预臭氧化工艺对微污染原水消毒副产物影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预氯化工艺由于能够有效杀灭细菌等病原微生物,且具有成本低廉等优势,在世界范围内的给水厂中应用最为广泛。但是在预氯化过程中,水源水中普遍存在的天然有机物(NOM)与氯作用生成较高浓度的DBPs,而三卤甲烷(THMs)和卤乙酸(HAAs)等代表性DBPs已被证实为致癌物质。因此,人们开始寻求新的预氧化技术来代替预氯化,从而降低出水中DBPs含量,保障饮用水的安全性。预臭氧化技术是当前研究较多的一种预氧化技术。
     本文以天津市水源水为研究对象,进行小试试验研究预臭氧化工艺对微污染原水消毒副产物含量的影响因素;在不同水质期和不同水源水条件下进行生产性试验,研究预臭氧化工艺对消毒副产物的影响以及对水质净化的作用,并比较了预臭氧化工艺和传统预氯化工艺对不同水质期原水的处理效果。对于预臭氧化技术的研究符合我国水处理的发展方向,对于预臭氧化在我国的应用有重要的实际意义和应用价值。
     预臭氧化工艺小试试验研究发现:增加臭氧投加量,能够持续降低水体中三卤甲烷生成势(THMFP)和卤乙酸生成势(HAAFP)。但是,臭氧投加量的增加将提高溴酸盐的生成量;在较短的反应时间内,THMFP和HAAFP含量均出现小幅度增加,而随着反应时间延长,THMFP和HAAFP含量下降。同时,在较短的反应时间时,溴酸盐生成量变化幅度较大;当水体偏酸性时,随着pH值增加,水体中的THMFP和HAAFP含量增加;而当水体偏碱性时,随着pH值增大,THMFP和HAAFP含量逐渐降低。在碱性条件下,溴酸盐含量升高趋势较明显。
     高温高藻期内,预臭氧化生产性试验研究得到以下结论:预臭氧化对滦河水中藻类、叶绿素a、UV_(254)和SUVA的去除率分别为45.76%、44%、38.21%和32.07%。臭氧能够氧化分解大分子有机物生成3kDa-10kDa,1kDa-3kDa分子量区间的小分子有机物。预臭氧化单元THMFP和HAAFP的去除率分别为12.43%和15.06%;臭氧对THMFP的去除主要体现在对三氯甲烷和一溴二氯甲烷前体物的去除;臭氧对HAAFP的去除主要体现在对一氯乙酸(MCAA)、二氯乙酸(DCAA)和三氯乙酸(TCAA)的去除。滦河水经预臭氧化作用后,溴酸盐生成量较小,低于6μg/L。而预臭氧化后,甲醛含量有不同程度的增加,但是后续处理工艺对甲醛处理效果显著,出厂水中甲醛含量平均为33.7μg/L。预臭氧化后续处理单元能够进一步净化水质,整套处理工艺对于高温高藻水的处理效果能够达到国家相关标准。
     低温低浊期期内,预臭氧化生产性试验研究得到以下结论:预臭氧化对藻类、叶绿素a、UV_(254)和SUVA的去除率平均为34.45%、34.35%、38.21%和32.07%。预臭氧化对THMFP和HAAFP的去除率分别为30.95%和33.61%;臭氧对THMFP的去除主要体现在对三氯甲烷和一溴二氯甲烷前体物的去除;臭氧对HAAFP的去除主要体现在对DCAA和TCAA的去除。溴酸盐未检出。预臭氧化后甲醛含量有不同程度的增加,但是后续处理工艺对甲醛处理效果显著降低,出厂水中甲醛含量平均为70.12μg/L。后续处理单元进一步净化水质。整套处理工艺对于不同来源水源水具有一定的适应性,对低温低浊水的处理效果能够达到国家相关标准。
     通过比较研究生产性试验中预臭氧化和预氯化两种预氧化技术对天津市不同水质期水源水的处理效果发现:预臭氧化的优势主要体现在其对藻类、菌落总数、UV_(254)、SUVA、THMFP和HAAFP较强的去除效果。预臭氧化工艺能够有效改善出水水质,所需混凝剂和需氯量较低,能够降低氯消毒副产物前体物,且能够有效控制臭氧消毒副产物的生成。
     综合以上各生产性试验结果,可以看出,与传统预氯化工艺的对比,预臭氧化更有利于去除藻类、菌落总数、UV_(254)、SUVA、THMFP和HAAFP等污染物。整套处理工艺对天津市不同水质期以及不同来源水源水具有较强的适应性,出水水质达标,并能够降低出水中DBPs含量,同时臭氧消毒副产物得到有效控制。预臭氧化工艺处理天津市水源水是可行的,并且可以取得较好的处理效果。
The pre-chlorination process can effectively control pathogenicmicroorganisms and the cost was very low. Therefore, the pre-chlorination processwas widely used in water supply plants in the world. However, during thepre-chloriantion process, the natural organic matter(NOM) in raw water reacted withchlorine to form disinfection by-products(DBPs), of which trihalomethane(THMs)and haloacetic acids(HAAs) were considered carcinogenic. Therefore, newtechnology of pre-oxidation is required, to decrease DBPs and to keep the dringkingwater safe. Pre-ozonation process is a promising pre-oxidation process that are beingstudied.
