ. Sci. Technol.,2010,44(11): 4276-4281.
    114. C. Z. Li, J. Y. Zhang, J. A. Yang, et al. Methods to improve the photocatalytic activity of immobilized ZnO/Bi2O3 composite [J]. Appl. Catal. A:Gen.,2011,402(1-2): 80-86.
    115. Z. L. Xu, I. Tabata, K. Hirogaki, et al. Nontraditional template synthesis of microjagged bismuth oxide:a highly efficient visible light responsive photocatalyst [J]. Catal. Sci. Technol.,2011,1(3):397-400.
    116. L. Zhu, B. Wei, L. Xu, et al. Ag2O-Bi2O3 composites:synthesis, characterization and high efficient photocatalytic activities [J]. CrystEngComm,2012,14(18):5705-5709.
    117. Y. Wang, Y. Wen, H. Ding, et al. Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes [J]. J. Mater. Sci.,2009, 45(5):1385-1392.
    118. X. W. Liu, H. Q. Cao, J. F. Yin. Generation and photocatalytic activities of Bi@Bi2O3 microspheres [J]. Nano Res.,2011,4(5):470-482.
    119. G. Lin, D. Tan, F. Luo, et al. Fabrication and photocatalytic property of α-Bi2O3 nanoparticles by femtosecond laser ablation in liquid [J]. J. Alloys Compd.,2010, 507(2):L43-L46.
    120. M. Shang, W. Z. Wang, J. Ren, et al. A novel BiVO4 hierarchical nanostructure: controllable synthesis, growth mechanism, and application in photocatalysis [J]. CrystEngComm,2010,12(6):1754-1758.
    121. Y. X. Liu, H. X. Dai, J. G Deng, et al. Three-dimensional ordered macroporous bismuth vanadates:PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation [J]. Nanoscale,2012,4(7): 2317-2325.
    122. M. S. Gui, W. D. Zhang. A facile preparation strategy for hollow-structured heterojunction with high visible light photocatalytic activity [J]. J. Phys. Chem. Solids,2012,73(11):1342-1349.
    123. R. Chen, Z. R. Shen, H. Wang, et al. Fabrication of mesh-like bismuth oxide single crystalline nanoflakes and their visible light photocatalytic activity [J]. J. Alloys Compd.,2011,509(5):2588-2596.
    124. C. Wu, L. Shen, Q. Huang, et al. Hydrothermal synthesis and characterization of Bi2O3 nanowires [J]. Mater. Lett.,2011,65(7):1134-1136.
    125. Y. Wu, M. Long, W. Cai, et al. Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate [J]. Nanotechnology,2009,20(18):185703.
    126. G S. Kim, S. G. Ansari, H. K. Seo, et al. Effect of annealing temperature on structural and bonded states of titanate nanotube films [J]. J. Appl. Phys.,2007,101(2): 024314-024316.
    127. A. B. Panda, G. Glaspell, M. S. El Shall. Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires [J]. J. Am. Chem. Soc.,2006,128(9): 2790-2791.
    128. S. Anandan, J. J. Wu. Microwave assisted rapid synthesis of Bi2O3 short nanorods [J]. Mater. Lett.,2009,63(27):2387-2389.
    129. M. G. Ma, J. F. Zhu, R. C. Sun, et al. Microwave-assisted synthesis of hierarchical Bi2O3 spheres assembled from nanosheets with pore structure [J]. Mater. Lett.,2010, 64(13):1524-1527.
    130. Q. Q. Huang, S. N. Zhang, C. X. Cai, et al. Bi2O3 nanoparticles synthesized via microwave-assisted method and their photocatalytic activity towards the degradation of rhodamine B [J]. Mater. Lett.,2011,65(6):988-990.
    131. H. Zhang, X. J. Lv, Y. M. Li, et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano,2010,4(1):380-386.
    132. X. J. Liu, L. K. Pan, T. Lv, et al. Microwave-assisted synthesis of ZnO-graphene nanocomposite for photocatalytic reduction of Cr(VI) [J]. Catal. Sci. Technol.,2011, 1(7):1189-1193.
    133. S. D. Dai, Z. L. Yao. Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity [J]. Appl. Surf. Sci.,2012,258(15):5703-5706.
    134. Q. Q. Wang, B. Z. Lin, B. H. Xu, et al. Preparation and photocatalytic properties of mesoporous SnO2-hexaniobate layered nanocomposite [J]. Micropor. Mesopor. Mater., 2010,130(1-3):344-351.
    135. Y. T. Han, X. Wu, Y. L. Ma, et al. Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications [J]. CrystEngComm,2011,13(10):3506-3510.
    136. C. Karunakaran, S. Sakthi Raadha, P. Gomathisankar. Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO2 nanoparticles [J]. J. Alloys Compd.,2013,549:269-275.
    137. C. Jiang, G. Zhang, Y. Wu, et al. Facile synthesis of SnO2 nanocrystalline tubes by electrospinning and their fast response and high sensitivity to NOx at room temperature [J]. CrystEngComm,2012,14(8):2739-2747.
    138.X. Wang, H. Q. Fan, P. R. Ren. Electrospinning derived hollow SnO2 microtubes with highly photocatalytic property [J]. Catal. Commun.,2013,31:37-41.
    139. W. Wu, S. F. Zhang, J. Zhou, et al. Controlled Synthesis of Monodisperse Sub-100 nm Hollow SnO2 Nanospheres:A Template-and Surfactant-Free Solution-Phase Route, the Growth Mechanism, Optical Properties, and Application as a Photocatalyst [J]. Chem.-A Eur. J.,2011,17(35):9708-9719.
