Al-Zn-Mg合金电子理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Zn-Mg合金由于其低密度、高强度及较好的时效硬化效应,在航空航天工业中有着重要的应用。但该系合金对应力腐蚀断裂敏感,过时效处理在改善抗应力腐蚀断裂性能的同时却会致使强度降低。为了使经合理的热处理后的该合金既具有较好的应力腐蚀断裂性能,同时又能保持其强度,对合金结构与性能的微观机理的研究至关重要。然而,目前对Al-Zn-Mg合金的结构与性能的微观机理研究仍处于探索阶段。本文运用固体与分子经验电子理论(简称EET理论),并结合程开甲院士改进的TFD方法,系统地研究了Al-Zn二元和Al-Zn-Mg三元合金中各固溶相和部分沉淀相的价电子结构及其界面性能,为该合金的进一步开发研究提供理论依据。主要研究内容如下:
     1.建立Al-Zn系合金固溶体中存在各相的价电子结构模型,认为固溶体内包含了四类晶胞:α-Al晶胞,富Al的Al-Zn晶胞,富Zn的Al-Zn晶胞和Zn晶胞。运用平均原子模型计算了这些晶胞的价电子结构,并在价电子结构层次探讨该合金的Spinodal分解现象及合金组织的稳定性。
     2.对Al-Zn系合金的过饱和固溶体在时效过程中脱溶的G.P.区,中间相和析出相的价电子结构进行计算,并对这些相对合金性能的影响进行了讨论。
    
    摘要
     3.对Al一Zn一Mg系合金固溶体中可能的AI一Zn,AI一Mg及Mg一Zn二
    元偏聚晶胞和Al一Zn一Mg三元偏聚晶胞的价电子结构进行计算,分析了
    该合金中叮、粉析出相的结构模型。
     4.对AI一Zn系合金过饱和固溶体在时效过程中脱溶的G.P.区与母相
    的界面能做了计算,并对其界面的面电荷密度进行计算。
Al-Zn-Mg Alloys played an important role in the avigation and spaceflight due to their low density,high strength and preferable age hardness. -One drawback of these alloys was their susceptibility to stress corrosion cracking(SCC). Although overaging processes could improve the performance of resistance to stress corrosion cracking ,it could reduce the alloys' strength simultaneously. The study of the microcosmic mechanism between structure and performances was of great importance in order to keep the alloys' progressive stress corrosion cracking together with their high-strength after appropriate heat treatment. Unfortunately just very limited work has been done on studying the microcosmic mechanism between the structure and performances.
    The valence electron structures and interphase performances of each solid solution and part of the precipitations in Al-Zn and Al-Zn-Mg alloys were analyzed systematically according to the Empirical Electronic Theory in solid and molecules (EET) and improved TFD method by Cheng Kaijia.The research work made it possible for further study as theoretical basis.The main contents of this paper were as follows:
    
    
    Firstly,the models of valence electron structures of phases in Al-Zn based alloys were established. There were four kinds of cells in Al-Zn based alloys: a-Al cell; Al-Zn cell riching Al; Al-Zn cell riching Zn and Zn cell. The valence electron structures of above cells were calculated based on the average atom model.Then the Spinodal decompound phenomenon and the stability of morphology in Al-Zn alloy were discussed in the valence electron structure level. . -
    Secondly, the valence electron structures of G.P. zone, interphase and precipitatition in supersaturated solid solution duing aging were calculated in Al-Zn based alloys.The effect of these precipitates on alloys' properties was discussed.
    Thirdly,the valence electron structures of both Al-Zn, Al-Mg, Mg-Zn segregated cells and Al-Zn-Mg segregated cell were computered. The structural models of precipitates were analyzed.
    Finally,the interphase energy between G.P. zone and matrix in solid solution during aging of Al-Zn based alloys was calculated.The surface charging density of the interphase was calculated too.
引文
[1]. A. Heinz, A. Haszler, C. Keidel, et. al. Recent development in aluminium alloys for aerospace applications. Materials Science and Engineering A. 2000,280:102-107
    [2]. S.P.Ringer,K. Hono. Microstructual evolution and age hardening in Aluminium alloys:atom probe field-ion microscopy and transmission electron microscopy studies. Materials characterization. 2000,44:101-131
    [3]. K. Hussain. Short fatigue crack behavior and analytical models:a review. Eng. Fract. Mech. 2000,58(4):327-354
    [4]. Chinh, N.Q.,Kovacs, Zs,Reich, L. Szekely et. al. Mater. Sci. Forum. 1996, 217-222: 1293-1298
    [5]. V. Milman, A.L. Sirko, D.Y. Lotsko, O.N. Senkov, andD. B. Miracle:Mater. Sci. Forum. 2002, 396-402:1217-1222
    [6]. F. A. Costello, J.D.Robson, and P.B. Prangnell, Mater. Sci.Forumvols. 2002.396-402: 757-762
    [7]. B.C. Wei, C.Q. Chen, Z. Huang and Y.G. Zhang. Aging behavior of Li containing Al-Zn-Mg-Cu alloy. Materials Science and Engineering A. 2000,280:161-167
    [8]. K.S. Kumar and F.H. Heubaum. The effect of Li content on the natural aging response of Al-Cu-Li-Mg-Ag-Zr alloys. Acta mater. 1997,45(6): 2317-2327
    [9].牟春,林学丰,黎文献.微量稀土对7075合金组织和性能的影响.铝加工.2001,5:27-31
    [10].刘玉梅,高玉芹,刘国涛,梅显秀.稀土量不同的Al-Zn-Mg合金超塑变形中第二相状态.吉林大学自然科学学报.1996,4:68-70
    [11].王祝堂,田荣璋.铝合金及其加工手册.中南工业大学出版社,长沙:1989
    [12].潘志军,黎文献,马正青,谭敦强.高强铝合金的研究现状及展望.铝加工.2001,4:39-41
    [13]. F. Vians.Retrogression and re-aging of 7075 aluminium alloy:Microstructural characterization. J. Mater. Proce. Tech.,1999,92-93: 54-59
    [14]. D. Thevenet. The effect of precipitation on the Portevin-Le Chatelier effect in an alloy. Mater. Sci. Eng. A. 1999, 266:175-182
    [15].秦蜀懿,张国定,王文龙.颗粒形状及基体热处理对SiCp/LD2断裂韧性的影响.稀有金
    