     The source water in Tianjin was used in the lab-scale study. The effect ofpre-ozonation on DBPs was studied by changing the operational parameter; afull-scale study was also placed in a water supply plant in Tianjin. It was carried outduring different water quality periods and with different source waters. Theperformance of pre-ozonation on raw water was studied, and the effect ofpre-ozonation on DBPs was expecially estimated. The different effects between thepre-chlorination and pre-ozonation were investigated. It is significative to study theapplication of pre-ozonation in full-scale plant.
     The lab-scale research on pre-ozonation showed that the formation potential oftrihalomethanes (THMFP) and haloacetic acids(HAAFP) decreased by increasingthe ozone dosage, but the high concentration of ozone might lead to the formation ofbromate. When the reactiion time was low, THMFP and HAAFP increased by a lowlevel, while by extending the reaction time, THMFP and HAAFP were reduced.With a low reaction time, bromate was formed rapidly. When the raw water wasacidic, the concentration of THMFP and HAAFP got larger by increasing pH; whenalkaline, the result was opposite. There was a great formation of bromate when thewater was alkaline.
     As to the Luan River water in summer with high amounts of algae, the full-scale study showed that the removal rates of pre-ozonation on algae,Chlorophyll a, UV_(254)and SUVA were45.76%,44%,38.21%and32.07%,respectively. Ozone decomposed the high molecular weight(MW) organic mattersinto lower MW ones, such as organic matters with MW between3kDa and10kDaor between1kDa and3kDa. After pre-ozonation, about12.43%of THMFP and15.06%of HAAFP were reduced. The removal of THMFP was attributable to thereduction of the formation potential of Chloroform and Bromodichloromethane;while the removal of MCAA, DCAA and TCAA contributed to the decrease ofHAAFP. The concentration of bromate was below6μg/L. Formaldehyde wasformed to some extent, and then removed effectively by the follow-up processes. Inthe final effluent, the concentration of formaldehyde was33.7μg/L. The otherprocesses following pre-ozonation gave a further treatment and the final effluentshowed a good water quality, which suggested an excellent treatment of the waterwith high alage.
     With regard to water in winter with low temperature and low turbidity, thefull-scale study showed that the removal rates of pre-ozonation on algae,Chlorophyll a, UV_(254)and SUVA were34.45%,34.35%,38.21%and32.07%,respectively. After pre-ozonation, about30.95%of THMFP and33.61%of HAAFPwere reduced. The removal of THMFP was attributable to the reduction of theformation potential of Chloroform and Bromodichloromethane; while the removalof DCAA and TCAA contributed to the decrease of HAAFP. No bromate wasdetected from the effluent after pre-ozonation. Formaldehyde was formed to someextent, and then removed effectively by the follow-up processes, in the final effluent,the concentration was70.12μg/L. The other processes following pre-ozonation gavea further treatment, and the final effluent showed a good water quality, whichsuggested an excellent treatment of the water with low temperature and low turbidity.The performance of the processes also showed an excellent ability to treat differentsource waters.
     Comparing the effects of the two different pre-oxidation processes,pre-chlorination and pre-ozonation, to treat raw waters in different water qualityperiods, it showed the same results that pre-ozonation had a better effects to treat alage, colony, UV_(254), SUVA, THMFP and HAAFP. The treatment processes withpre-ozonation produced drinking water with better water quality. The pre-ozonationprocess may reduce the demand of coagulating agent and chlorine, remove theDBPFP and control the formation of by-products of ozonation.
     In conclusion, pre-ozonation had a better effects to treat alage, colony, UV_(254),SUVA, THMFP and HAAFP, compared to pre-chlorination. The processes appliedin the water supply plant with pre-ozonation had a good ability to treat raw waters indifferent water quality periods or from different water sources. The water quality offinal effluent met the drinking water standards. The DBPFP was reduced and theformation of by-products of ozonation was controlled effectively. The processeswith pre-ozonation had an excellent effect to treat the source waters in Tianjin.
引文
[1]余冉,吕锡武.富营养化水体中藻类和藻毒素处理研究.环境导报,2001,(4):14~16.
