机器人等离子熔射成形过程诊断与控制关键技术基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子熔射工艺具有短流程、快速成形等独特优势,已被广泛应用于诸多高新技术领域,如快速模具、功能涂层和固体氧化物燃料电池(SOFC)等。然而,等离子熔射是一种多个子过程相互依赖和参数相互关联的复杂工艺,如何选择合理的工艺参数,制备高性能的满足实际需求的涂层是控制制造过程的技术关键,从而对等离子熔射成形工艺的稳定性以及可再现性提出了新的高层次要求。因此,本文从成形系统设计、成形过程监控、工艺参数与射流形态和皮膜性能关系以及皮膜质量智能预测等方面开展了系统的研究,并将研究结果应用于固体氧化物燃料电池这一新能源领域。主要研究内容如下:
     (1)基于以太网开发了针对等离子熔射工艺需求的MOTOMAN UP20型机器人控制软件,采用PC+PLC开发等离子熔射控制系统,最终建立了熔射成形过程监控、机器人熔射路径在线调整和机器人实时监控等多功能集成的开放式机器人等离子熔射平台,从而实现了等离子熔射与机器人运动两工作单元自动协调的一体化控制,提高了成形系统柔性,为专用等离子熔射机器人系统的研制提供了技术基础。应用OPC(OLE for Process Control)协议与COM(Component Object Model)技术开发了机器人等离子熔射成形过程监控SprayMonitor软件。
     (2)提出了一种熔射皮膜温度在线检测方法,实现了对大范围皮膜温度分布的实时可视化监测与动态分析。通过实验研究了机器人路径对皮膜温度分布的影响,分析了皮膜破坏的温度突变信息,分析了不同熔射距离与射流长度条件下的热传递特点等。相关研究结论为等离子熔射成形性与质量控制提供了依据。
     (3)率先开展熔射工艺参数与射流形态和皮膜性能之间关系的研究。提出了采用射流狭长度对射流形态进行表征,并对工艺参数与狭长度特征值进行聚类分析。根据皮膜性能参数以及微观组织结构对分类结果进行质量评判,生成由工艺参数到最佳分类的推理规则集,据此提出一种等离子射流产生子系统的智能化控制方案。
     (4)为将等离子熔射拓展到制备高性能SOFC核心部件的领域,自主设计了液料输送系统,采用液料等离子熔射制备出高致密度的SOFC电解质层(孔隙率1.61%)。皮膜微观组织分析表明,粉末颗粒熔化比较充分,层间结合紧密,因此不仅有利于提高电解质层的机械强度和致密性,而且有助于提高其导电性能。
     在上述研究的基础上,对大气与液料等离子熔射制备SOFC核心部件过程进行射流诊断以及温度监控等,改进了成形工艺、提高了工艺稳定性与可再现性。
     本文研究内容为机器人等离子熔射成形过程中等离子电源参数、机器人熔射路径以及送粉、送液等多工艺条件的合理匹配提供了依据,为一次熔射成形包含孔隙电极和致密电解质层的SOFC三合一电极提供了关键技术基础。
Plasma spray has been applied widely in the high and new technology industries, such as rapid mould, functional coating, solid oxide fuel cell (SOFC) and so on, in view of its short-circuit, rapid and other unique characteristics. However, as a complicated process with the multiple sub-process correlations and the parameter interdependencies, it is a key issue to select the appropriate spraying parameters to fabricate the high-quality coatings meeting with the actual requirements in the control of the manufacturing process. Furthermore, high grade and new demands for the process stability and reproducibility of plasma spray arise. Therefore, systematic researches ranging from developing the control system, monitoring the spraying process, investigating relationships between processing parameter, plasma jet and coating quality, and predicting the resultant coating quality are carried out in this thesis. Relevant results are applied in the SOFC, a new energy resource field, and major research contents are listed as follows.
     (1) Specially designed MOTOMAN UP20 robot control software was presented based on Ethernet to meet with the requirements of plasma spray. Plasma spray control system was developed based on PC+PLC. Finally, the Open architecture robotic plasma spray forming system was established accompanied with forming process monitoring, on-line adjustment of robot spraying trajectories, real-time control of robot and other functions. The flexibility of the resultant forming system is promoted integrating the two working units, the plasma spray forming and the robot motion control. They are the technical foundation for the development of the professional robotic plasma spray system. A monitoring software SprayMonitor was developed on the basis of OPC (OLE for Process Control) protocol and COM (Component Object Model).
     (2) An on-line temperature measurement approach for sprayed coatings is presented in this dissertation, which realizes the real-time visual monitoring and dynamic analysis. The influence of robot spray trajectory parameters on coating temperature was experimentally investigated. The analysis of heating effect on substrate by plasma jet and particle flux were carried out under different spray distances and lengths of plasma jet to analyze their characteristics. These conclusions can be used in the formability and quality control of plasma spray.
