脉冲电流对铝基复合材料拉深变形与扩散连接的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiCp/2024Al复合材料具有高比强度、比模量,耐高温、耐磨损,良好的耐疲劳性能和断裂韧性、热膨胀系数小及尺寸稳定性好等特点,可适应航空航天等领域对工程结构减轻重量、提高性能的需求。但是由于SiC陶瓷颗粒的加入使得复合材料板材的塑性和韧性降低,极大地限制了SiCp/2024Al复合材料的应用和推广。为解决SiCp/2024Al复合材料二次加工困难的问题,本文利用脉冲电流通过金属板材产生焦耳热、电致塑性效应,研究了脉冲电流辅助拉深成形工艺。同时,采用加入Al-Cu-Ti粉末作为连接中间层,进行了SiCp/2024Al复合材料脉冲电流辅助瞬态液相(Transient liquid phase, TLP)扩散连接工艺的研究。
     针对脉冲电流作用于金属材料时,其电热物理特性的复杂性,本文进行了加热速率、加热温度、热传导及热扩散等脉冲电流加热特性的研究。结果表明采用铜/钢复合电极,在紫铜电极与坯料之间加入不锈钢保温片的方法,能够有效地减小坯料与电极间的热传导,提高板材坯料温度场分布的均匀性。同时,通过研究脉冲电流加热对SiCp/2024Al复合材料的拉伸性能及微裂纹损伤修复的影响,为脉冲电流辅助成形技术走向工程化做好充分的实验数据和理论准备。
     通过对脉冲电流辅助成形工艺的可行性分析,结合脉冲电流作用下SiCp/2024Al复合材料的电热物理特性,进行了脉冲电流辅助拉深成形工装设计及工艺参数的选择,并完成了SiCp/2024Al复合材料零件的拉深成形。成形的工件表面质量光滑、厚度均匀、无明显划伤和褶皱,圆角处无显微裂纹出现,尺寸精度达到±0.2mm。与传统的热成形工艺相比,脉冲电流辅助成形技术采用脉冲电流加热及板材拉深成形一体化设计,具有设备简单、加热速度快、热损失少及被加工材料氧化较小等特点。
     为了解决SiCp/2024Al复合材料焊接性较差,使用一般的连接方法都难于达到理想的效果,从而影响到部件的安全性和可靠性等问题,本文提出了脉冲电流辅助瞬态液相扩散连接技术,利用低压高强度脉冲电流通过连接界面与Al-Cu-Ti粉末中间层产生焦耳热、高温等离子体和电迁移等效应,实现对SiCp/2024Al复合材料板材的TLP扩散连接。通过对连接接头的微观组织及力学性能的分析结果显示,连接接头成份均匀、质量良好、原位生成的Al_3Ti等增强相能产生颗粒弥散强化,阻碍位错滑移,在连接时间为60min时,其剪切强度值大于154.1MPa,极大的提高接头的剪切强度。
     采用脉冲电流辅助TLP扩散连接技术,进行了SiCp/2024Al复合材料两层结构的连接,接头中间层与铝合金基体界面呈冶金态连接,未见有夹杂、偏聚及气孔等缺陷,Cu元素扩散至母材当中,形成了明显的扩散层,连接质量良好。铝基复合材料的多层结构主要取决于其连接接头的组织结构和力学性能,由于表面氧化膜和碳化硅颗粒偏聚的影响,造成了SiCp/2024Al复合材料的连接难以达到理想的效果,极大的制约了SiCp/2024Al复合材料板材多层结构的发展与应用。脉冲电流辅助TLP扩散连接技术的出现,为铝基复合材料多层结构的应用提供了可能,相信随着研究深入进行,作为一种高效、节能的绿色制造技术,脉冲电流辅助TLP扩散连接技术能够在铝基复合材料多层结构连接等方面有着越来越广泛的应用前景。
SiCp/Al composites have been utilized in lightweight structures in the field ofairplanes and aerospace etc. because of their many wonderful properties, such asthe high specific strength and modulus, good high temperature and wear resistance,lower thermal expansion coefficient, stable geometric accuracy and so on. However,SiC particle in Al alloy matrix make the plasticity and ductility of SiCp/Alcomposites decreased, which restrain the application of SiCp/Al composites inindustry. In order to solve issues of the secondary material working, the hith-intensity pulse current to get through SiCp/Al composites sheet were applied, whichcan produce Joule effect and electroplastic effect. The feasibility of pulse currentauxiliary deep drawing and process parameters were investigated in this work. Inaddition, the pulse current auxiliary TLP diffusion bonding of SiCp/2024Alcomposites sheet were studied by using mixed slurry of Al-Cu-Ti powder interlayer.