    [2] D.E. Lerda,C.H. Prosperi. Water mutagenicity and toxicology in rio tercero (cordoba,argentina). Water Research,1996,30(4):819~824.
    [3]张金松,黄红杉.美国臭氧化技术在给水处理中的应用.城镇供水,2001,(3):42~45.
    [4] R.J. Miltner, H.M. Shukairy,R.S. Summers. Disinfection by-product formation and controlby ozonation and biotreatment.JournalAmerican Water Works Association,1992,84(11):53~62.
    [5]贾瑞宝,王珂,王占生.含藻水库水中微囊藻毒素的预氧化处理技术研究.2001年中日水处理技术国际交流会,200I,2001.
    [6]赵志伟.天津地区饮用水处理工艺系统集成研究:[博士学位论文].黑龙江:哈尔滨工业大学,2007.
    [7]韩宏大,周玉文,黄廷林等.天津市水源水质特性分析与评价.西安建筑科技大学学报:自然科学版,2006,38(002):285~289.
    [8]郭伟锋.常规工艺处理天津滦河原水的优化试验研究:[硕士学位论文].陕西:西安建筑科技大学,2008.
    [9]李诚.水源水(滦河)各水质期预氧化技术研究:[硕士学位论文].安徽:合肥工业大学,2007.
    [10]王占生,刘文君.我国给水深度处理应用发展近况与存在问题.济南:全国深度处理研究会2004年年会,2004.
    [11] N.P. Thacker, P. Kaur,A. Rudra. Trihalomethane formation potential and concentrationchanges during water treatment at Mumbai (India). Environmental monitoring andassessment,2002,73(3):253~262.
    [12] J.J. Rook. Formation of haloforms during chlorination of natural waters. Acta Polytechnica,1974.
    [13]韩畅,刘绍刚,仇雁翎等.饮用水消毒副产物分析及相关研究进展.环境保护科学,2009,35(1):12~16.
    [14] J.W.A. Charrois, M.W. Arend, K.L. Froese, et al. Detecting N-nitrosamines in drinkingwater at nanogram per liter levels using ammonia positive chemical ionization.Environmental science&technology,2004,38(18):4835~4841.
    [15]苗婷婷.氯及臭氧消毒技术对城市污水水质的影响:[硕士学位论文].北京:北京林业大学,2008.
    [16] H. Arora, M.W. LeChevallier,K.L. Dixon. DBP: Occurence survey. Journal-AmericanWater Works Association,1997,89(6):60~68.
    [17] S.D. Richardson, M.J. Plewa, E.D. Wagner, et al. Occurrence, genotoxicity, andcarcinogenicity of regulated and emerging disinfection by-products in drinking water: areview and roadmap for research. Mutation Research/Reviews in Mutation Research,2007,636(1-3):178~242.
    [18] S. Monarca, M. Rizzoni, B. Gustavino, et al. Genotoxicity of surface water treated withdifferent disinfectants using in situ plant tests. Environmental and molecular mutagenesis,2003,41(5):353~359.
    [19] S.W. Krasner, H.S. Weinberg, S.D. Richardson, et al. Occurrence of a new generation ofdisinfection byproducts. Environmental science&technology,2006,40(23):7175~7185.
    [20] D.T. Williams, G.L. LeBel,F.M. Benoit. Disinfection by-products in Canadian drinkingwater. Chemosphere,1997,34(2):299~316.
    [21] C.M. Villanueva, M. Kogevinas,J.O. Grimalt. Haloacetic acids and trihalomethanes infinished drinking waters from heterogeneous sources. Water Research,2003,37(4):953~958.
    [22] J. Zhang, J. Yu, W. An, et al. Characterization of disinfection byproduct formation potentialin13source waters in China. Journal of Environmental Sciences,2011,23(2):183~188.
    [23]陈超,张晓健,何文杰等.常规工艺中消毒副产物季节变化研究.给水排水,2006,32(7):15~19.
    [24]周鸿,张晓健,王占生.水中内分泌干扰物在我国的研究进展.中国给水排水,2002,18(9):26~28.
    [25]E.E. Hargesheimer,S.B. Watson. Drinking water treatment options for taste and odor control.Water research,1996,30(6):1423~1430.
    [26] M. Sagehashi, K. Shiraishi, H. Fujita, et al. Ozone decomposition of2-methylisoborneol(MIB) in adsorption phase on high silica zeolites with preventing bromate formation.Water Research,2005,39(13):2926~2934.
    [27] R.P. Galapate, A.U. Baes,M. Okada. Transformation of dissolved organic matter duringozonation: effects on trihalomethane formation potential. Water Research,2001,35(9):2201~2206.