     (3) Investigations on the relationship between processing parameter, plasma jet and coating quality were carried out. The morphological feature of plasma jet was first characterized by the aspect ratio, and the clustering analysis was done based on experimental results. The quality of clusters was evaluated by the properties and microstructure of coatings, so the inference rule sets from processing parameters to the optimal quality cluster were produced. Hence, an intelligent control approach of plasma power source was presented.
     (4) To shift plasma spray to the new field, manufacturing core compontents of SOFC, the liquid feedstock system was designed, and suspension plasma spray (SPS) was used to prepare the dense electrolyte of SOFCs. The porosity of the resultant electrolyte is 1.61%. SEM of the electrolyte coating show that melting state of spray particles was sufficiently promoted during the process of SPS and the tight bonding among the flat layers was also observed. Both the factors are not only favorable to enhance the mechanical strength and density, but also helpful to effectively improve the electrical conductivity of electrolyte.
     Based on the studies above, the quality diagnosis of plasma jet and the temperature control of sprayed coating were carried out during fabricating core components of SOFC by APS and SPS. Both the spray forming processes were improved and their stability and reproducibility were also upgraded.
     The contents of this thesis provide a reference for optimal matching of plasma spraying parameters, including plasma power source, robot spray trajectories, powder and suspension feeding and so on. Furthermore, they are also the key technique foundation for the fabrication of the core component of SOFC during the integral spray process by APS and SPS, which contains the porous electrodes but density electrolyte.
引文
[1] P. Fauchais, A. Vardelle, B. Dussoubs. Quo Vadis thermal spraying? [J]. Journal of Thermal Spray Technology, 2001, 10(1): 44~66.
    [2]徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社, 2002: 4.
    [3]黄石生,王振民,薛家祥,等.等离子弧喷涂系统的发展与展望[J].焊接技术, 2001, 30(2): 3~5.
    [4]徐达,宋玉华,张人佶,等.基于快速成形技术的汽车覆盖件金属模具制造[J].清华大学学报(自然科学版), 2000, 40(5): 1~4.
    [5]张海鸥,韩光超,王桂兰.快速模具制造技术[J].中国机械工程, 2002, 13(22): 1903~1906.
    [6] M. J. Seelinger, E. J. Gonzalez-Galvan, M. Robinson, et al. Towards a robotic plasma spraying operation using vision [J]. IEEE Robotics & Automation Magazine, 1998, 5(4): 33~38.
    [7]韩峰,王豫跃,杨冠军,等.电弧功率对液料等离子喷涂TiO2纳米涂层结构的影响[J].中国表面工程, 2003, 60(3): 36~39.
    [8]吴子健,张虎寅,吕艳红.热喷涂纳米涂层制备方法及材料的研究现状和展望[J].材料保护, 2005, 38(10): 44~47.
    [9]王宁,耿泰,曹晓明.等离子喷涂及梯度功能材料研究进展[J].天津冶金, 2004, 120(2): 29~31.
    [10]邓春明,周克崧,刘敏,等.等离子喷涂技术在固体氧化物燃料电池中的应用[J].中国表面工程, 2005, 18(6): 1~4.
    [11]郑锐,聂怀文,陈文霞,等.等离子喷涂在制备中温平板式固体氧化物燃料电池中的应用[J].硅酸盐学报, 2003, 31(6): 598~603.
    [12] A. Anders. Plasma and ion sources in large area coating: A review [J]. Surface and Coatings Technology, 2005, 200(5~6): 1893~1906
    [13] H. Wang, L. Wang. Thermal spraying-application and development trends [A]. in: E. Lugscheider. Thermal Spray connects: Explore its surfacing potential! [C]. Basel Switzerland: DVS/IIW/ASM-TSS, 2005: 29~32.
    [14]陈丽梅,李强.等离子喷涂技术现状及发展[J].热处理技术与装备, 2006, 27(1): 1~5.
    [15] S. Guessasma, G. Montavon, C. Coddet. Modeling of the APS plasma spray process using artificial neural networks: Basis, requirements and an example [J]. Computational Materials Science, 2004, 29(3): 315~333.
    [16] R. C. Tucker Jr. Integrated thermal spray systems - Some practical considerations [A]. in: C. C. Berndt, K. A. Khor, and E. F. Laguscheider. Thermal Spray 2001: New Surfaces for a New Millennium [C]. Singapore: ASM International, 2001: 1261~1266.
    [17] C. J. Einerson, D. E. Clarck, B. A. Detering, et al. Intelligent control strategies for the plasma spray process [A]. in: C. C. Berndt, and T. F. Bernecki. Thermal Spray Coatings: Research, Design and Applications [C]. Anaheim CA: ASM International, 1993: 205~211.
    [18] P. Fauchais. Understanding plasma spraying [J]. Journal of Physics D: Applied Physics, 2004, 37(9): R86~R108.
    [19] C. Moreau. Towards a better control of thermal spray process [A]. in: C. Coddet. Thermal Spray: Meeting the Challenges of the 21st Century [C]. Nice France: ASM International, 1998: 1681~1693.