     Based on much complexity of electric-thermal properties during pulse currentgetting through metal sheet, pulse current heating were studied in this work,including pulse heating velocity, heating temperature, thermal conductivities,thermal convection etc. The results show that the stainless steel (SUS304) withlower thermal conductivities and higher electric resistance was attempted to reducethe thermal transmission between sheet and copper electrode, which promoted thetemperature distribution. In addition, the effects of pulse current heating on tensileproperties and microcrack healing were studied to provide the experimental andtheoreticl supports for application of pulse current auxiliary forming technology inindustry.
     Take account of electric-thermal properties synthetically during pulse currentgetting through SiCp/2024Al sheet, the feasibility of pulse current auxiliaryforming were analysed and the forming die were designed. Through the choice andoptimization of process parameters, the workpiece of SiCp/2024Al composites weredeep drawn successfully. The workpiece exhibit good shape retention, surfacequality, and high geometric accuracy. Fluoroscopy measurements did not reveal anymicrocracks in the workpiece and the error in dimension was in the range of-0.2to0.2mm. Compaired to the traditional thermal forming process, pulse currentauxiliary forming technique integrate pulse current heating with deep drawing and have many advantage including simple setup, high heating rates, lower energy lostand lower oxidation.
     The traditional bonding technologies can not arrived to ideal joint because ofthe bad bonding properties of SiCp/2024Al composites, which have importanteffects on safety and reliability of joints. Therefore, pulse current auxiliary transientliquid phase (TLP) bonding technology were studied, which utilized hith-intensitypulse current to get through Al-Cu-Ti powder interlayer and achieve the bonding ofSiCp/2024Al composites. Joule heat effect, electromigration effect, SPS can beproduced during pulse current auxiliary TLP bonding process. The microstructureand mechanical properties of joints of SiCp/2024Al composites were analysed. Theresults show the dense joints exhibite the uniform composition, good bonding qulity.In addition, in situ formation of Al_3Ti intermetallic phase in joints can induce theparticle dispersion strengthening and hindering dislocation sliding, which canprovide the mechanical properties of joints.
     The double-sheet structures of SiCp/2024Al were fabricated using pulsecurrent auxiliary transient liquid phase diffusion bonding technology. The resultsexhibited the joints show the metallurgical bonding between powder interlayer andaluminum matrix composites, which have no flaws including impurities, SiCparticle congeries and pores. The diffusion layers of Cu and Al_3Ti intermetallicphase were formed to guarantee the good qulities of joint. The mutle-sheetstructures of SiCp/2024Al composites were depended on the microstructure andmechanical properties of joints, but the worse qulity of joints of SiCp/2024Alcomposites restrained the development and application of the multi-sheet structuresof SiCp/2024Al composites because of oxidation film and SiC particle congeries.Pulse current auxiliary transient liquid phase diffusion bonding technology can beapplied to bond SiCp/2024Al composites sheet and promote the application ofmulti-sheet structures of SiCp/2024Al composites. Pulse current auxiliary transientliquid phase diffusion bonding technology with high-efficiency and lower energylost can promote development and application of multi-sheet structures ofSiCp/2024Al composites in future.
引文
[1] Mohan B, Rajadurai A, Satyanarayana KG. Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode[J]. Journal of MaterialsProcessing Technology,2004,153–154:978–985.
    [2] Sahin Y. Preparation and some properties of SiC particle reinforced aluminiumalloy composites[J]. Materials and Design,2003,24:671–679.
    [3]崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002,6:3-6.