    [28] J.M. Symons, T.A. Bellar, J.K. Carswell, et al. National organics reconnaissance survey forhalogenated organics. Journal American Water Works Association,1975,67(11):634~647.
    [29] H. Pourmoghaddas,A.A. Stevens. Relationship between trihalomethanes and haloaceticacids with total organic halogen during chlorination. Water Research,1995,29(9):2059~2062.
    [30] C.R. Richardson. Protective case for touch screen device,2003, Google Patents.
    [31] CJ Nokes, E. Fenton,CJ Randall. Modelling the formation of brominated trihalomethanes inchlorinated drinking waters. Water Research,1999,33(17):3557~3568.
    [32] C.T. Huang, C.J. Workman, D. Flies, et al. Role of LAG-3in regulatory T cells. Immunity,2004,21(4):503~513.
    [33] R.R. Trussell,M.D. Umphres. The Formation of Trihalomethanes. American Water WorksAssociation Journal,1978,70(11):604~12.
    [34] C.J. Peters, R.J. Young,R. Perry. Factors influencing the formation of haloforms in thechlorination of humic materials.Environmental science&technology,1980,14(11):1391~1395.
    [35] N. Ates, S.S. Kaplan, E. Sahinkaya, et al. Occurrence of disinfection by-products in lowDOC surface waters in Turkey. Journal of hazardous materials,2007,142(1):526~534.
    [36] Z. Guo, M. Yang, Y. Zhang, et al. Preozonation of bromide-bearing source water in southChina. Journal of Environmental Sciences,2006,18(2):209~213.
    [37] J. Kim. Fate of THMs and HAAs in low TOC surface water. Environmental research,2009,109(2):158~165.
    [38] D.M. White, D.S. Garland, J. Narr, et al. Natural organic matter and DBP formationpotential in Alaskan water supplies. Water Research,2003,37(4):939~947.
    [39] D.L. Norwood, J.D. Johnson, R.F. Christman, et al. Reactions of chlorine with selectedaromatic models of aquatic humic material. Environmental science&technology,1980,14(2):187~190.
    [40] J.J. Rook. Haloforms in drinking water. Journal American Water Works Association,1976,68(3):168~172.
    [41] J.J. Rook. Chlorination reactions of fulvic acids in natural waters. Environmental science&technology,1977,11(5):478~482.
    [42] S.D. Boyce,J.F. Hornig. Reaction pathways of trihalomethane formation from thehalogenation of dihydroxyaromatic model compounds for humic acid. Environmentalscience&technology,1983,17(4):202~211.
    [43] J.V. Hanna, W.D. Johnson, R.A. Quezada, et al. Characterization of aqueous humicsubstances before and after chlorination. Environmental science&technology,1991,25(6):1160~1164.
    [44] International Agency for Research on Cancer Working Group on the Evaluation ofCarcinogenic Risks to Humans,World Health Organization, IARC Monographs on theEvaluation of Carcinogenic Risks to Humans: Some Organic Solvents, Resin Monomersand Related Compounds, Pigments and Occupational Exposures in Paint Manufacture andPainting1989: IARC.
    [45]赵玉丽,李杏放.饮用水消毒副产物:化学特征与毒性.环境化学,2011,30(1):20~33.
    [46] IARC Working Group. Re-evaluation of some organic chemicals, hydrazine and hydrogenperoxide. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans,1999,71:433~451.
    [47]唐明德.饮水氯化消毒副产物与肿瘤.癌变.畸变.突变,2000,12(3):185~190.
    [48] B. Tokmak, G. Capar, F.B. Dilek, et al. Trihalomethanes and associated potential cancerrisks in the water supply in Ankara, Turkey. Environmental research,2004,96(3):345~352.
    [49] M.J. Plewa, Y. Kargalioglu, D. Vankerk, et al. Mammalian cell cytotoxicity andgenotoxicity analysis of drinking water disinfection by‐products. Environmental andmolecular mutagenesis,2002,40(2):134~142.
    [50] J. Fawell,M.J. Nieuwenhuijsen. Contaminants in drinking water. British medical bulletin,2003,68(1):199~208.
    [51]张晓健,李爽.消毒副产物总致癌风险的首要指标参数——卤乙酸.给水排水,2000,26(8):1~6.
    [52] U.S. Environmental Protection Agency, National primary drinking water regulations:disinfectants and disinfectionbyproducts; final rule. Fed. Reg,1998,63:69390–69476.
    [53]郭士权.饮用水中氯消毒副产物的形成与去除.重庆建筑工程学院学报,1994,16(3):92~96.