    140. P. Manjula, R. Boppella, S. V. Manorama. A Facile and Green Approach for the Controlled Synthesis of Porous SnO2 Nanospheres:Application as an Efficient Photocatalyst and an Excellent Gas Sensing Material [J]. ACS Appl. Mater. Interfaces, 2012,4(11):6252-6260.
    141. X. L. Li, B. Z. Lin, B. H. Xu, et al. Preparation and characterization of mesoporous SnO2-pillared HTaWO6 with enhanced photocatalytic activity [J]. J. Mater. Chem., 2010,20(19):3924-3931.
    142. W. W. Wang, Y. J. Zhu, L. X. Yang. ZnO-SnO2 Hollow Spheres and Hierarchical Nanosheets:Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties [J]. Adv. Funct. Mater.,2007,17(1):59-64.
    143. Y. L. Du, N. Zhang, C. M. Wang. Photo-catalytic degradation of trifluralin by Sn02-doped Cu2O crystals [J]. Catal. Commun.,2010,11(7):670-674.
    144. G. Wang, W. Lu, J. H. Li, et al. V-Shaped Tin Oxide Nanostructures Featuring a Broad Photocurrent Signal:An Effective Visible-Light-Driven Photocatalyst [J]. Small,2006, 2(12):1436-1439.
    145. H. J. Wang, F. Q. Sun, Y. Zhang, et al. Photochemical growth of nanoporous SnO2 at the air-water interface and its high photocatalytic activity [J]. J. Mater. Chem.,2010, 20(27):5641-5645.
    146. W. Wu, S. F. Zhang, F. Ren, et al. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures:formation mechanism, and enhanced photocatalytic activity [J]. Nanoscale,2011,3(11):4676-4684.
    147. L. L. Zhang, H. C. Zhang, H. Huang, et al. AgsPO4/SnO2 semiconductor nanocomposites with enhanced photocatalytic activity and stability [J]. New J. Chem., 2012,36(8):1541-1544.
    148. H. C. Ma, K. Teng, Y. H. Fu, et al. Synthesis of visible-light responsive Sn-SnO2/C photocatalyst by simple carbothermal reduction [J]. Energy Environ. Sci.,2011,4(8): 3067-3074.
    149. Z. K. Zheng, B. B. Huang, X. D. Meng, et al. Metallic zinc-assisted synthesis of TiJ+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity [J]. Chem. Commun,2013,49(9):868-870.
    150. G. Zhu, X. J. Wang, H. L. Li, et al. Y3Al5O12:Ce phosphors as a scattering layer for high-efficiency dye sensitized solar cells [J]. Chem. Commun.,2012,48(7):958-960.
    151. X. J. Liu, X. J. Wang, H. L. Li, et al. Microwave-assisted synthesis of ZnO-Y3Al5O12: Ce3+ composites with enhanced visible light photocatalysis [J]. J. Mater. Chem.,2012, 22(32):16293-16298.
    152. E. Gao, W. Z. Wang, M. Shang, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite [J]. Phys. Chem. Chem. Phys.,2011, 13(7):2887-2893.
    153. J. T. Zhang, Z. G. Xiong, X. S. Zhao. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation [J]. J. Mater. Chem.,2011,21(11): 3634-3640.
    154. Z. G. Xiong, L. L. Zhang, J. Z. Ma, et al. Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation [J]. Chem. Commun., 2010,46(33):6099-6101.
    155. F. Han, V. S. R. Kambala, M. Srinivasan, et al. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment:A review [J]. Appl. Catal. B:Environ.,2009,359(1-2):25-40.
    156. P. F. Ji, J. L. Zhang, F. Chen, et al. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation [J]. Appl. Catal. B:Environ., 2009,85(3-4):148-154.
    157. L. Pan, J. J. Zou, X. Y. Liu, et al. Visible-Light-Induced Photodegradation of Rhodamine B over Hierarchical TiO2:Effects of Storage Period and Water-Mediated Adsorption Switch [J]. Ind. Eng. Chem. Res.,2012,51(39):12782-12786.
    158. Y. Yan, H. P. Sun, P. P. Yao, et al. Effect of multi-walled carbon nanotubes loaded with Ag nanoparticles on the photocatalytic degradation of rhodamine B under visible light irradiation [J]. Appl. Surf. Sci.,2011,257(8):3620-3626.
    159. T. Lv, L. K. Pan, X. J. Liu, et al. One-step synthesis of CdS-TiO2-chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange [J]. Catal. Sci. Technol.,2012,2(4): 754-758.
    160. B. O'Regan, M. Grfitzeli. A low-cost, high-efficiency solar cell based on dye-sensitized [J]. Nature,1991,353:737-739.
    161. S. Cho, J. W. Jang, S. Hwang, et al. Self-Assembled Gold Nanoparticle-Mixed Metal Oxide Nanocomposites for Self-Sensitized Dye Degradation under Visible Light Irradiation [J]. Langmuir,2012,28(50):17530-17536.
    162. C. C. Chen, W. H. Ma, J. C. Zhao. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation [J]. Chem. Soc. Rev.,2010,39(11): 4206-4219.
    163. S. B. Zhu, T. G Xu, H. B. Fu, et al. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation [J]. Environ. Sci. Technol., 2007,41(17):6234-6239.