    [20]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社, 2004: 8.
    [21] R. Henne. Solid oxide fuel cells: A challenge for plasma deposition processes [J]. Journal of Thermal Spray Technology, 2007, 16(3): 381~403.
    [22] R. Hui, Z. Wang, O. Kesler, et al. Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges [J]. Journal of Power Sources, 2007, 170(2): 308~323.
    [23] G. Schiller, R. H. Henne, M. Lang, et al. Development of vacuum plasma sprayed thin-film SOFC for reduced operating temperature [J]. Fuel Cells Bulletin, 2000, 3(21): 7~12.
    [24] C. H. Chen, J. Heberlein, R. Henne, et al. Integrated fabrication process for solid oxide fuel cell in a triple torch plasma reactor [J]. Journal of Thermal Spray Technology, 2000, 9(3): 348~353.
    [25] X. Ma, J. Dai, D. Reisner. The power of plasma [J]. Ceramic Industry, 2004, 154(6): 25~28.
    [26] K. A. Khor, L. G. Yu, S. H. Chan, et al. Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS) [J]. Journal of the European Ceramic Society, 2003, 23(11): 1855~1863.
    [27]李成新,宁先进,李长久.等离子喷涂结合致密化工艺制备SOFC电解质层[J].电源技术, 2004, 28(9): 565~568.
    [28] P. Fauchais, V. Rat, C. Delbos, et al. Understanding of suspension DC plasma spraying of finely structured coatings for SOFC [J]. IEEE Transactions on Plasma Science, 2005, 33(2): 920~930.
    [29] M. Gell, L. Xie, E. H. Jordan, et al. Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings [J]. Surface and Coatings Technology, 2004, 188~189(1~3): 101~106.
    [30] J. Karthikeyan, C. C. Berndt, J. Tikkanen, et al. Plasma spray synthesis of nanomaterial powders and deposits [J]. Materials Science and Engineering A, 1997, 238(2): 275~286.
    [31] N. P. Padture, K. W. Schlichting, T. Bhatia, et al. Towards durable thermal barrier coatings with novel microstructures deposited by solution-precursor plasma spray [J]. Acta Materialia, 2001, 49(12): 2251~2257.
    [32] L. Xie, X. Ma, E. H. Jordan, et al. Deposition of thermal barrier coatings using the solution precursor plasma spray process [J]. Journal of Materials Science, 2004, 39(5): 1639~1646.
    [33] E. H. Jordan, L. Xie, X. Ma, et al. Superior thermal barrier coatings using solution precursor plasma spray [J]. Journal of Thermal Spray Technology, 2004, 13(1): 57~65.
    [34] X. Ma, T. Xiao, J. Roth, et al. Thick thermal barrier coatings with controlled microstructures using solution precursor plasma spray process [A]. in: Thermal Spray 2004: Advances in Technology and Application [C]. Osaka Japan: ASM International, 2004: 1103~1109.
    [35] A. Ozturk, B. M. Cetegen. Modeling of plasma assisted formation of precipitates in zirconium containing liquid precursor droplets [J]. Materials Science and EngineeringA, 2004, 384(1~2): 331~351.
    [36] A. Ozturk, B. M. Cetegen. Modeling of axially and transversely injected precursor droplets into a plasma environment [J]. International Journal of Heat and Mass Transfer, 2005, 48(21~22): 4367~4383.
    [37] K. Wittmann, F. Blein, J. F. Coudert, et al. Control of the injection of an alumina suspension containing nanograins in a DC plasma [A]. in: C.C. Berndt, K.A. Khor, and E.F. Lugscheider. Thermal Spray 2001: New Surfaces for a New Millennium [C]. Singapore: ASM International, 2001: 375~382.
    [38] C. Monterrubio-Badillo, H. Ageorges, T. Chartier, et al. Preparation of LaMnO3 perovskite thin films by suspension plasma spraying for SOFC cathodes [J]. Surface and Coatings Technology, 2006, 200(12~13): 3743~3756.
    [39] J. Fazilleau, C. Delbos, V. Rat, et al. Phenomena involved in suspension plasma apraying part 1: Suspension injection and behavior [J]. Plasma Chemistry and Plasma Processing, 2006, 26(4): 371~391.
    [40] C. Delbos, J. Fazilleau, V. Rat, et al. Phenomena involved in suspension plasma spraying part 2: Zirconia particle treatment and coating formation [J]. Plasma Chemistry and Plasma Processing, 2006, 26(4): 393~414.
    [41] C. Delbos, J. Fazilleau, V. Rat, et al. Finely structured ceramic coatings elaborated by liquid suspension injection in a DC plasma jet [A]. in: Thermal Spray 2004: Advances in Technology and Application [C]. Osaka Japan: ASM International, 2004: 534~539.
    [42] P. Blazdell, S. Kuroda. Plasma spraying of submicron ceramic suspensions using a continuous ink jet printer [J]. Surface and Coatings Technology, 2000, 123(2~3): 239~246.