    [54] D. Urfer, U. Von Cunten, P. Revelly, et al. Utilisation de l'ozone pour le traitement des eauxpotables en Suisse.3e partie.: étude de cas spécifiques. GWA. Gas, Wasser, Abwasser,2001,81(1):29~41.
    [55] J. Hoigne,H. Bader. Identification and kinetic properties of the oxidizing decompositionproducts of ozone in water and its impact on water purification. Symposium on OzoneTechnology,1976.
    [56] C.W. Labatiuk, M. Belosevic,G.R. Finch. Inactivation of Giardia muris using ozone andozone-hydrogen peroxide. Ozone: Science&Engineering: The Journal of the InternationalOzone Association,1994,16(1):67~78.
    [57] E. Dahl. Physicochemical aspects of disinfection of water by means of ultrasound andozone. Water Research,1976,10(8):677~684.
    [58]K. Bancroft, P. Chrostowski, RL Wright, et al. Ozonation and oxidation competition values::Relationship to disinfection and microorganisms regrowth. Water Research,1984,18(4):473~478.
    [59] U. Von Gunten. Ozonation of drinking water: Part I. Oxidation kinetics and productformation. Water Research,2003,37(7):1443~1467.
    [60] P.C. Singer. Control of disinfection by-products in drinking water. Journal of environmentalengineering,1994,120(4):727~744.
    [61] U. Von Gunten. Ozonation of drinking water: Part II. Disinfection and by-productformation in presence of bromide, iodide or chlorine. Water Research,2003,37(7):1469~1487.
    [62] E. Nieminski,D. Evans. Pilot testing of trace metals removal with ozone at Snowbird SkiResort. Ozone: science&engineering,1995,17(3):297~309.
    [63] M. Yang, K. Uesugi,H. Myoga. Study on by-products of ozonation during ammoniaremoval under the existence of bromide: Factors affecting formation and removal of theby-products. Ozone: Science&Engineering: The Journal of the International OzoneAssociation,2000,22(1):23~29.
    [64] MM Bourbigot. L'ozonation dans la production d'eau potable. Eau Ind. Nuis,1983,72:33~37.
    [65] M. Dore. Les critères de choix d'un oxydant. Journal fran ais d’hydrologie,1990,21(1):9~30.
    [66] P.C. Chrostowski, A.M. Dietrich,I.H. Suffet. Ozone and oxygen induced oxidative couplingof aqueous phenolics. Water Research,1983,17(11):1627~1633.
    [67] M.R. Farvardin,A.G. Collins. Preozonation as an aid in the coagulation of humicsubstances--Optimum preozonation dose. Water Research,1989,23(3):307~316.
    [68] M. Prados, H. Paillard,P. Roche. Hydroxyl radical oxidation processes for the removal oftriazine from natural water. Ozone: Science&Engineering: The Journal of the InternationalOzone Association,1995,17(2):183~194.
    [69] V. Camel,A. Bermond. The use of ozone and associated oxidation processes in drinkingwater treatment. Water research,1998,32(11):3208~3222.
    [70] L.J. Anderson, J.D. Johnson,RF Christman. Extent of ozone's reaction with isolated aquaticfulvic acid. Environmental science&technology,1986,20(7):739~742.
    [71] R.G. Rice. The use of ozone to control trihalomethanes in drinking water treatment.Ozone: science&engineering,1979,1(4):75~99.
    [72] F. Xiong, J.P. Croue,B. Legube. Long-term ozone consumption by aquatic fulvic acidsacting as precursors of radical chain reactions. Environmental science&technology,1992,26(5):1059~1064.
    [73] T. Li, X. Yan, D. Wang, et al. Impact of preozonation on the performance of coagulatedflocs. Chemosphere,2009,75(2):187~192.
    [74] J. Li, L. Zou, L. Guo, et al. Pilot study on bromate reduction in ozonation of water with lowcarbonate alkalinities by carbon dioxide. Journal of Environmental Sciences,2011,23(9):1491~1496.
    [75] B. DuRon, RG Rice,A. Netzer. Ozone generation with ultraviolet radiation. Handbook ofOzone Technology and Applications, Ann Arbor, MI: Ann Arbor Science Publishers, Inc,1982.
    [76] A. Masschelein, A. Kirsch-De Mesmaeker, C.J. Willsher, et al. Photophysics of RuIIcomplexes with1,4,5,8-tetraazaphenanthrene, incorporated into sephadex SP C-25. J.Chem. Soc., Faraday Trans.,1991,87(2):259~267.
    [77] C. Gottschalk, J.A. Libra,A. Saupe, Ozonation of water and waste water. Vol.189.2000:Wiley Online Library.