    164. X. J. Wang, M. C. Zhang, H. Ding, et al. Low-voltage cathodoluminescence properties of green-emitting ZnAl2O4:Mn2+ nanophosphors for field emission display [J]. J. Alloys Compd.,2011,509(21):6317-6320.
    165. L. N. Yin, J. Q. Gao, J. Wang, et al. Synthesis of Er3+:Y3Al5Oi2 and its effects on the solar light photocatalytic activity of TiO2-ZrO2 composite [J]. Res. Chem. Intermed., 2012,38(2):523-536.
    166. J. Wang, R. H. Li, Z. H. Zhang, et al. Efficient photocatalytic degradation of organic dyes over titanium dioxide coating upconversion luminescence agent under visible and sunlight irradiation [J]. Appl. Catal. A:Gen.,2008,334(1-2):227-233.
    167. D. X. Hou, L. Feng, J. B. Zhang, et al. Preparation, Characterization and Performance of a Novel Visible Light Responsive Spherical Activated Carbon-supported and Er3+ YFeO3-doped TiO2 Photocatalyst [J]. J. Hazard. Mater.,2012,199-200(15):301-308.
    168. G. J. Feng, S. W. Liu, Z. L. Xiu, et al. Visible Light Photocatalytic Activities of TiO2 Nanocrystals Doped with Upconversion Luminescence Agent [J]. J. Phys. Chem. C, 2008,112(35):13692-13699.
    169. Z. J. Zhang, W. Z. Wang, W. Z. Yin, et al. Inducing photocatalysis by visible light beyond the absorption edge:Effect of upconversion agent on the photocatalytic activity of Bi2WO6 [J]. Appl. Catal. B:Environ.,2010,101(1):68-73.
    170. X. D. Jiang, Y. Q. Wang, C. X. Pan. Micro-arc oxidation of TC4 substrates to fabricate TiO2/YAG:Ce3+ compound films with enhanced photocatalytic activity [J]. J. Alloys Compd.,2011,509(8):L137-L141.
    171. J. Q. Gao, X. Y. Luan, J. Wang, et al. Preparation of Er3+:YAlO3/Fe-doped TiO2-ZnO and its application in photocatalytic degradation of dyes under solar light irradiation [J]. Desalination,2011,268(1):68-75.
    172. C. F. Guo, L. Luan, C. H. Chen, et al. Preparation of Y2O2S:Eu3+ phosphors by a novel decomposition method [J]. Mater. Lett.,2008,62(4):600-602.
    173. T. W. Chou, S. Mylswamy, R. S. Liu, et al. Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes [J]. Solid State Commun.,2005, 136(4):205-209.
    174. G. Q. Li, N. Yang, X. L. Yang, et al. Reagent Dependency of the Extent of Organic Compound Degradation Ability under Visible Light Irradiation [J]. J. Phys. Chem. C, 2011,115(28):13734-13738.
    175. N. Yang, G. Q. Li, X. L. Yang, et al. A series of highly efficient photocatalysts for organic contaminants degradation under visible light irradiation [J]. Dalton Trans., 2011,40(14):3459-3461.
    176. X. J. Wang, H. L. Li, Z. Sun. Citric Based Sol-Gel Synthesis and Photoluminescence Properties of Eu3+ Doped NaSrBO3 Phosphors [J]. Adv. Mater. Res.,2013,621: 70-74.
    177. C. T. Chen, J. Q. Kao, C. Y. Liu, et al. Oxidative, photo-activated TiO2 nanoparticles in the catalytic acetylation of primary alcohols [J]. Catal. Sci. Technol.,2011,1(1): 54-57.
    178. R. Guttel, M. Paul, F. Schuth. Activity improvement of gold yolk-shell catalysts for CO oxidation by doping with TiO2 [J]. Catal. Sci. Technol.,2011,1(1):65-68.
    179. C. C. Ou, C. S. Yang, S. H. Lin. Selective photo-degradation of Rhodamine B over zirconia incorporated titania nanoparticles:a quantitative approach [J]. Catal. Sci. Technol.,2011,1(2):295-307.
    180. J. Zhang, Y. P. Zhang, Y. K. Lei, et al. Photocatalytic and degradation mechanisms of anatase TiO2:a HRTEM study [J]. Catal. Sci. Technol.,2011,1(2):273-278.
    181. S. Cho, J. W. Jang, J. S. Lee, et al. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis [J]. CrystEngComm,2010,12(11): 3929-3935.
    182. J. T. Tian, L. J. Chen, Y. S. Yin, et al. Photocatalyst of TiO2/ZnO nano composite film: Preparation, characterization, and photodegradation activity of methyl orange [J]. Surf. Coat. Technol.,2009,204(1-2):205-214.
    183. H. B. Fu, T. G. Xu, S. B. Zhu, et al. Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C60 [J]. Environ. Sci. Technol.,2008,42(21):8064-8069.
    184. T. A. Saleh, M. A. Gondal, Q. A. Drmosh, et al. Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes [J]. Chem. Eng. J.,2011,166(1):407-412.
    185. P. S. S. Kumar, M. R. Raj, S. Anandan, et al. Visible light assisted photocatalytic degradation of acid red 88 using Au-ZnO nanophotocatalysts [J]. Water Sci. Tech., 2009,60(6):1589-1596.
    186. L. W. Zhang, H. Y. Cheng, R. L. Zong, et al. Photocorrosion Suppression of ZnO Nanoparticles via Hybridization with Graphite-like Carbon and Enhanced Photocatalytic Activity [J]. J. Phys. Chem. C,2009,113(6):2368-2374.