    [43] L. Bianchi, A. Grimaud, F. Blein, et al. Comparison of plasma sprayed alumina coatings by RF and DC plasma spraying [J]. Journal of Thermal Spray Technology, 1995, 4(1): 59~66.
    [44] M. Bonneau, F. Gitzhofer, M. Boulos. SOFC/CeO2 doped electrolyte deposition using suspension plasma spraying [A]. in: C. C. Berndt. Thermal Spray: Surface Engineering via Applied Research [C]. Montréal Québec Canada: ASM Internationa, 2000: 929~934.
    [45] C. Hwang, C. C. Tzeng. A nanostructured YSZ film coating by liquid suspension injection into an APS plasma flame [J]. Journal of Advanced Oxidation Technologies, 2005, 8(1): 85~89.
    [46] C. Monterrubio-Badillo, H. Ageorges, T. Chartier, et al. Chemical composition optimisation of perovskite coatings by suspension plasma spraying for SOFC cathodes [A]. in: Thermal Spray 2004: Advances in Technology and Application [C]. Osaka Japan: ASM International, 2004: 562~567.
    [47] O. Sarikaya. Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process [J]. Surface and Coatings Technology, 2005, 190(2~3): 388~393.
    [48] K. Brinkiene, R. Kezelis. Correlations between processing parameters and microstructure for YSZ films produced by plasma spray technique [J]. Journal of the European Ceramic Society, 2004, (24): 1095~1099.
    [49]胡桅林,李志信.等离子体的温度测量与光谱测温仪[J].清华大学学报, 1990, 3(2): 100~104.
    [50] J. A. Brogan, C. C. Berndt, Smith,W. C., et al. Real-time imaging of the plasma spray process-work in progress [J]. Journal of Thermal Spray Technology, 1995, 4(4): 374~376.
    [51] J. Xu, J. Fang, Z. Li. Plasma jet imaging by CCD technology in rapid mold Manufacturing [J]. Journal of Material Processing Technology, 2002, 129(1): 250~254.
    [52] J. R. Fincke. Plasma and partical fow felds [J]. Plasma chemistry and Plasma Processing, 1993, 13(4): 123~130.
    [53] S. Raguhu. Visualization of a high-speed, luminous plasma jet using a focusing schlieren technique [J]. Experiments in Fluids, 1995, 19(2): 136~138.
    [54] A. Jakimov, M. Hertter, M. H. Abdullahi, et al. Plasma spray process control with neural network [A]. in: E. Lugscheider. Thermal Spray connects: Explore its surfacing potential! [C]. Basel Switzerland: DVS/ IIW/ ASM-TSS, 2005: 673~678.
    [55]张海鸥,刘丹,王桂兰.面向RPST的氩氮等离子射流温度分布的测量[J].机械科学与技术, 2004, 23(3): 344~346.
    [56] T. Grinys, S. Tamulevi?ius, M. ?advydas. Control of the substrate temperature during
    plasma spray deposition [J]. MATERIALS SCIENCE, 2004, 10(3): 221~224.
    [57] C. Verdy, B. Serio, C. Coddet. In-situ temperature measurement using embedded micro-thermocouples in vacuum plasma sprayed multi-layered structures [A]. in: C. Coddet. Thermal Spray: Meeting the Challenges of the 21st Century [C]. Nice France: ASM International, 1998: 821~824.
    [58] E. Lugscheider, F. Ladru, A. Fischer, et al. Plasma sprayed ceramic coatings for electrical purposes - necessity of process control [A]. in: Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society [C]. Aachen Germany: Institute of Electrical & Electronics Enginee, 1998: 2284~2289.
    [59] J. P. Sauer, P. Sahoo. HVOF process control using Almen and temperature measurement [A]. in: C. C. Berndt, K. A. Khor, and E. F. Lugscheider. Thermal Spray 2001: New Surfaces for a New Millennium [C]. Singapore: ASM International, 2001: 791~796
    [60] M. Dvorak, C. Florin, E. Amrhein. On-line quality control of thermally sprayed coatings [A]. in: C. C. Berndt, K. A. Khor, and E. F. Lugscheider. Thermal Spray 2001: New Surfaces for a New Millennium [C]. Singapore: ASM International, 2001: 1255~1259.
    [61] P. Lito?, M. Honner, J. Kune?. Thermography applications in technology research [A]. in: M. N. Billerica. Proceedings of the Infrared Camera Applications International Conference [C]. Las Vegas Nevada USA: Infrared Training Center, 2004: 321~330.
    [62] O. Brandt, M. Wandelt. Thermal measurements of substrate during spray processes [A]. in: C. C. Berndt. Thermal Spray: Practical Solutions for Engineering Problems [C]. Cincinnati OH: ASM International, 1996: 799~802.
    [63] P. Jokinen, T. Varis, A. Korpiola, et al. In-situ temperature control of coating and workpiece in thermal spraying [A]. in: E. Lugscheider, and R. A. Kammer. Tagungsband Conference Proceedings [C]. Düsseldorf Germany: DVS Deutscher Verband für Schwei?en, 1999: 318~320.