    [4]贾玉玺,王广春,赵国群. SiC颗粒增强铝基复合材料的热挤压工艺研究[J].锻压技术,1999,6:9-11.
    [5] Tang GY, Yan DG, Yang C etc. Joule heating and its effects on electrokinetictransport of solutes in rectangular microchannels[J]. Sensors and Actuators A,2007,139:221–232.
    [6] Conrad H. Electroplasticity in metals and ceramics[J]. Materials Science andEngineering A,2000,287:276–287.
    [7] Li DL, Yu EL. Computation method of metal’s flow stress for electroplasticeffect [J]. Materials Science and Engineering A,2009,505:62–64.
    [8]王少刚,刘红霞. SiC颗粒增强铝基复合材料的钎焊性[J].材料科学与工程学报,2009,27(2):186-189.
    [9] Bosco NS, Zok FW. Critical interlayer thickness for transient liquid phasebonding in the Cu-Sn system [J]. Acta Material,2004,52(10):2965-2972.
    [10] Shirzadi AA, Wallach ER. New approaches for transient liquid phase diffusionbonding of aluminum based metal matrix composites [J]. Mater. Sci.&Tech.,1997,13(2):135-142.
    [11] Chen ZZ, Tokaji K. Effects of particle size on fatigue crack initiation andsmall crack growth in SiC particulate-reinforced aluminum alloy composites[J].Materials Letters,2004,58:2314–2321
    [12] Johnston C, Young R. Advanced thermal management materials [J]. Int NewMicrosyst MEMs,2000,2(1):14–15.
    [13]田大垒,王杏,关荣锋.电子封装用SiCp/Al复合材料的研究现状及展望[J].电子与封装,2007,7(3)11-15.
    [14]胡代忠,陈礼清,赵明久等. SiC颗粒增强铝基复合材料薄板的力学性能[J].中国有色金属学报,2000,6(10)827-831.
    [15]毕敬,肖伯律,马宗义.SiCp/2024铝基复合材料的超塑性变形行为研究[J].金属学报,2002,38(6):621-624.
    [16]樊建中,左涛,肖伯律等.高能球磨粉末冶金制备工艺对15%SiCP/2009Al复合材料性能的影响[J].复合材料学报,2004,21(4):92-97.
    [17]付永红,何源,张冉阳.颗粒增强铝基复合材料制备及成形技术研究现状[J].热加工工艺,2010,14(39):75-79.
    [18]李桂荣,赵玉涛,戴起勋等.挤压铸造颗粒增强铝基复合材料的凝固组织[J].特种铸造及有色合金,2006,26(10):672-673.
    [19]潘登良,刘昌明,王开等. SiCp/Al复合材料盘状件离心铸造技术研究[J].铝加工,2009,86(1):36-39.
    [20]郭成,程羽,易树清. SiC颗粒增强金属基复合材料成形性能研究[J].塑性工程学报,1997,4(4):3-8.
    [21]方妍妍,邵光杰,许珞萍等. SiC颗粒增强铝基复合材料半固态成形件组织及性能[J].上海金属,2004,6(5):1-4.
    [22]刘慧敏,格日乐,张娟,等.TiCP/7075铝基复合材料的半固态触变成形工艺研究[J].2007年中国压铸、挤压铸造、半固态加工学术年会专刊,2007,56-159.
    [23]齐海波,丁占来,樊云昌. SiC颗粒增强复合材料制动盘的研究[J].复合材料学报.2001,18(1):62-66.
    [24]程晶,张永忠,高士友等. Al/SiC复合材料激光快速成形的研究[J].稀有金属,2002,26(3):179-182.
    [25]程晶,张永忠,章萍芝等.激光快速成形技术制备Al/SiC复合材料工艺参数研究[J].金属热处理,2002,27(3):32-35.
    [26]齐海波,颜永年,林峰等.电子束快速制造技术制备SiCp/Al复合材料[J].材料工程,2005,1:61-64.
    [27] Rawal S. Metal-matrix composites for space applications[J]. JOM,2001;53(4):14-17.
    [28] Kunze JM, Bampton C. Challenges to developing and producing MMCs forspace applications[J]. JOM,2001;53(4):22-25.