    187. T. N. Lambert, C. A. Chavez, B. Hernandez-Sanchez, et al. Synthesis and Characterization of Titania-Graphene Nanocomposites [J]. J. Phys. Chem. C,2009, 113(46):19812-19823.
    188. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    189. M. Pumera. Graphene-based nanomaterials for energy storage [J]. Energy Environ. Sci.,2011,4(3):668-674.
    190. K. F. Zhou, Y. H. Zhu, X. L. Yang, et al. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity [J]. New J. Chem.,2011,35(2):353-359.
    191. T. Kamegawa, D. Yamahana, H. Yamashita. Graphene Coating of TiO2 Nanoparticles Loaded on Mesoporous Silica for Enhancement of Photocatalytic Activity [J]. J. Phys. Chem. C,2010,114(35):15049-15053.
    192. P. V. Kamat. Graphene-Based Nanoassemblies for Energy Conversion [J]. J. Phys. Chem. Lett.,2011,2(3):242-251.
    193. K. Zhang, L. L. Zhang, X. S. Zhao, et al. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes [J]. Chem. Mater.,2010,22(4):1392-1401.
    194. B. Qi, L. He, X. J. Bo, et al. Electrochemical preparation of free-standing few-layer graphene through oxidation-reduction cycling [J]. Chem. Eng. J.,2011,171(1): 340-344.
    195. G. Zhu, T. Xu, T. Lv, et al. Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells [J]. J. Electroanal. Chem.,2011,650(2):248-251.
    196. L. Kavan, J. H. Yum, M. Gratzel. Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets [J]. ACS Nano,2011,5(1):165-172.
    197. K. S. Kim, Y. Zhao, H. Jang, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature,2009,457(7230):706-710.
    198. Z. Y. Yin, S. Y Sun, T. Salim, et al. Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes [J]. ACS Nano, 2010,4(9):5263-5268.
    199. T. Lu, L. K. Pan, H. B. Li, et al. Microwave-assisted synthesis of graphene-ZnO nanocomposite for electrochemical supercapacitors [J]. J. Alloys Compd.,2011, 509(18):5488-5492.
    200. T. Lu, L. K. Pan, H. B. Li, et al. Reduced graphene oxide-carbon nanotubes composite films by electrophoretic deposition method for supercapacitors [J]. J. Electroanal. Chem.,2011,661(1):270-273.
    201. W. T. Zheng, Y. M. Ho, H. W. Tian, et al. Field Emission from a Composite of Graphene Sheets and ZnO Nanowires [J]. J. Phys. Chem. C,2009,113(21): 9164-9168.
    202. K. E. Tettey, M. Q. Yee, D. Lee. Photocatalytic and Conductive MWCNT/TiO2 Nanocomposite Thin Films [J]. ACS Appl. Mater. Interfaces,2010,2(9):2646-2652.
    203. G. Zhu, L. K. Pan, T. Lu, et al. Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells [J]. J. Mater. Chem.,2011,21(38):14869-14875.
    204. J. F. Shen, B. Yan, M. Shi, et al. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets [J]. J. Mater. Chem.,2011,21(10):3415-3421.
    205. Y. H. Zhang, Z. R. Tang, X. Z. Fu, et al. TiO2-Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant:Is TiO2-Graphene Truly Different from Other TiO2-Carbon Composite Materials? [J]. ACS Nano,2010,2(12):7303-7314.
    206. Y. J. Wang, R. Shi, J. Lin, et al. Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in-situ hybridization [J]. Appl. Catal. B:Environ.,2010,100:179-183.
    207. J. F. Shen, Y. Z. Hu, M. Shi, et al. One Step Synthesis of Graphene Oxide-Magnetic Nanoparticle Composite [J]. J. Phys. Chem. C,2010,114(3):1498-1503.
    208. A. Du, Y. H. Ng, N. J. Bell, et al. Hybrid Graphene/Titania Nanocomposite:Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response [J]. J. Phys. Chem. Lett.,2011,2(8):894-899.
    209. O. Akhavan. Graphene nanomesh by ZnO nanorod photocatalysts [J]. ACS Nano, 2010,4(7):4174-4180.
    210. Y. Cong, X. K. Li, Y. Qin, et al. Carbon-doped TiO2 coating on multiwalled carbon nanorubes with higher visible light photocatalytic activity [J]. Appl. Catal. A:Gen., 2011,107(1-2):128-134.
    211. J. J. Guo, S. M. Zhu, Z. X. Chen, et al. Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst [J]. Ultrason. Sonochem.,2011,18(5): 1082-1090.
    212. W. Q. Fan, Q. H. Lai, Q. H. Zhang, et al. Nanocomposites of TiO2 and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution [J]. J. Phys. Chem. C.2011,115(21):10694-10701.
    213. J. F. Shen, M. Shi, B. Yan, et al. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites [J]. Nano Res.,2011,4(8):795-806.
    214. Y. L. Chen, Z. A. Hu, Y. Q. Chang, et al. Zinc Oxide/Reduced Graphene Oxide Composites and Electrochemical Capacitance Enhanced by Homogeneous Incorporation of Reduced Graphene Oxide Sheets in Zinc Oxide Matrix [J]. J. Phys. Chem. C,2011,115(5):2563-2571.
    215. T. V. Cuong, V. H. Pham, J. S. Chung, et al. Solution-processed ZnO-chemically converted graphene gas sensor [J]. Mater. Lett.,2010,64(22):2479-2482.