    [64] D. R. Green, M. D. Schmeller, R. A. Sulit. Thermal nondestructive examination mthod for termal srayed catings [J]. Oceans, 1982, 14: 532~536.
    [65] K. Richter, K. Drescher. Pyrometric substrate temperature measurement during plasmaetching [J]. Surface and Coatings Technology, 1995, 74~75(1~3): 546~551.
    [66] L. Moulla, Z. Salhi, M. P. Planche, et al. On the measurement of substrate temperature during thermal spraying [A]. in: E. Lugscheider. Thermal Spray Connects: Explore its Surfacing Potential! [C]. Basel Switzerland: DVS/IIW/ASM-TSS, 2005: 679~683.
    [67]程玉兰.红外诊断现场实用技术[M].北京:机械工业出版社, 2002: 114~115
    [68] T. Renault, M. Vardelle, A. Grimaud, et al. On-line control of particle spray jet and residual stresses in plasma sprays [A]. in: C. C. Berndt. Thermal Spray: Surface Engineering via Applied Research [C]. Montréal Québec Canada: ASM Internationa, 2000: 1383~1391.
    [69] T. Renault, M. Vardelle, P. Fauchais, et al. On-line monitoring (SDC) through coating surface temperature of residual stresses in APS WC-Co 17wt% coatings on Hastelloy X [A]. in: C. C. Berndt, K. A. Khor, and E. F. Lugscheider. Thermal Spray 2001: New Surfaces for a New Millennium [C]. Singapore: ASM International, 2001: 743~750.
    [70] C. Bossoutrot, F. Braillard, S. Bansard, et al. Industrial on-line control of HVOF spray process using SDC system [A]. in: B. R. Marple, and C. Moreau. Thermal Spray 2003: Advancing the Science and Applying the Technology [C]. Orlando FL: ASM International, 2003: 1243~1248.
    [71] P. Fauchais, M. Vardelle. How to improve the reliability and reproducibility of plasma sprayed coatings [A]. in: B. R. Marple, and C. Moreau. Thermal Spray 2003: Advancing the Science and Applying the Technology [C]. Orlando FL: ASM International, 2003: 1165~1173.
    [72] E. Meillot, E. M. Fromentin. Measurements of heat flux in an atmosphere- and temperature-controlled plasma spray process [J]. Annual of the New York Academy Sciences, 1999, 891(1): 90~97.
    [73] E. Meillot, L. Bianchi, E. Roussel, et al. Industrial applications with the atmosphere and temperature controlled plasma spraying process [J]. High Temperature Material Processes, 2001, 5(1): 51~59.
    [74] P. Jokinen, T. Kauppinen, T. Varis, et al. Using IR-thermography as a quality-control tool for thermal spraying in the aircraft industry [A]. in: Proceedings of SPIE - The International Society for Optical Engineering [C]. Orlando FL USA: Society ofPhoto-Optical Instrumentation Engineers, 2000: 232~237.
    [75]张海鸥,刘辉祥,王桂兰,等.等离子熔射制模过程中皮膜温度场实验研究[J].中国机械工程, 2004, 15(21): 1958~1961.
    [76]夏卫生,张海鸥,王桂兰.等离子熔射皮膜温度分布在线监控与过程诊断[J].焊接技术, 2007, 36(1): 59~62.
    [77]夏卫生,张海鸥,王桂兰,等.等离子熔射皮膜破坏温度场诊断[J].电焊机, 2007, 37(3): 46~48.
    [78] L. Bianchi, N. Baradel, I. N. Liorca, et al. Influence of Plasma spraying parameters on coating damage [A]. in: C. C. Berndt. Thermal Spray: Surface Engineering via Applied Research [C]. Montréal Québec Canada: ASM International, 2000: 29~36.
    [79] V. Pershin, M. Lufitha, S. Chandra, et al. Effect of substrate temperature on adhesion strength of plasma-sprayed nickel coatings [J]. Journal of Thermal Spray Technology, 2003, 12(3): 370~376.
    [80] S. Sampath, X. Y. Jiang, J. Matejicek, et al. Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I: Case study for partially stabilized zirconia [J]. Materials Science and Engineering A, 1999, 272(1): 181~188.
    [81] O. Sarikaya. Effect of the substrate temperature on properties of plasma sprayed Al2O3 coatings [J]. Materials and Design, 2005, 26(1): 53~57.
    [82] J. Fazilleau, C. Delbos, M. Violier, et al. Influence of substrate temperature on formation of micrometric splats obtained by plasma spraying liquid suspension [A]. in: B. R. Marple, and C. Moreau. Thermal Spray 2003: Advancing the Science and Applying the Technology [C]. Orlando FL: ASM International, 2003: 891~893.
    [83] P. S. Grant, E. Davies, S. Duncan. Control of temperature during vacuum plasma spraying [EB/OL].: http://www.materials.ox.ac.uk/peoplepages/grant.html, 2006-12-16.