    [29] Hwu BK, Lin SJ, Jahn MT. Effects of process parameters on the properties ofsqueeze-cast SiCp-6061Al metal-matrix composite[J]. Materials Science andEngineering A,1996,207(1):135-141.
    [30]王文明,潘复生,曾苏民.碳化硅颗粒增强铝基复合材料开发与应用的研究现状[J].兵器材料科学与工程,2004,27(3):61-67
    [31]乐永康,张迎元.颗粒增强铝基复合材料的研究现状[J].材料开发与应用,1997,12(5):33-39.
    [32]http://course.qqhru.edu.cn/eol/homepage/qqhru/courseware/0802/U/33/bjjc/bjt3_72_6.htm
    [33]张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社,1996:67,175~176
    [34] Jiang XX, Nikanpour D. Characterization of Aluminum Metal-MatrixComposite(MMC) for Lightweight Space Optics Application: a Study ofThermal Expansion Behavior of MMC in Simulated Space ThermalEnvironment[C]. Proceedings of the Conference on Current Developments inLens Design and Optical Engineering, San Diego:2000:212--217
    [35] Yan C, Lin G, Yao ZK. A new advance in the development of high performanceSiCp/Al composite[J]. J Mater Sci,1997,13:227.
    [36] Conrad H. Thermally Activated Deformation of Metals[J]. Journal of Metals,1964,(7):582-588
    [37] Tроицкий OA. Электропластический эффект в металлах. Физика твердоготела.1970,12(1):203-210.
    [38] Troitskii OA, V.I.Likhtman. The Anisotropy of the Action of Electron andRadiation on the Deformation of Zine Single Crystal in the Brittle State. Akad.Nauk. SSSR,1963,148:332-334
    [39] Conrad H, Sprecher AF. The Electroplastic Effect in Metals[J]. Dislocation inSolids,1989,(8):498-541
    [40]董晓华、侯东、李尧.直流脉冲电流对7475铝合金超塑性变形中位错运动的影响[J].机械工程材料,2005,29(2):17-20.
    [41]刘渤然,张彩培,赖祖涵.在脉冲电流作用下Al-Li-Cu-Mg-Zr合金的超塑形变[J].材料研究学报,1999,13(4):385-389.
    [42] Chen KH. The improvement of constituent dissolution and mechanicalproperties of7055aluminum alloy by stepped heat treatments[J]. Journal ofMaterials Processing Technology,2003,142(1):190-196.
    [43] Zhou J, Zhang T, Zhang J, et al.The influence of strain rate andsolution treatment on dynamic recrystallization for7075aluminum alloy[J].Mare Metal Materials and Engineering,2004,6:580-584.
    [44]祝建雯,赵永庆,戚运莲,等.开坯轧制和热处理制度对T-i15-3合金板材性能的影响[J].钛工业进展,2004,21(7):42-44.
    [45] Maki S, Ishiguro M, Mori K etc. Thermo-mechanical treatment usingresistance heating for production of fine grained heat-treatable aluminumalloy sheets[J]. Journal of Materials Processing Technology,2006,177:444–447.
    [46] Xu ZS, Lai ZH and Chen YX. Effect of electric current on recrystallizationbehavior of cold worked-Ti[J]. Scripta Metall.,1988,22:187-190.
    [47] Zhou YZ, Zhang W, Wang BQ etc. Grain refinement and formation ofultrafine-grained microstrcture in a low-carbon steel under electropulsing[J].J.Mater.Res,2002,17:2105-2111.
    [48] Zhou YZ, Zhang W, Guo JD. Ultrafine-grained microstructur in a Cu-Zn alloyproduced by electropulsing treatment[J], J. Mater. Res.,2003,18:1991-1997.
    [49] Gao M, He GH, Yang F. Effect of electric current pulse on tensile strength andelongation of casting ZA27alloy[J]. Materials Science and Engineering A,2002,337:110-114.
    [50] Song H, Wang ZJ. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science&Engineering A,2008,490:1-6
    [51] Zhou YZ, Zeng Y, He GH and Zhou BL. The healing of quenched crack in1045steel under electropulsing[J]. J. Mater.Res.,2001,16:17-19.