    216. H. X. Chang, Z. H. Sun, K. Y. F. Ho, et al. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure [J]. Nanoscale,2011,3(1):258-264.
    217. W. B. Zou, J. W. Zhu, Y. X. Sun, et al. Depositing ZnO nanoparticles onto graphene in a polyol system [J]. Mater. Chem. Phys.,2011,125(3):617-620.
    218. J. O. Hwang, D. H. Lee, J. Y. Kim, et al. Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission [J]. J. Mater. Chem.,2011,21(10):3432-3437.
    219. G. Williams, B. Seger, P. V. Kamat. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide [J]. ACS Nano,2008,2(7):1487-1491.
    220. S. M. Paek, E. J. Yoo, I. Honma. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Nano Lett.,2009,9(1):72-75.
    221. G. Williams, P. V. Kamat. Graphene-Semiconductor Nanocomposites:Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide [J]. Langmuir,2009, 25(24):13869-13873.
    222. O. Akhavan. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol [J]. Carbon,2011,49(1):11-18.
    223. H. B. Li, T. Lu, L. K. Pan, et al. Electrosorption behavior of graphene in NaCl solutions [J]. J. Mater. Chem.,2009,19(37):6773-6779.
    224. H. A. Becerril, J. Mao, Z. Liu, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J]. ACS Nano,2008,2(3):463-470.
    225. N. A. Kotov, I. Dekany, J. H. Fendler. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly:Transition between conductive and non-conductive states [J]. Adv. Mater.,1996,8(8):637-641.
    226. T. Lu, L. K. Pan, C. Y. Nie, et al. A green and fast way for reduction of graphene oxide in acidic aqueous solution via microwave assistance [J]. Phys. Status Solidi A, 2011,208(10):2325.
    227. T. Q. Chen, L. K. Pan, K. Yu, et al. Microwave-assisted synthesis of reduced graphene oxide-carbon nanotube composites as negative electrode materials for lithium ion batteries [J]. Solid State Ionics,2012,229:9-13.
    228. J. F. Shen, T. Li, Y. Long, et al. One-step solid state preparation of reduced graphene oxide [J]. Carbon,2012,50(6):2134-2140.
    229. L. H. Tang, Y. Wang, Y. M. Li, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films [J]. Adv. Funct. Mater.,2009,19(17): 2782-2789.
    230. J. W. Li, X. J. Liu, L. W. Yang, et al. Photoluminescence and photoabsorption blueshift of nanostructured ZnO:Skin-depth quantum trapping and electron-phonon coupling [J]. Appl. Phys. Lett.,2009,95(3):031906.
    231. C. Q. Sun. Size dependence of nanostructures:Impact of bond order deficiency [J]. Prog. Solid State Chem.,2007,35(1):1-159.
    232. R. Czerw, B. Foley, D. Tekleab, et al. Substrate-interface interactions between carbon nanotubes and the supporting substrate [J]. Phys. Rev. B,2002,66(3):033408.
    233. N. L. Yang, J. Zhai, D. Wang, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells [J]. ACS Nano,2010,4(2): 887-894.
    234. Y. B. Tang, C. S. Lee, J. Xu, et al. Incorporation of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application [J]. ACS Nano,2010,4(6):3482-3488.
    235. J. F. Shen, Y. Z. Hu, M. Shi, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets [J]. Chem. Mater,2009,21(15):3514-3520.
    236. T. V. Cuong, V. H. Pham, Q. T. Tran, et al. Optoelectronic properties of graphene thin films prepared by thermal reduction of graphene oxide [J]. Mater. Lett.,2010,64(6): 765-767.
    237. S. R. Kim, M. K. Parvez, M. Chhowalla. UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells [J]. Chem. Phys. Lett.,2009,483(1-3):124-127.
    238. N. J. Bell, Y. H. Ng, A. Du, et al. Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO2-Reduced Graphene Oxide Composite [J]. J. Phys. Chem. C,2011,115(13):6004-6009.
    239. O. Akhavan, E. Ghaderi. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation [J]. J. Phys. Chem. C,2009,113(47):20214-20220.
    240. O. Akhavan, M. Abdolahad, A. Esfandiar, et al. Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J]. J. Phys. Chem. C, 2010,114(30):12955-12959.
    241. Y. H. Ng, A. Iwase, N. J. Bell, et al. Semiconductor/reduced graphene oxide nanocomposites derived from photocatalytic reactions [J]. Catal. Today,2011,164(1): 353-357.
    242. Y. H. Ng, A. Iwase, A. Kudo, et al. Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting [J]. J. Phys. Chem. Lett.,2010,1(17):2607-2612.
    243. Y. P. Zhang, H. B. Li, L. K. Pan, et al. Capacitive behavior of graphene-ZnO composite film for supercapacitors [J]. J. Electroanal. Chem.,2009,634(1):68-71.
    244. Q. J. Xiang, J. G Yu, M. Jaroniec. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites [J]. J. Phys. Chem. C,2011,115(15):7355-7363.
    245. Q. J. Xiang, J. G. Yu, M. Jaroniec. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets [J]. Nanoscale,2011,3(9):3670-3678.
    246. N. Lepot, M. K. Van Bael, H. Van den Rul, et al. Synthesis of ZnO nanorods from aqueous solution [J]. Mater. Lett.,2007,61(13):2624-2627.