    属.1999,3:181-184
    [16].谢燮揆,范靖亚.Al-Zn-Mg-Cu系高强铝合金RRA处理.轻合金加工技术.1996,2:31-32
    [17].谷亦杰,林建国,张永刚,陈昌麒.回归再时(RRA)处理对7050铝合金的影响.金属热处理.2001,1:31-34
    [18].冯坚,黄卫东,林鑫等.Al-Zn合金定向凝固过程中的组织形态选择.西北工业大学学报.2000,1:52-55
    [19].陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响.中南工业大学学报.2000,9:16-17
    [20].张瑞林.固体与分子经验电子理论,长春:吉林科学技术出版社.1993:313—314,231—267
    [21].张瑞林,余瑞璜.Fe-C马氏体价电子结构分析.金属学报.1984,20(4):A279
    [22].李文,陈岱发,关振中.Ti-Al系金属间化合物力学性能的电子理论.物理学报.1998.12(47):2064-2073
    [23].李文,孔晓化.Ti-Al合金环境脆性机制的电子理论.有色金属.1999.5,51(2):71-75
    [24].刘志林.合金价电子结构与成分设计,长春:.吉林科学技术出版社.1990
    [25].程开甲,程漱玉.TFD模型和余氏理论对材料设计的应用.自然科学进展.1993,3(3):417
    [26].程开甲,程漱玉.论材料科学的理论基础.自然科学进展.1996,6(1):1
    [27].L.F.蒙多尔福著,王祝堂等译.铝合金的组织和性能[M],北京:冶金工业出版社,1988:340—351
    [28]. H. Ramanarayan, T.A. Abinandanan. Spinodal decomposition in polycrystalline alloys. Physica A. 2003, 318:213—219
    [29]. T. Ujihara and K. Osamura. Kinetic Analysis of Spinodal Decomposition Precess in Fe-Cr Alloys by Small Angle Neutron Scattering. Acta mater. 2000,48:1629—1637
    [30]. J.E. Hilliard, B.L. Averbach and Morris Cohen. Self and Interdiffusion in Al-Zn Alloys[J]. Acta Metallurgica. 1959,7:86-91
    [31]. S. Muller, C. Wolverton, L. W. Wang and A. Zunger. Predicting the Size-and Temperature Dependent Shapes of Precipitates in Al-Zn Alloys. Acta mater. 2000,48: 4007-4020
    [32]. A. Matsuzaki, T. Yamaji, M. Yamashita. Development of a new organic composite coating for enhancing corrosion resistance of 55% Al-Zn alloy coated steel sheet. Surface and Coatings Technology. 2003,169-170:655-657
    