    [52] Zhou YZ, Guo JD, Gao M, and He GH. Crack healing in a steel by usingelectropulsing technique[J]. Materials Letters,2004,58:1732-1736.
    [53]周亦胃.金属材料在脉冲电流作用下的裂纹愈合和超细晶化[D]沈阳:.中国科学院金属研究所博士学位论文,2003,50-64.
    [54]王平.电热止裂相变应力及止裂效果综合分析[D].秦皇岛:燕山大学,2006:2-8.
    [55]Финкель ВМ., Ю.И.Головин, Слетков. О возможности торможениябыстрых трещин импульсами тока[J]. ДОКЛ:АН СССР,1976,227(4):848-857.
    [56]Финкель ВМ, Ю.И.Головин,Слетков АА. Разрушение вершины трещинысильным электромагнитным полем[J]. ДОКЛ:АН СССР,1977,237(2):325-327.
    [57]白象忠,胡宇达.电磁热效应裂纹止裂的研究[J].力学进展,2000,30(4):546-557.
    [58] Conrad H, Yang D. Effect of DC electric field on the tensile deformation ofultrafine-grained3Y-TZP at1450–1600℃[J]. Acta Materialia,2007,55:6789–6797.
    [59] Conrad H, Yang D, P. Becher. Effect of an applied electric field on the flowstress of ultrafine-grained2.5Y-TZP at high temperatures [J]. MaterialsScience and Engineering A,2008,477:358–365
    [60] Hui S, Wang ZJ and Gao TJ. Effect of high densityelectropulsing treatment onformability of TC4titanium alloy sheet [J]. Transactions of NonferrousMetals Society of China,2007,17(1):87-92
    [61] Wang ZJ, Hui S. Effect of high density electropulsing on microstructure andmechanical properties of cold-rolled TA15titanium alloy sheet[J]. Journal ofAlloys and Compounds,2009,470:522-530.
    [62]李淼泉,吴诗惇. LY12CZ铝合金超塑变形时的电场效应[J].金属学报,1995,31(6):A272-A276
    [63] Dzialo CM, Siopis MS, Kinsey BL. Effect of current density and zinc contentduring electrical-assisted forming of copper alloys[J]. CIRP Annals-Manufacturing Technology,2010,59:299-302.
    [64] Deng JH, Li CF, Zhao ZH etc. Numerical simulation of magnetic flux andforce in electromagnetic forming with attractive force[J]. Journal of MaterialsProcessing Technology,2007,184:190–194
    [65] Psyk V, Risch D, Kinsey BL. Electromagnetic forming—A review[J]. Journalof Materials Processing Technology,2011,211:787–829
    [66] Hoseinpour M, Mahdavian SM, MoslemiNaeini H. Statistical analysis ofparameter effects on bending angle in laser forming process by pulsedNd:YAG laser[J]. Optics&Laser Technology,2011,43:475–482
    [67] Kuntal M, Pratihar DK, Nath AK. Experimental investigations and statisticalanalysis of pulsed laser bending of AISI304stainless steel sheet[J]. Optics&Laser Technology,2013,49:18–27
    [68] Mori K, Akita K, Abe Y. Springback Behaviour in Bending of Ultra-High-Strength Steel Sheets Using CNC Servo Press[J]. International Journal ofMachine Tools and Manufacture,2007,47(2):321–325.
    [69] Kim H, Altan T, Yan Q. Evaluation of stamping lubricants in forming advancedhigh strength steels (AHSS) using deep drawing and ironing tests[J]. Journalof Materials Processing Technology,2009,209(8):4122–4133.
    [70] Mori K, Maki S, Tanaka Y. Warm and Hot Stamping of Ultra High TensileStrength Steel Sheets Using Resistance Heating[J]. CIRP Annals-Manufacturing Technology,2005,54:209-212.
    [71]王玉庭.钛合金电阻加热拉弯工艺研究[J].宇航材料工艺,1986,2:4-7.