    247. Y. Y. Liang, H. L. Wang, H. Sanchez Casalongue, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials [J]. Nano Res.,2010,3(10): 701-705.
    248. P. Wang, Y. M. Zhai, D. J. Wang, et al. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties [J]. Nanoscale,2011,3(4):1640-1645.
    249. P. V. Kamat. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support [J]. J. Phys. Chem. Lett.,2009, 1(2):520-527.
    250. F. Zou, Y Yu, N. Cao, et al. A novel approach for synthesis of TiO2-graphene nanocomposite and their photoelectrical properties [J]. Scr. Mater.,2011,64(7): 621-624.
    251. X. Y. Zhang, H. P. Li, X. L. Cui, et al. Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting [J]. J. Mater. Chem.,2010,20(14):2801-2806.
    252. K. F. Zhou, Y. H. Zhu, X. L. Yang, et al. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity [J]. New J. Chem.,2011,35:353-359.
    253. T. Lu, Y. P. Zhang, H. B. Li, et al. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors [J]. Electrochim. Acta,2010, 55(13):4170-4173.
    254. G. Zhu, L. K. Pan, T. Xu, et al. Cascade structure of TiO2/ZnO/CdS film for quantum dot sensitized solar cells [J]. J. Alloys Compd.,2011,509(29):7814-7818.
    255. X. J. Liu, L. K. Pan, T. Lv, et al. Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr(VI) [J]. Chem. Commun.,2011,47(43):11984-11986.
    256. S. F. Chen, W. Zhao, W. Liu, et al. Preparation, characterization and activity evaluation of pn junction photocatalyst p-ZnO/n-TiO2 [J]. Appl. Surf. Sci.,2008, 255(5):2478-2484.
    257. Y. Ku, Y. H. Huang, Y. C. Chou. Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr (VI) in aqueous solution [J]. J. Mol. Catal. A:Chem., 2011,342-343:18-22.
    258. Y. Ye, Y. Dai, L. Dai, et al. High-Performance Single CdS Nanowire (Nanobelt) Schottky Junction Solar Cells with Au/Graphene Schottky Electrodes [J]. ACS Appl. Mater. Interfaces,2010,2(12):3406-3410.
    259. A. Cao, Z. Liu, S. Chu, et al. A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials [J]. Adv. Mater., 2010,22(1):103-106.
    260. J. L. Wu, S. Bai, X. P. Shen, et al. Preparation and characterization of graphene/CdS nanocomposites [J]. Appl. Surf. Sci.,2010,257(3):747-751.
    261. P. Wang, T. F. Jiang, C. Z. Zhu, et al. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties [J]. Nano Res.,2010,3(11):794-799.
    262. M. Feng, R. Q. Sun, H. B. Zhan, et al. Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties [J]. Nanotechnology,2010,21(7):075601.
    263. T. A. Pham, B. C. Choi, Y. T. Jeong. Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets:preparation, characterization, and optical properties [J]. Nanotechnology,2010,21(46):465603.
    264. C. Nethravathi, T. Nishaa, N. Ravishankar, et al. Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide [J]. Carbon,2009,47(8):2054-2059.
    265. K. Wang, Q. Liu, X. Y. Wu, et al. Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing [J]. Talanta,2010,82(1):372-376.
    266. K. Wang, Q. Liu, Q. M. Guan, et al. Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals [J]. Biosens. Bioelectron.,2011,26(5):2252-2257.
    267. K. Wang, Q. Liu, L. Dai, et al. A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite [J]. Anal. Chim. Acta,2011,695(1-2):84-88.
    268. K. J. Zhang, X. H. Liu. One step synthesis and characterization of CdS nanorod/graphene nanosheet composite [J]. Appl. Surf. Sci.,2011,257(24): 10379-10383.
    269. H. X. Chang, X. J. Lv, H. Zhang, et al. Quantum dots sensitized graphene:In situ growth and application in photoelectrochemical cells [J]. Electrochem. Commun., 2010,12(3):483-487.
    270. L. Jia, D. H. Wang, Y. X. Huang, et al. Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation [J]. J. Phys. Chem. C,2011,115(23):11466-11473.
    271. Q. Li, B. D. Guo, J. G. Yu, et al. Highly Efficient Visible-light-driven Photocatalytic Hydrogen Production of CdS-cluster-decorated Graphene Nanosheets [J]. J. Am. Chem. Soc.,2011,133(28):10878-10884.
    272. J. R. Ran, J. G. Yu, M. Jaroniec. Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic generation [J]. Green Chem.,2011,13(10): 2708-2713.
    273. C. X. Guo, H. B. Yang, Z. M. Sheng, et al. Layered graphene/quantum dots for photovoltaic devices [J]. Angew. Chem. Int. Ed.,2010,49(17):3014-3017.
    274. G Zhu, L. K. Pan, T. Xu, et al. One-Step Synthesis of CdS Sensitized TiO2 Photoanodes for Quantum Dot-Sensitized Solar Cells by Microwave Assisted Chemical Bath Deposition Method [J]. ACS Appl. Mater. Interfaces,2011,3(5): 1472-1478.
    275. G. Zhu, L. K. Pan, T. Xu, et al. CdS/CdSe-Cosensitized TiO2 Photoanode for Quantum-Dot-Sensitized Solar Cells by a Microwave-Assisted Chemical Bath Deposition Method [J]. ACS Appl. Mater. Interfaces,2011,3(8):3146-3151.