    
    [33]. K.G. Watkins, M.A. McMahon, W.M. Steen. Microstructure and corrosion properties of laser processed aluminium alloys:a review. Materials Science and Engineering.1997. A231:55-61
    [34].刘志林,孙振国,李志林.余氏理论和程氏理论在合金研究中的应用[J].自然科学进展.1998,8(2):150-160
    [35]. LI Z L, MAC X, LIU Z L. Valence electron structure of high property high-speed-resistance steel and its composition design[J].Acta Metallurgica Sinica(English letters).1999,12(4):408
    [36].王大鹏,郝士明,赵刚,李洪晓.对称成分Spinodal分解合金的组织、结构与相成分.中国有色金属学报.2001,11(S2):95—98
    [37].李洪晓,王大鹏,赵刚,郝士明.具有失稳分解的Al-Zn-(Cu)系合金的固溶强化与析出强化.东北大学学报.2002.23(5):447—449
    [38]. V. Dimova, D. Danailov, T. Markov, A. Pavlovski et. al. Precipitation processes in rapidly quenched Al-Zn alloys. Phy. Met. Metal. 1991,4:117-123
    [39]. K, Osamura, H. Okuda, H. Hashizume et al. Dynamical structure change during reversion in Al-Zn binary alloy. Acta metal. 1985,33:2199-2203
    [40]. C.L. Cben, M.J. Tan. Effect of grain boundary character distribution (GBCD) on the cavitation behaviour during superplastic deformation of Al 7475. Materials Science and Engineering A. 2002,338:243-252
    [41]. Chu. Truong, G. Wendrock and H. Loffler. Structure changes during the reversion of G.P. zones in Al-Zn alloys, phys. stat. sol. (a).1991,124:95-102
    [42]. Kozo. Osamura. Growth and Coarsening of GP Zones in Al-Zn alloys. Metall. trans. 1988, 19A:1973-1980
    [43].L.鲍林著.化学键本质.上海科学技术出版社.1966:100—393
    [44]. T. Engdahl, V. Hansen, P.J. Warren and K. Stiller. Investigation of fine precipitates in Al-Zn-Mg alloys after various heat treatments. Mater. Sci. Eng. 2002, A327:59—64
    [45]. K. Stiller, P.J. Warren, V. Hansen and J.Angenete et. al. Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at lO0~Cand 150℃. Mater. Sci. Eng. 1999, A270:55-63
    [46]. S.K. Maloney, K. Hono, I.J. Polmear and S.P. Ringer. The chemistry of precipitates in
    
    an aged Al-2.1Zn-1.7Mg at.% alloy. Scripta Materialia. 1999,41:1031—1038
    [47]. X.Z. Li, V. Hansen, J. Gjonnes and L.R. Wallenberg. Hrem study and structure modeling of the η' phase, the hardening precipitates in commercial Al-Zn-Mg alloys. Acta Meter. 1999,47:2651—2659
    [48]. R. Ferragut, A. Somoza and A. Tolley. Microstructural evolution of 7012 alloy during the early stages of artificial aging. Acta Mater. 1999,47:4355—4364
    [49]. A. Desciiamps, F. Livet and Y.Brechet. Influence of predeformation on ageing in an Al-Zn-Mg alloy—Ⅰ. Micro-structure evolution and mechanical properties, Acta Mater. 1999,47:281—292
    [50]. L.K Berg, J. Gjonnes, VHansen and X.Z. Li et. al. GP-Zones in Al-Zn-Mg alloys and their role in artificial aging. Acta mater. 2001 49:3443—3451
    [51].张永刚,陈国良等.金属间化合物结构材料.北京:国防工业出版社.2001:156—160
    [52]. J. Gjennes and C.J. Simensen. An electron microscope investigation of the microstructure in an aluminium-zinc-magnesium alloy. Acta Metall. 1970,18:881—890
    [53]. C. Wolverton. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys. Acta Mater. 2001,49:3129—3142
    [54].张宝昌.有色金属合金及其热处理.西安:西北工业大学出版社.1993:15—66
    [55].刘慧,高英俊.Al—Mg—Sc合金的价电子结构计算.广西大学学报(自然科学版).2002,3:256-259
    [56].高英俊,钟夏平,刘慧等.微量Sc对Al-Mg合金晶粒细化影响的电子结构分析.中国有色金属学报.2002,12(S2):132
    [57].余瑞璜,张瑞林,金治.铁-碳、铁-氮系中几种固溶体的研究(1)[J].吉林大学学报.1984,(1):51-59
    [58].叶恒强.材料界面结构与特性.北京:科学出版社.1999
    [59].D.A.波特,K.E.伊斯特林著,李业海,余永宁译.金属和合金中的相变.北京:冶金工业出版社.1988:110—184
    [60].刘志林,李志林,刘伟东.界面电子结构与界面性能.北京:科学出版社.2002:164-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700