    [84]吴新灿,陈熙.等离子体喷涂中涂层形成的模拟[J].清华大学学报(自然科学版), 2003, 43(11): 1503~1506.
    [85]赵文轸.热喷涂层强度与厚度关系的实验研究[J].机械科学与技术, 1996, 15(4): 621~624.
    [86]周晨波,于文英,邹华,等.等离子喷涂ZrO28Y2O3涂层厚度测量方法研究[J].光电子?激光, 2003, 14(1): 71~74.
    [87]智通机器人有限公司.三维测量技术应用[EB/OL]. http://www.inter-smart.com/ Project/ project_4.asp, 2005-1-1.
    [88]吕国松,朱博丽,邵军明,等.超声高精度测厚系统的设计与开发[J].仪表技术, 2002, (1): 13~14.
    [89]宋慧幼,胡传.涂层技术原理及应用[M].北京:化学工业出版社, 2000: 327~ 337
    [90]黄小鸥.姹紫嫣红说大阪-2004年国际热喷涂大会(ITSC' 04)述评[J].机械工人(热加工), 2005, (1): 46~50.
    [91]张东辉,郝勇超.等离子弧喷涂设备现状及发展趋势[J].机械工人(热加工), 2003, 2003(9): 20~22.
    [92]戴达煌,周克崧,袁镇海.现代材料表面技术科学[M].北京:冶金工业出版社, 2004: 163
    [93]陈克选,李春旭. PLC控制等离子喷涂设备的研制[J].甘肃工业大学学报, 1999, 25(1): 18~21.
    [94]陈克选,李春旭,张志坚.单片机控制等离子熔射(焊)电源研制[J].甘肃工业大学学报, 2000, 26(2): 8~11.
    [95]王赫莹,李德元,马晓丽.等离子弧喷涂设备的PLC自动控制[J].焊接技术, 2005, 34(4): 39~41.
    [96]滕文华,李德元,张义顺. PLC控制等离子熔射设备的研制[J].沈阳工业大学学报, 2002, 24(1): 14~17.
    [97]毛文杰,王加友,陈刚.等离子喷涂及喷焊自动控制系统的研制[J].华东船舶工业学院学报, 1995, 9(1): 69~74.
    [98]王伟,田非,朱六妹,等.微机控制大功率晶闸管等离子喷涂电源的研究[J].电焊机, 2005, 35(11): 19~23.
    [99]王伟,夏卫生,张海鸥,等.基于工控组态平台的机器人等离子喷涂控制系统设计[J].电焊机, 2004, 34(8): 10~12.
    [100]谢建新,刘雪峰,周成,等.材料制备与成形加工技术的智能化[J].机械工程学报, 2005, 41(11): 8~14.
    [101] H. N. G. Wadley, R. Vancheeswaran. The intelligent processing of materials: Anoverview and case study [J]. JOM, 1998, 50(1): 19~30.
    [102] S. Guessasma, G. Montavon, P. Gougeon, et al. Designing expert system using neural computation in view of the control of plasma spray processes [J]. Materials and Design, 2003, 24(7): 497~502.
    [103] S. Guessasma, G. Montavon, C. Coddet. Neural networks, design of experiments and other optimization methodologies to quantify parameter dependence of atmospheric plasma spraying [A]. in: B. R. Marple and C. Moreau. Thermal Spray 2003: Advancing the Science and Applying the Technology. Orlando FL: ASM International, 2003: 939~948.
    [104] S. Gowri, G. U. Shankar, K. Narayanasamy, et al. Expert system for process optimization of atmospheric plasma spraying of high performance ceramics [J]. Journal of Materials Processing Technology, 1997, 63(1~3): 724~732.
    [105]黄石生,薛家祥,曹彪.等离子熔射过程的BP神经网络自适应控制[J].控制理论与应用, 1997, 14(5): 660~664.
    [106] Y. C. Lau, C. A. Johnson, D. M. Gray, et al. Intelligent processing of materials for thermal barrier coatings [A]. in: Proceedings of the 1997 Thermal Barrier Coating Workshop [C]. Cincinnati OH USA: NASA Conference Publication, 1998: 151~155.
    [107] F. Iwanitz, J. Lange. OPC - Fundamentals, Implementation and Application. Third Edition [M]. Heidelberg: Hüthig Fachverlag, 2006: 1~15.
    [108]郑立,译. OPC应用程序入门[M].北京: OPC(中国)促进委员会, 2004: 1~50.
    [109]李斌,周云飞,唐小琦.基于COM技术和OPC规范的开放式结构数控系统研究[J].中国机械工程, 2003, 14(4): 312~315.
    [110]李东海,孙鹤旭,雷兆明. OPC技术在远程监控系统中的应用研究[J].微计算机信息, 2005, 21(6): 20~22.
    [111]张智杰,张燕燕. OPC技术与应用[J].信息技术, 2002, (3): 29~31.