    [72]姚启明,李双寿,李而立等.客车镁合金管材电阻加热弯曲工艺[J].轻合金加工技术,2005,33:48-51.
    [73] Mori K, Saito S, Maki S. Warm and Hot punching of Ultra High TensileStrength Steel Sheets[J]. CIRP Annals-Manufacturing Technology,2008,57:321-324.
    [74] Li C, Zhang KF, Jiang SS etc. Pulse current auxiliary bulging and deformationmechanism of AZ31magnesium alloy[J]. Materials and Design,2012,34:170–178
    [75]李超.轻合金材料脉冲电流辅助超塑成形工艺及机理研究[D].哈尔滨:哈尔滨工业大学,2012:46-49.
    [76] Yanagimoto J, Izumi R. Continuous electric resistance heating-Hot formingsystem for high-alloy metals with poor workability [J]. Journal of MaterialsProcessing Technology,2009,209:3060-3068
    [77] Xu ZH, Tang GY, Tian SQ. Research of electroplastic rolling of AZ31Mgalloy strip[J]. Journal of Materials Processing Technology,2007,182:128–133.
    [78] Zhang J, Tang GY, Yan YJ, Fang W. Effect of current pulses on the drawingstress and properties of Cr17Ni6Mn3and4J42alloys in the cold-drawingprocess[J]. Journal of Materials Processing Technology,2002,120:13–16.
    [79] Tanga GY, Zhanga J, Yan YJ. The engineering application of the electroplasticeffect in the cold-drawing of stainless steel wire[J]. Journal of MaterialsProcessing Technology,2003,137:96–99.
    [80] Troitskii OA, Spitsyn VI, Sokolov NV. Application of High-density Current inPlastic Working of Metals[J]. Phys.Stat.Sol,1979,52:85-93.
    [81] Forcellese A, Gabrielli F. Warm forging of aluminium alloys: a new approachfor time compression of the forging sequence[J]. International Journal ofMachine Tools&Manufacture,2000,40:1285–1297.
    [82] Fujikawa S, Yoshioka H, Shimamura S. Cold-and warm-forging applicationsin the automotive industry[J], Journal of Materials Processing Technology,1992,35:317–342.
    [83]门正兴,周杰,王梦寒等.电阻直接加热锻造成形工艺方法及试验[J].重庆大学学报.2011,34(9):67-72.
    [84] Kiuchi M, Kopp R. Mushy/Semi-Solid Metal Forming Technology-Presentand Future[J]. CIRP Annals-Manufacturing Technology,2002,51(2):653-670
    [85] Otsu M, Mori K, Osakada K. Inclusion of pressure of liquid phase in three-dimensional distinct element simulation of mushy-state forming[J]. Journal ofMaterials Processing Technology,1998,80–81:438–443.
    [86] Maki S, Harade Y, Mori K etc. Application of resistance heating technique tomushy state forming of aluminium alloy[J]. Journal of Materials ProcessingTechnology,2002,125-126:477–482.
    [87]李敬勇,赵勇.颗粒增强铝基复合材料的焊接性及其搅拌摩擦焊[J].材料开发与应用,19(6):30-33
    [88]栾国红,郭德伦,张田仓等.铝合金的搅拌摩擦焊[J].焊接技术,2003,32(1):1-4.
    [89]李亚江.特殊及难焊材料的焊接[C].北京:化学工业出版社,2003:273-289.
    [90] Fernandez GJ, Murr LE. Characterization of tool wear and weld optimizationin the friction-stir welding of cast aluminum359+20%SiC metal-matrixcomposite [J]. Materials Characterization,2004,52:65-75.
    [91]王少刚,徐九华,姜澄宇.颗粒增强铝基复合材料焊接技术的发展[J].机械工程材料,2006,30(5):9-12.
    [92] Midling OT,Grong O. A Process Model for Friction Welding of Al-Si-MgAlloys and Al-SiC Metal Matrix Composites[J]. Acta Metallurgica etMaterialia,1994,42(5):1595-1622
    [93]陈华斌,严铿,李敬勇.颗粒增强铝基复合材料SiCp/6066Al搅拌摩擦焊[J].华东船舶工业学院学报,2004,18(3):62-64.