    276. S. Komarneni, D. Li, B. Newalkar, et al. Microwave-polyol process for Pt and Ag nanoparticles [J]. Langmuir,2002,18(15):5959-5962.
    277. D. Chen, G. Shen, K. Tang, et al. Microwave-assisted polyol synthesis of nanoscale SnSx (x= 1,2) flakes [J]. J. Cryst. Growth,2004,260(3-4):469-474.
    278. Y. F. Qiu, M. L. Yang, H. B. Fan, et al. Nanowires of Bi2O3:phase-selective synthesis and application in photocatalysis [J]. CrystEngComm,2011,13(6):1843-1850.
    279. Y. L. Min, K. Zhang, Y. C. Chen, et al. Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel [J]. Sep. Purif. Technol., 2012,86:98-105.
    280. J. J. Guo, Y. Li, S. M. Zhu, et al. Synthesis of WO3@Graphene composite for enhanced photocatalytic oxygen evolution from water [J]. RSC Adv.,2012,2(4): 1356-1363.
    281. Y. S. Fu, X. Wang. Magnetically Separable ZnFe2O4-Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation [J]. Ind. Eng. Chem. Res., 2011,50(12):7210-7218.
    282. H. T. Hu, X. B. Wang, F. M. Liu, et al. Rapid microwave-assisted synthesis of graphene nanosheets-zinc sulfide nanocomposites:Optical and photocatalytic properties [J]. Synthetic Met.,2011,161(5-6):404-410.
    283. Y. F. Sun, B. Y. Qu, Q. Liu, et al. Highly Efficient Visible-Light-Driven Photocatalytic Activities in Synthetic Ordered Monoclinic BiVO4 Quantum Tubes-Graphene Nanocomposites [J]. Nanoscale,2012,4(12):3761-3767.
    284. Y. H. Zhang, N. Zhang, Z. R. Tang, et al. Graphene Transforms Wide Band Gap ZnS to Visible Light Photocatalyst. The New Role of Graphene as a Macromolecular Photosensitizer [J]. ACS Nano,2012,6(11):9777-9789.
    285. N. Zhang, Y. H. Zhang, X. Y. Pan, et al. Assembly of CdS Nanoparticles on the Two-Dimensional Graphene Scaffold as Visible-Light-Driven Photocatalyst for Selective Organic Transformation under Ambient Conditions [J]. J. Phys. Chem. C, 2011,115(47):23501-23511.
    286. Y. H. Zhang, Z. R. Tang, X. Z. Fu, et al. Engineering the Unique 2D Mat of Graphene to Achieve Graphene-TiO2 Nanocomposite for Photocatalytic Selective Transformation:What Advantage does Graphene Have over Its Forebear Carbon Nanotube? [J]. ACS Nano,2011,5(9):7426-7435.
    287. Y. S. Fu, X. Q. Sun, X. Wang. BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation [J]. Mater. Chem. Phys.,2011,131(1-2): 325-330.
    288. H. W. Ma, J. F. Shen, M. Shi, et al. Significant enhanced performance for Rhodamine B, phenol and Cr(VI) removal by Bi2WO6 nancomposites via reduced graphene oxide modification [J]. Appl. Catal. B:Environ.,2012,121-122:198-205.
    289. S. Y. Lu, C. W. Tang, Y. H. Lin, et al. TiO2-coated carbon nanotubes:A redshift enhanced photocatalysis at visible light [J]. Appl. Phys. Lett.,2010,96(23):231915.
    290. W. Zhou, K. Pan, Y. Qu, et al. Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity [J]. Chemosphere,2010,81(5):555-561.
    291. Y. K. Zhan, C. Y. Nie, H. B. Li, et al. Kinetics and isotherm studies on electrosorption of NaCl by activated carbon fiber, carbon nanotube and carbon nanotube-carbon nanofiber composite film [J]. Phys. Status Solidi C,2012,9(1):55-58.
    292. D. E. Packham. Surface energy, surface topography and adhesion [J]. Int. J. Adhes. Adhes.,2003,23(6):437-448.
    293. O. Akhavan, R. Azimirad, S. Safa, et al. Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents [J]. J. Mater. Chem., 2010,20(35):7386-7392.
    294. W. D. Wang, P. Serp, P. Kalck, et al. Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications [J]. Mater. Res. Bull.,2008,43(4):958-967.
    295. W. Chen, Z. L. Fan, B. Zhang, et al. Enhanced Visible-Light Activity of Titania via Confinement inside Carbon Nanotubes [J]. J. Am. Chem. Soc.,2011,133(38): 14896-14899.
    296. M. Zarezade, S. Ghasemi, M. R. Gholami. The effect of multiwalled carbon nanotubes and activated carbon on the morphology and photocatalytic activity of TiO2/C hybrid materials [J]. Catal. Sci. Technol.,2011,1(2):279-284.
    297. B. Z. Tian, C. Z. Li, F. Gu, et al. Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2 [J]. Catal. Commun.,2009,10(6):925-929.
    298. S. S. Zhang, F. Peng, H. J. Wang, et al. Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance [J]. Catal. Commun.,2011,12(8):689-693.
    299. M. Y. Xing, Y. M. Wu, J. L. Zhang, et al. Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO [J]. Nanoscale,2010,2(7): 1233-1239.
    300. V. Iliev, D. Tomova, S. Rakovsky, et al. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation [J]. J. Mol. Catal. A:Chem.,2010,327(1-2):51-57.