    [112]潘爱民. COM原理与应用[M].北京:清华大学出版社, 1999: 417~420.
    [113]贾宏宇.工控软件设计关键技术研究[D].西安:西安交通大学,2000: 96~97.
    [114]孙开放,汪建.多线程技术在变电站监控系统中的应用[J].计算机应用与软件, 2003, (1): 78~80.
    [115]王慧.计算机控制系统[M].北京:化学工业出版社, 2000: 333~358.
    [116]张志檩.实时数据库原理及应用[M].北京:中国石化出版社, 2001: 6~21.
    [117]郭建新,刘乃琦,郑敏. OPC协议及其在实时数据库开发中的应用[J].自动化博览, 2005, (5): 40~42.
    [118]董长虹,余啸海. Matlab接口技术与应用[M].北京:国防工业出版社, 2004: 1~11.
    [119]董维国.深入浅出Matlab 7.x混合编程[M].北京:机械工业出版社, 2006: 270~286.
    [120] SIEMENS公司. SIMATIC S7-300可编程序控制器CPU312C至CPU314C-2DP/ PtP CPU技术参数参考手册(中文版) [M].北京: SIEMENS公司, 2001: .
    [121]范永,谭民.机器人控制器的现状及展望[J].机器人, 1999, 21(1): 75~80.
    [122]王天然,曲道奎.工业机器人控制系统的开放体系结构[J].机器人, 2002, 24(3): 256~262.
    [123]周学才,李卫平,李强.开放式机器人通用控制系统[J].机器人, 1998, 20(1): 25~31.
    [124]焦恩璋.经济型模块化工业机器人的前期研究[J].制造业自动化, 2002, 24(2): 19~23.
    [125]曾孔庚.开放式新型科研教学机器人-MOTOMAN RTLab [J].机器人技术与应用, 2005, (2): 27~30.
    [126] K. Nassenstein, D. Luckenbach. Progress in thermal spray processes [A]. in: E. Lugscheider. Thermal Spray connects: Explore its surfacing potential! [C]. Basel Switzerland: DVS/IIW/ASM-TSS, 2005: 378~382.
    [127]邓思豪.机器人实时监控与通讯系统的研究与实现[D].武汉:武汉理工大学, 2003: 34.
    [128]首钢Motoman机器人公司. MOTOMAN使用说明书[M].北京:首钢Motoman机器人公司, 2001: 1~45.
    [129] L. Bianchi, A. C. Leger, M. Vardelle, et al. Splat formation and cooling of plasma-sprayed zirconia [J]. Thin Solid Films, 1997, 305(1~2): 35~47.
    [130] P. D. A. Jones, S. R. Duncan, T. Rayment, et al. Control of temperature profile for a spray deposition process [J]. IEEE Transactions on Control Systems Technology, 2003, 11(5): 656~667.
    [131] L. Bianchi, A. Grimaud, F. Blein, et al. Comparison of plasma sprayed alumina coatings by RF and DC plasma spraying [J]. Journal of Thermal Spray Technology, 1995, 4(1): 59~66.
    [132] M. Schlessinger. Infrared technology fundamentals [M]. New York: Marcel Dekker, 1995: 12.
    [133]王桂兰,文少波,张海鸥.面向等离子熔射制模的机器人轨迹生成系统的实现[J].航空制造技术, 2003, (6): 35~37.
    [134]张海鸥,陈雷,王桂兰,等.机器人制造陶瓷原型系统的研究[J].中国机械工程, 2005, 16(23): 2112~2115.
    [135]武汉华中数控公司. HY2188G型红外热像仪性能参数[EB/OL]. : http://www.huazhongcnc com/ hy2188.htm, 2003-1-1.
    [136] R. Bolot, L. Li, R. Bonnet, et al. Modeling of the substrate temperature evolution during the APS thermal spray process [A]. in: B. R. Marple, and C. Moreau. Thermal Spray 2003: Advancing the Science and Applying the Technology [C]. Orlando FL: ASM International, 2003: 949~954.
    [137] P. Fauchais, A. Vardelle. Heat, mass and momentum transfer in coating formation by plasma spraying [J]. International Journal of Thermal Sciences, 2000, 39(9~11): 852~870.
    [138] R. Bolot, M. Imbert, C. Coddet. On the use of a low-Reynolds extension to the Chen-Kim (K-epsilon) model to predict thermal exchanges in the case of an impinging plasma jet [J]. Journal of Heat and Mass Transfer, 2001, 44(6): 1095~1106.
    [139] R. Bolot, C. Coddet, M. Imbert, et al. Mathematical modeling of a plasma jet impinging on a flat structure [A]. in: C. Coddet. Thermal Spray: Meeting the Challenges of the 21st Century [C]. Nice France: ASM International, 1998: 439~444.
    [140] Y. Bao, D. T. Gawne, T. Zhang. Computational model for the prediction of the temperatures in the coating during thermal spray [A]. in: International. Thermal Spray 2004: Advances in Technology and Application [C]. Osaka Japan: ASM International, 2004: 730~735.