    [94] Song G, Luo ZM. The influence of laser pulse waveform on laser–TIGhybrid welding of AZ31B magnesium alloy[J]. Optics and Lasers inEngineering,2011,49:82-88.
    [95]陈彦宾,张德库,牛济泰.激光焊接铝基复合材料钦的原位增强作用[J].应用激光,2002,3(22):320-323.
    [96]张义平,姜左. SiCp/Al复合材料脉冲激光焊接研究[J].热加工工艺,2006,35(15):21-24.
    [97]刘黎明,祝美丽,徐卫平等.铝基复合材料SiCw/6061的激光焊接[J].焊接学报,2001,22(4):13-16.
    [98] Du JH, Yue TM, Man HC. Electro-Plating of Aluminium-BasedComposites for Eliminating Carbides Formation in Laser Welding[C]. The42nd International SAMPE Symposium,1997:783~792
    [99]陈永来于利根王华明. SiCp/6061Al金属基复合材料焊缝“原位”合金化激光焊接研究[J].中国激光,2001,28(1):85-88.
    [100]刘卫红.铝基复合材料瞬间液相扩散连接[D].长春:吉林大学,2004:5-6.
    [101]曲文卿,王奇娟,张彦华.铝基复合材料与铝合金的TLP扩散连接.焊接学报[J].2002,23(6):67-70.
    [102] Tuah-poku I, Dollar M, Massalaki TB. A study of the transient liquid phasebonding process applied to a Ag/Cu/Ag sandwich joint[J]. Metall Trans,1988,19A (2):675-686.
    [103]石昆,于治水,王付鑫. TLP连接机制与中间层问题的探讨[J].上海工程技术大学学报,2008,22(3):235-238.
    [104] Shirzadi AA, Wallach ER. New approaches for transient liquid phasediffusion bonding of aluminium based metal matrix composites[J]. MaterialsScience and Technology,1997,13(2):135~142
    [105]刘卫红,孙大谦,贾树盛等.非连续增强铝基复合材料连接新工艺[J].沈阳工业大学学报,2003,25(3):196-199
    [106]张洋,闫久春,陈晓光. SiCpPA356复合材料超声波辅助钎焊[J].焊接学报.2009,30(3):89-92.
    [107]花福安,李建平,赵志国等.冷轧薄板试样电阻加热过程分析[J].东北大学学报(自然科学版).2007,28(9):1278-1281.
    [108]胡代忠,陈礼清、赵明久、毕敬及徐永波. SiC颗粒增强铝基复合材料薄板的力学性能[J].中国有色金属学报,2000,10(6):827-831.
    [109]孙有平,严红革,陈刚等.喷射沉积SiCp/7090Al复合材料板材高温拉伸变形行为[J].特种铸造及有色合金,2010,30(8):691-695.
    [110]赵明久,刘越,毕敬.碳化硅颗粒增强铝基复合材料(SiCp/2024Al)的热变形行为[J].金属学报,2003,39(2):221-224.
    [111]詹美燕,陈振华. SiCp颗粒增强铝基复合材料塑性变形中过程的强化机制与断裂机制研究[J].材料导报,2004,18(1):57-60.
    [112] Tang DW, Zhou BL, Cao H and He GH. Thermal stress relaxation behaviorin thin films under transient laser-pulse heating[J]. J. Appl. Phys.1993,73(8):3749-3752
    [113]宋辉.脉冲电流处理对钛合金板材组织和性能影响的研究[D].哈尔滨:哈尔滨工业大学,2009:30-34.
    [114] Zhou YZ, Qin RS, Xiao SH etc. Reversing efect of electropulsing on damageof1045steel[J]. J Mater.Res,2000,15:1056-1061.
    [115] Liu TJC. Thermo-electro-structural coupled analyses of crack arrest[J].Theoretical and Applied Fracture Mechanics,2008,49:171–184
    [116] Liu TJC. Fracture mechanics of steel plate under Joule heating analyzed byenergy density criterion[J]. Theoretical and Applied Fracture Mechanics,2011,56:154–161
    [117]李硕本.冲压工艺学[M].北京:机械工业出版社,1982.