    301. E. Kowalska, R. Abe, B. Ohtani. Visible light-induced photocatalytic reaction of gold-modified titanium (IV) oxide particles:action spectrum analysis [J]. Chem. Commun.,2009, (2):241-243.
    302. Z. Xiong, J. Ma, W. J. Ng, et al. Silver-modified mesoporous TiO2 photocatalyst for water purification [J]. Water Res.,2011,45(5):2095-2103.
    303. M. V. Dozzi, L. Prati, P. Canton, et al. Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light [J]. Phys. Chem. Chem. Phys.,2009,11(33):7171-7180.
    304. X. D. Wang, R. A. Caruso. Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles [J]. J. Mater. Chem., 2011,21(1):20-28.
    305. J. J. Zhao, S. Sallard, B. M. Smarsly, et al. Photocatalytic performances of mesoporous TiO2 films doped with gold clusters [J]. J. Mater. Chem.,2010,20(14): 2831-2839.
    306. N. Zhang, S. Q. Liu, X. Z. Fu, et al. Synthesis of M@TiO2 (M= Au, Pd, Pt) Core-Shell Nanocomposites with Tunable Photoreactivity [J]. J. Phys. Chem. C,2011, 115(18):9136-9145.
    307. A. Primo, A. Corma, H. Garcia. Titania supported gold nanoparticles as photocatalyst [J]. Phys. Chem. Chem. Phys.,2011,13(3):886-910.
    308. M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles [J]. Nat. Chem.,2011,3(6):489-492.
    309. S. Pradhan, D. Ghosh, S. W. Chen. Janus Nanostructures Based on Au-TiO2 Heterodimers and Their Photocatalytic Activity in the Oxidation of Methanol [J]. ACS Appl. Mater. Interfaces,2009,1(9):2060-2065.
    310. J. Hernandez-Fernandez, A. Aguilar-Elguezabal, S. Castillo, et al. Oxidation of NO in gas phase by Au-TiO2 photocatalysts prepared by the sol-gel method [J]. Catal. Today, 2009,148(1-2):115-118.
    311. C. Yogi, K. Kojima, T. Hashishin, et al. Size Effect of Au Nanoparticles on TiO2 Crystalline Phase of Nanocomposite Thin Films and Their Photocatalytic Properties [J]. J. Phys. Chem. C,2011,115(14):6554-6560.
    312. P. Wongwisate, S. Chavadej, E. Gulari, et al. Effects of monometallic and bimetallic Au-Ag supported on sol-gel TiO2 on photocatalytic degradation of 4-chlorophenol and its intermediates [J]. Desalination,2011,272(1-3):154-163.
    313. M. Hamadanian, A. Reisi-Vanani, A. Majedi. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu, S-codoped TiO2 nanoparticles [J]. Appl. Surf. Sci.,2010,256(6):1837-1844.
    314. M. Gratzel. Photoelectrochemical cells [J]. Nature,2001,414(6861):338-344.
    315. B. Kouskoussa, M. Morsli, K. Benchouk, et al. On the improvement of the anode/organic material interface in organic solar cells by the presence of an ultra-thin gold layer [J]. Phys. Status Solidi A,2009,206(2):311-315.
    316. G. Zhu, F. F. Su, T. Lv, et al. Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells [J]. Nanoscale Res. Lett.,2010,5(11):1749-1754.
    317. Y. M. Wu, H. B. Liu, J. L. Zhang, et al. Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold [J]. J. Phys. Chem. C,2009,113(33): 14689-14695.
    318. X. F. Li, T. X. Fan, H. Zhou, et al. A facile way to synthesize biomorphic N-TiO2 incorporated with Au nanoparticles with narrow size distribution and high stability [J]. Micropor. Mesopor. Mater.,2008,116(1-3):478-484.
    319. J. G. Yu, L. Yue, S. W. Liu, et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres [J]. J. Colloid Interface Sci., 2009,334(1):58-64.
    320. X. S. Zhou, F. Peng, H. J. Wang, et al. Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances [J]. Electrochem. Commun.,2011,13(2):121-124.
    321. M. Y. Xing, J. L. Zhang, F. Chen. Photocatalytic Performance of N-Doped TiO2 Adsorbed with Fe3+ Ions under Visible Light by a Redox Treatment [J]. J. Phys. Chem. C,2009,113(29):12848-12853.
    322. W. Zhang, L. D. Zou, L. Z. Wang. A novel charge-driven self-assembly method to prepare visible-light sensitive TiO2/activated carbon composites for dissolved organic compound removal [J]. Chem. Eng. J.,2011,168(1):485-492.
    323. A. G. Kontos, M. Pelaez, V. Likodimos, et al. Visible light induced wetting of nanostructured N-F co-doped titania films [J]. Photochem. Photobiol. Sci.,2011, 10(3):350-354.
    324. M. Bellardita, M. Addamo, A. Di Paola, et al. Preparation of N-doped TiO2: characterization and photocatalytic performance under UV and visible light [J]. Phys. Chem. Chem. Phys.,2009,11(20):4084-4093.
    325. K. M. Parida, N. Sahu, A. K. Tripathi, et al. Gold Promoted S, N-Doped TiO2:An Efficient Catalyst for CO Adsorption and Oxidation [J]. Environ. Sci. Technol.,2010, 44(11):4155-4160.
    326. Z. B. Zhang, C. C. Wang, R. Zakaria, et al. Role of particle size in nanocrystalline TiO2-based photocatalysts [J]. J. Phys. Chem. B,1998,102(52):10871-10878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700