    [78] J. Staehelin,J. Hoigne. Decomposition of ozone in water in the presence of organic solutesacting as promoters and inhibitors of radical chain reactions. Environmental science&technology,1985,19(12):1206~1213.
    [79] L. Meunier, S. Canonica,U. Von Gunten. Implications of sequential use of UV and ozonefor drinking water quality. Water Research,2006,40(9):1864~1876.
    [80]郑祖庆.美国十大臭氧处理水厂概况(上).城市公用事业,1996,10(4):23~26.
    [81]左金龙,崔福义,赵志伟等.国内外臭氧活性炭工艺在饮用水处理中的应用实例.中国给水排水,2006,22(10):68~72.
    [82] W.H. Kim, W. Nishijima, E. Shoto, et al. Pilot plant study on ozonation and biologicalactivated carbon process for drinking water treatment. Water Science and Technology,1997,35(8):21~28.
    [83]周云.周家渡水厂臭氧活性炭组合工艺的运行.给水排水,2006,32(5):19~22.
    [84]黄年龙,廖凤京.深圳梅林水厂臭氧活性炭深度处理工艺设计.给水排水,2003,29(9):13~16.
    [85] G.L. Amy, L. Tan,M.K. Davis. The effects of ozonation and activated carbon adsorption ontrihalomethane speciation. Water Research,1991,25(2):191~202.
    [86] A. Teksoy, U. Alkan,H.S. Ba kaya. Influence of the treatment process combinations on theformation of THM species in water. Separation and Purification Technology,2008,61(3):447~454.
    [87] C. Guay, M. Rodriguez,J. Serodes. Using ozonation and chloramination to reduce theformation of trihalomethanes and haloacetic acids in drinking water. Desalination,2005,176(1):229~240.
    [88] G. Hua,D.A. Reckhow. Comparison of disinfection byproduct formation from chlorine andalternative disinfectants. Water Research,2007,41(8):1667~1678.
    [89] M.S. Siddiqui, G.L. Amy,B.D. Murphy. Ozone enhanced removal of natural organic matterfrom drinking water sources. Water Research,1997,31(12):3098~3106.
    [90] D.A. Reckhow,P.C. Singer. The removal of organic halide precursors by preozonation andalum coagulation. Journal-American Water Works Association,1984,76(4):151~157.
    [91] W. Glaze, H. Weinberg, H.S. Weinberg, et al. Identification and occurrence of ozonationby-products in drinking water1993: The Foundation and American Water WorksAssociation.
    [92] H.W. Prengle Jr. Experimental rate constants and reactor considerations for the destructionof micropollutants and trihalomethane precursors by ozone with ultraviolet radiation.Environmental science&technology,1983,17(12):743~747.
    [93] J. Hoigné,H. Bader. The formation of trichloronitromethane (chloropicrin) and chloroformin a combined ozonation/chlorination treatment of drinking water. Water Research,1988,22(3):313~319.
    [94] A.H. Havelaar, AE De Hollander, PF Teunis, et al. Balancing the risks and benefits ofdrinking water disinfection: disability adjusted life-years on the scale. EnvironmentalHealth Perspectives,2000,108(4):315.
    [95] W.H. Glaze, M. Koga, D. CANCILIA, et al. Evaluation of ozonation by-products from twoCalifornia surface waters. Journal-American Water Works Association,1989,81(8):66~73.
    [96] S.D. Richardson, A.D. Thruston Jr, T.V. Caughran, et al. Identification of new ozonedisinfection byproducts in drinking water. Environmental science&technology,1999,33(19):3368~3377.
    [97] JY Hu, ZS Wang, WJ Ng, et al. The effect of water treatment processes on the biologicalstability of potable water. Water Research,1999,33(11):2587~2592.
    [98] J.C. Kruithof,W.J. Masschelein. State-of-the-art of the application of ozonation inBENELUX drinking water treatment. Ozone: Science&Engineering: The Journal of theInternational Ozone Association,1999,21(2):139~152.
    [99] A. Boehme. Ozone technology of German industrial enterprises. Ozone: Science&Engineering: The Journal of the International Ozone Association,1999,21(2):163~176.
    [100]U. Von Gunten,J. Hoigné. Factors controlling the formation of bromate during ozonation ofbromide-containing waters. AQUA.,1992,41(5):299~304.
    [101]W.H. Glaze, H.S. Weinberg,J.E. Cavanagh. Evaluating the formation of brominated DBPsduring ozonation. Journal-American Water Works Association,1993,85(1):96~103.
    [102]J. Nawrocki,S. Bilozor. Brominated oxidation by-products in drinking water treatment.Aqua,1997,46(6):304~323.
    [103]S.D. Richardson, A.D. Thruston Jr, T.V. Caughran, et al. Identification of new drinkingwater disinfection byproducts formed in the presence of bromide. Environmental science&technology,1999,33(19):3378~3383.