    [118]林兆荣.金属超塑性成形原理及应用[J].北京:航空工业出版社,1990,152-153.
    [119] Yoshihara S, Yamamotob H, Manabeb K, Nishimura H.Formabilityenhancement in magnesium alloy stamping using a local heating and coolingtechnique:circular cup deep drawing process [J].Journal of MaterialsProcessing Technology,2003,143-144:612-615
    [120] Conrad H, Sprecher AF, Cao WD. Electrioplasticity-the effect of electricityon the mechanical properties of metals[J]. JOM,1990,9:28-33.
    [121] Xu, ZH, Tang, GY, Tian SQ. Research of electroplastic rolling of AZ31Mgalloy strip[J]. Journal of Materials Processing Technology,2007,182:128–133.
    [122] Zhua YH. Effects of dynamic electropulsing on microstructure and elongationof a Zn–Al alloy[J]. Materials Science and Engineering A,2009,501:125–132
    [123]刘卫红,孙大谦,贾树盛,邱小明.铝基复合材料的Al-Cu合金中间层瞬间液相扩散连接[J].焊接学报.2003,24(5):14-16.
    [124] Maity J, Pal T K, Maiti R. Transient liquid phase diffusion bonding of6061-13vol.%SiCp composite using Cu powder interlayer: mechanism andinterface characterization[J]. J Mater Sci,2010,45:3575-3587.
    [125]舒大禹,赵祖德,黄继华等. Ti对Al-Ag-Cu反应扩散连接SiCp/2618Al复合材料接头组织及力学性能的影响[J].粉末冶金技术,2008,26(2).
    [126]赵玉厚,严文,周敬恩.原位Al3Ti粒子增强ZL101铝基复合材料[J].中国有色金属学报,2000,10(1)214-217.
    [127]赵玉厚,严文,周敬恩.原位Al3Ti粒子增强ZL101铝基复合材料[J].中国有色金属学报增刊,2000,10:215-217
    [128]张津徐,徐炜新.不同结合及成份Al3Ti合金的成见特征的分析[J].金属学报,1996,32(3):232–236
    [129] Conrad H. Effects of electric current on solid state phase transformations inmetals[J]. Materials Science and Engineering A,2000,287:227–237.
    [130]王行乾.无铅组装技术与可靠性[J].电子与封装,2006,8(6):18–22.
    [131] Kinsbron E. A model for the width dependence of electromigration lifetimesin aluminum thin-film stripes[J]. Appl. Phys. Lett.,1980,36:968.
    [132] Blech IA. Electromigration in thin aluminum films on titanium nitride[J]. J.Appl. Phys.,1976,47:1203.
    [133] Garay JE, Anselmi-Tamburini U, Munir ZA. Enhanced growth ofintermetallic phases in the Ni–Ti system by current effects[J]. ActaMaterialia,2003,51:4487–4495
    [134]孙大谦,刘卫红,吴建红,贾树盛.铝基复合材料瞬间液相扩散连接接头的组织与力学性能[J].焊接学报,2002,23(5):65-68.
    [135]赵明久,吕毓雄,陈礼清,毕敬.碳化硅颗粒增强铝基复合材料(SiCp/2024Al)的扩散焊研究[J].材料研究学报,2000,14(2):136-139.
    [136] Tokita M. Development of Large-size Ceramic/Metal Bulk FGM Fabricatedby Spark Plasma Sintering[J]. Materials Science Forum,1999,308-311:83-88
    [137] Groza JR, A. Zavaliangos. Sintering Activation by External ElectricalField[J]. Materials Science and Engineering A,2000,287(2):171-177
    [138]宋晓艳,刘雪梅,张久兴.放电等离子烧结中显微组织演变的自调节机制[J].中国体视学与图像分析,2004,9(3):140-146.
    [139]韩文波,张凯锋,王国峰,吴德忠.钛合金四层板结构的超塑成形/扩散连接工艺及数值模拟研究[C].第九届全国塑性工程学术年会论文摘要集,2005:56–59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700