    [141] Y. Bao, T. Zhang, D. T. Gawne. Non-steady state heating of substrate and coating during thermal-spray deposition [J]. Surface and Coatings Technology, 2005, 194(1):82~90.
    [142]张海鸥,刘韵,王桂兰,等.基于模式识别的等离子射流形态特征研究[J].机械科学与技术, 2006, 25(12): 1476~1479.
    [143]杨世铭,杨文铨.传热学[M].第三版.北京:高等教育出版社, 1998: 379~381.
    [144] S. Kuroda, T. Dendo, S. Kitahara. Quenching stress in plasma sprayed coatings and its correlation with the deposit microstructure [J]. Journal of Thermal Spray Technology, 1995, 4(1): 75~84.
    [145] J. R. Fincke, W. D. Swank, R. L. Bewley, et al. Diagnostics and control in the thermal spray process [J]. Surface and Coatings Technology, 2001, 146~147: 537~543.
    [146]张春华,李迪.基于数据挖掘的焊接生产管理平台[J].焊接学报, 2002, 23(6): 21~24.
    [147]卢勇,徐向东,陈明.数据挖掘技术在热电厂过程控制与优化中的应用研究[J].电站系统工程, 2003, 19(2): 48~50.
    [148] H. D. Margaret.数据挖掘教程[M].北京:清华大学出版社, 2005: 120~121.
    [149]栾丽华.聚类算法研究[D].南京:南京师范大学,2004: 9~13.
    [150] J. Han, M. Kamber. Data mining: concepts and techniques [M]. San Francisco: Morgan Kaufmann Publishers, 2001: 232~234.
    [151] E. H?m?l?inen, J. Vattulainen, T. Alahautala, et al. Imaging diagnostics in thermal spraying - SprayWatch system [A]. in: C. C. Berndt. Thermal Spray: Surface Engineering via Applied Research [C]. Montréal Québec Canada: ASM International, 2000: 79~83.
    [152]刘复岩.聚类在系统智能化控制中的一种应用[J].武汉理工大学学报(信息与管理工程版), 2003, 25(3): 98~101.
    [153] R. C. Tucker Jr. Integrated thermal spray systems - some practical considerations [A]. in: C.C. Berndt, K.A. Khor, and E.F. Lugscheider. Thermal Spray 2001: New Surfaces for a New Millennium [C]. Singapore: ASM International, 2001: 1261~1266.
    [154] C. J. Einerson, D. E. Clarck, B. A. Detering, et al. Intelligent control strategies for the plasma spray process [A]. in: C. C. Berndt and T. F. Bernecki. Thermal Spray Coatings: Research, Design and Applications [C], Anaheim CA: ASM International, 1993: 205~211.
    [155]李国勇.智能控制及其Matlab实现[M].北京:电子工业出版社, 2005: 20~31.
    [156] H. K. D. H. Bhadeshia. Neural networks in materials science [J]. ISIJ international, 1999, 39(10): 966~979.
    [157] B. Dussoubs, G. Mariaux, A. Vardelle, et al. D.C. plasma spraying: Effect of arc root fluctuations on particle behavior in the plasma jet [J]. High Temperature Material Processes, 1999, 3(2~3): 235~254.
    [158] A. L. Moran, D. R.White. Intelligent processing in spray forming applications [A]. in: Proceedings of the 1990 IEEE International Symposium on Intelligent Control [C]. Philadelphia PA USA: IEEE Control Systems Society, 1990: 1058~1064.
    [159] S. Guessasma, G. Montavon, C. Coddet. On the neural network concept to describe the thermal spray deposition process: An introduction [A]. in: E. Lugscheider, and C. C. Berndt. International Thermal Spray Conference 2002 [C]. Essen Germany: DVS Deutscher Verband für Schwei?en, 2002: 435~439.
    [160] E. S. Lugscheider, K. Seemann. Prediction of plasma sprayed coating properties by the use of neural networks [A]. in: Thermal Spray 2004: Advances in Technology and Application [C]. Osaka Japan: ASM International, 2004: 459~463.
    [161]李士勇.模糊控制?神经控制和智能控制理论[M].哈尔滨:哈尔滨工业大学出版社, 1998: 1~11.
    [162]许东,吴铮.基于MATLAB6. x的系统分析与设计-神经网络[M].第二版.西安:西安电子科技大学出版社, 2002: 23~24.
    [163]衣宝廉.燃料电池-高效、环境友好的发电方式[M].北京:化学工业出版社, 2000: 5~8.
    [164] G. Renouard-Vallet, F. Gitzhofer, M. Boulos, et al. Optimization of axial injection conditions in a supersonic induction plasma torch: Application to SOFCs [A]. in: B. R. Marple, and C. Moreau. Thermal Spray 2003: Advancing the Science and Applying the Technology [C]. Orlando FL: ASM International, 2003: 195~202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700