    [104]W.R. Haag,J. Hoigne. Ozonation of bromide-containing waters: kinetics of formation ofhypobromous acid and bromate. Environmental science&technology,1983,17(5):261~267.
    [105]USEPA. National primary drinking water regulations:final rule. Federal Register,1989,54:27485~27541.
    [106]EU. Official Journal of the European CommunityL330. Directive98/83/EG,1998.
    [107]WHO. Guidelines for drinking water quality,2ed. Geneva: World Health Organisation,1996.
    [108]U. Pinkernell,U. von Gunten. Bromate minimization during ozonation: Mechanisticconsiderations. Environmental Science&Technology,2001,35(12):2525~2531.
    [109]J. P. Croue, B. K. Koudijonou,B. Legube. Parameters affecting the formation of bromateion during ozonation. Ozone Science and Engineering,1996,18(1):1~18.
    [110]P. Westerhoff, R. Song, G. Amy, et al. Numerical kinetic models for bromide oxidation tobromine and bromate. Water Research,1998,32(5):1687~1699.
    [111]G. Amy, C. Douville, B. Daw, et al. Bromate formation under ozonation conditions toinactivate Cryptosporidium. Water Science and Technology,2000,41(7):61~66.
    [112]H. Bader,J. Hoigne. Determination of ozone in water by the indigo method. Water Research,1981,15(4):449~456.
    [113]鲁金凤,张涛,马军等.羟基氧化铁催化臭氧氧化对滤后水THMs生成势的控制作用.环境科学,2006,27(5):935~940.
    [114]张涛,鲁金凤,马军等.羟基氧化铁催化臭氧氧化对滤后水卤乙酸生成势的影响.环境科学,2006,27(8):1580~1585.
    [115]C.N. Chang, C.F. Hsu, A.C. Chao, et al. Characteristics of the disinfection by-products(DBPs) and process control techniques of the disinfection process using preozonation andpost-chlorination. Water supply,1995,13(3/4):95~100.
    [116]韩帮军.臭氧催化氧化除污染特性及其生产应用研究:[博士学位论文].黑龙江:哈尔滨工业大学,2007.
    [117]M.S. Siddiqui,G.L. Amy. Factors affecting DBP formation during ozone-bromide reactions.Journal-American Water Works Association,1993,85(1):63~72.
    [118]查人光,徐兵.低浊度控制与饮用水安全浅议.给水排水,2005,31(1):11~14.
    [119]董文艺,张红亮,黄廷林等.微污染源水的预臭氧化研究.中国给水排水,2003,19(012):48~50.
    [120]袁波祥,陈莎.臭氧化技术在饮用水处理中的应用.北方交通大学学报,2001,25(006):54~56.
    [121]M.R. Jekel. Flocculation effects of ozone.Ozone: Science&Engineering: The Journal ofthe International Ozone Association,1994,16(1):55~66.
    [122]付乐,陶涛,曹国栋等.饮用水预臭氧化与预氯化对比中试研究.辽宁化工,2007,35(12):718~721.
    [123]N.J.D. Graham, V.E. Wardlaw, R. Perry, et al. The significance of algae as trihalomethaneprecursors. Water Science and Technology,1998,37(2):83~89.
    [124]S. Goel, R.M. Hozalski,E.J. Bouwer. Biodegradation of NOM: effect of NOM source andozone dose: Natural organic matter. Journal-American Water Works Association,1995,87(1):90~105.
    [125]J.D. Plummer,J.K. Edzwald. Effect of ozone on disinfection by-product formation of algae.Water Science and Technology,1998,37(2):49~55.
    [126]赵志伟,崔福义,刘广奇等.高藻期滦河水处理工艺流程对比试验研究.河海大学学报(自然科学版),2007,35(2):145~148.
    [127]刘嵩,朱昊頔.臭氧预氧化的除藻效果及机理探讨.山西建筑,2010,36(27):171~172.
    [128]赵亮,李星,杨艳玲.臭氧预氧化技术在给水处理中的研究进展.供水技术,2009,3(4):6~10.
    [129]梁恒,李圭白,李星等.不同水处理工艺流程对除藻效果的影响.中国给水排水,2005,21(3):5~7.
    [130]J.K. Edzwald. Effects of chlorine and ozone on algal cell properties and removal of algaeby coagulation. Journal of Water Supply Research and Technology AQUA,2002,51(6):307~318.
    [131]顾春英,薛广波,居喜娟.臭氧在消毒中的应用研究进展.上海预防医学,1998,10(8):344~347.
    [132]何静芳,葛忆琳,马伟.高浓度臭氧水性能的实验观察.上海预防医学,1999,11(11):523~525.
    [133]吴晓军,俞英洁.臭氧在生活饮用水处理工程上的应用.水处理技术,1997,23(5):288~290.
    [134]汪饶饶,尚光伟,胡林凤等.臭氧对4种细菌的灭活作用.上海口腔医学,2008,17(1):92~95.
    [135]刘骞,骆承庠,孔保华等.臭氧杀菌在食品工业中应用的广阔前景.肉类工业,2006,(1):26~29.
    [136]神力就子,石崎紘三,佐藤祥子等. Degradation of nucleic acids with ozone. VI.Labilization of the double-helical structure of calf thymus deoxyribonucleic acid.Chemical&pharmaceutical bulletin,1984,32(9):3636~3640.
    [137]C.K. Kim, D.M. Gentile,O.J. Sproul. Mechanism of ozone inactivation of bacteriophage f2.Applied and environmental microbiology,1980,39(1):210~218.
    [138]D. Roy, PK Wong, RS Engelbrecht, et al. Mechanism of enteroviral inactivation by ozone.Applied and environmental microbiology,1981,41(3):718~723.
    [139]陈伟,徐兴忠.臭氧及其联合氧化工艺在饮用水处理中的应用.城市管理与科技,1999,1(3):39~41.
    [140]葛自良.臭氧的灭菌作用及其应用.自然杂志,1999,21(1):12~14.
    [141]P. Servais, P. Laurent, G. Billen, et al. Development of a model of BDOC and bacterialbiomass fluctuations in distribution systems. Revue des Sciences de l'Eau,1995,8(4):427~462.
    [142]P.M. Huck. Measurement of biodegradable organic matter and bacterial growth potential indrinking water. Journal-American Water Works Association,1990,82(7):78~86.
    [143]朱建文,张珍,沃静静等.预臭氧化+混凝沉淀+炭砂滤池组合工艺处理饮用水的研究.浙江大学学报:理学版,2008,35(6):653~658.
    [144]金鹏康,王晓昌.水中腐植酸的臭氧化特性研究.西安建筑科技大学学报:自然科学版,2000,32(4):334~337.
    [145]R. Lamsal, M.E. Walsh,G.A. Gagnon. Comparison of advanced oxidation processes for theremoval of natural organic matter. Water research,2011,45:3263~3269.
    [146]N. Cao, T. Miao, K. Li, et al. Formation potentials of typical disinfection byproducts andchanges of genotoxicity for chlorinated tertiary effluent pretreated by ozone. Journal ofEnvironmental Sciences,2009,21(4):409~413.
    [147]梁远,魏群山,王东升等.滦河水体溶解性有机物的综合分级表征及其混凝去除过程.环境工程学报,2008,1(11):17~22.
    [148]尹宇鹏,陆少鸣,禹娜.给水工艺对不同分子质量有机物的去除规律研究.工业水处理,2008,28(10):27~29.
    [149]陈诚,章诗芳,董玉莲等.臭氧工艺对水中有机物分布影响情况研究.广州化工,2007,34(6):29~31.
    [150]王付林.天津市饮用水预氧化技术研究:[硕士学位论文].陕西:西安建筑科技大学,2004.
    [151]张晓健,朱玲侠,陈超等.组合工艺控制有机物及消毒副产物前体物的特性研究.给水排水,2005,31(5):27~31.
    [152]黎雷,高乃云,张可佳等.饮用水臭氧生物活性炭净化效果与传统工艺比较.同济大学学报:自然科学版,2010,38(9):1309~1313.
    [153]刘海龙,王东升,王瑞军.饮用水臭氧应用安全性研究.给水排水,2010,36(9):138~142.
    [154]A.C. Diehl, G.E. Speitel Jr, J.M. Symons, et al. DBP formation during chloramination.Journal American Water Works Association,2000,92(6):76~90.
    [155]D.A. Reckhow, B. Legube,P.C. Singer. The ozonation of organic halide precursors: effectof bicarbonate. Water Research,1986,20(8):987~998.
    [156]胡翔,李进,皮运正等.臭氧氧化产物甲醛的产生机理研究.环境科学学报,2007,27(4):643~647.
    [157]石宇.强化混凝技术处理低温低浊水试验研究:[硕士学位论文].黑龙江:哈尔滨工业大学,2006.
    [158]李宗喜,王晓昌,金鹏康.北方某市夏季高藻水化学预氧化试验研究.华北水利水电学院学报,2008,29(4):88~90.
    [159]周鸿,陈超,张晓健.某市常规水处理工艺对消毒副产物前体物的去除.环境与健康杂志,2006,23(5):433~435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700