脱氢酶活性测定水中活体藻含量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来大量工业废水和生活污水的排入,加速了湖泊水库的富营养化进程,其后果是在气候适宜时导致藻类的大量繁殖代谢。由于藻类致臭、密度低、沉淀效果差,给以湖泊水库为水源的饮用水生产带来诸多危害;同时,藻类还产生毒素,对人类的饮水健康构成了严重威胁,因此,研究解决富营养化水源给水处理技术,特别是藻类的去除,直接关系到人们饮水安全健康,成为亟待解决的问题。衡量藻类去除效果的定量检测方法是杀藻除藻研究的必须条件,简便高效的检测方法将有助于该项研究的普及和深入。目前,常用的藻类检测方法如平板计数法、叶绿素a法等步骤繁琐、检测结果不稳定,误差较大。由于这两种方法本身特有的局限性,广泛适用于各种杀藻除藻技术处理后的水样比较困难,尤其是不能定量测定杀藻处理后活体藻的含量。因此,需要有一种更加快速、稳定、实用的测定水中活体藻类含量的方法。为解决这一问题,本文研究探讨了利用检测藻类脱氢酶活性来间接测定活体藻类含量的方法。
     脱氢酶是一类蛋白质,能够激活某些特殊的氢原子,使这些氢原子被适当的受氢体转移而将原来的物质氧化。在氧化过程中,脱氢酶是作用在代谢物上的第一个酶,为生物体提供必不可少的能量和还原当量。生物体的脱氢酶活性(DHA)在很大程度上反映了生物体的活性状态,能直接表示生物细胞对其基质降解能力的强弱。因此,脱氢酶活性检测被广泛应用于污水生化处理、细菌菌落总数检验、水质毒性检验、土壤污染评价等研究与应用领域。
     脱氢酶活性可以通过加入人工受氢体TTC(2,3,5-Triphenyltetrazoliumchloride,2,3,5-氯化三苯基四氮唑)的办法进行检测,其最重要的优点是在反应期间使颜色增加和生物学条件下的不可逆性:当微生物细胞内有生物氧化(即脱氢反应)时,TTC便接受氢原子而被还原成红色的TF(Triphenyl Formazane,三苯甲(月朁)),通过红色的TF生成速度来确定脱氢酶活性。
     本文提出了通过测定藻细胞脱氢酶活性,测定含藻水样中活体藻的含量的方法。选择使用TTC作为显色剂。通过波长扫描确定了TF的最大吸收波长为487nm。研究了藻类不同pH值环境、发色培养温度、发色培养时间、TTC浓度对藻类脱氢酶酶促反应的影响,确定使用0.8%的TTC溶液,在pH值8.4的环境中,于32±1℃水浴中暗处发色培养1h为最佳反应条件。
     为了使脱氢酶的酶促反应快速终止,保证反应速率计算的准确性,比较了几种终止剂甲醛、乙醇、丙酮、浓硫酸对藻类脱氢酶的灭活效果,实验结果表明,甲醛的效果最好,而且不会像浓硫酸那样使藻类和滤膜变色,影响比色分析。所以,研究选择甲醛为终止剂,加入量为1mL。
     为了将藻细胞脱氢酶酶促反应中生成的TF萃取出来,克服藻细胞叶绿素的干扰,研究了多种单组份、双组份萃取剂对叶绿素、酶促反应生成的TF的萃取能力,确定以4mL丙酮与5mL石油醚的混合溶剂做萃取剂。
     脱氢酶活性需要通过酶促反应生成TF的速度来表征,因此需要使用TF标准曲线来定量。制作标准曲线需要使用还原剂将TTC还原为TF。研究中比较了制作标准曲线时两种还原剂硫化钠和连二亚硫酸钠的稳定性与还原反应速度,发现硫化钠做还原剂生成的TF较稳定。同时筛选比较了硫化钠浓度、还原反应时间对TTC还原反应的影响。确定最佳实验条件为1mL 8%硫化钠溶液作还原剂,还原反应时间5分钟。
     依据上述各反应条件研究结果确定藻类脱氢酶活性的最佳检测条件为:在三(羟甲基)氨基甲烷盐酸盐(Tris-HC1)缓冲溶液、pH=8.4的反应环境中,加入1mL0.8%的TTC溶液,水浴温度32±1℃、发色培养1h,使用双组分萃取剂——4mL丙酮和5mL石油醚的混合溶剂进行萃取。
     本研究将TTC-脱氢酶活性检测法应用于水体中活体藻类含量的检测之中,水样取10~1000mL,其最低检出浓度为0.004μg TF/mL·h,最佳测定范围为0.014~6.00μg TF/mL·h,在此范围内检测结果有较好的线性关系,回归系数为0.9999。
     本方法应用于实际水样的活体藻含量测定,测定结果与水样体积线性正相关,相关系数为0.9873;检测从某植物园映日湖、植物园喷泉、山大南区喷泉、植物园内小河四个不同地点取回的水样,在实验室培养0、15、30、45天后,其脱氢酶活性测定结果与叶绿素a法测定结果进行比较,两者线性正相关,相关系数分别为0.9369、0.9728、0.9855、0.9325。
     本方法应用于杀藻处理后的藻类的检测。当藻类细胞没有发生溶裂,细胞形态没有被破坏时,计数法无法辨别藻体死活;而叶绿素a法在叶绿素还未氧化变色或颜色变化不明显时,无法定量测定活体藻含量,显示杀藻、抑藻效果。本方法克服了上述两方法的缺陷,较好地反应出杀藻剂使用前后活体藻脱氢酶活性的变化,尤其对于那些氧化能力适中、能够抑制藻类活性又不使其细胞内物质溶出造成水体二次污染的化学药剂的杀藻实验研究,其灵敏性优于叶绿素a法。
     本文从酶作用动力学的角度,对本研究涉及的藻类脱氢酶酶促反应进行了研究探讨,对pH、温度对酶促反应的影响等实验结果进行了酶促反应动力学分析,实验结果基本符合理论解释,为本研究的结果打下了一定的理论基础。
     总之,本文将脱氢酶活性检测基本原理应用于淡水中活体藻类含量的测定,并系统研究了该方法的发色培养时间、培养温度、终止剂、萃取剂等反应操作条件。与现有的脱氢酶活性检测、淡水藻类含量测定方法相比,本方法具有下列优点:
     (1)通常的脱氢酶活性检测均使用单组分有机溶剂做萃取剂。本文研究确定使用双组分萃取剂,克服了单组分萃取剂易受藻细胞叶绿素干扰的缺点,提高了对藻细胞内脱氢酶促反应生成的TF的萃取效果。
     (2)克服了计数法在形态上无法辨别藻体死活、叶绿素a法在叶绿素未变色或变色不明显时无法准确定量测定活体藻含量的缺点,可以更准确定量测定活体藻类含量,解决了一些物理、化学或生物方法杀藻后,水中活体藻含量定量测定的问题。
A large input of nitrogen and phosphorus compounds from municipal and industrial wastes as well as from agriculture promotes development of algae blooms which are the most common indicators of eutrophication in lakes and reservoirs.The excessive growths of algae,especially in some drinking water sources,have caused many problems,such as uncomfortable taste and odour,filters clogging,and algal toxins,which threaten the human health.Therefore,the study of algicides and algae removal has received more attention in recent decades. However,the routine detection methods for algae in fresh water,such as cell number counting and determination of chlorophyll a,have relatively large determining errors,and furthermore,make it difficult or impossible to compare the amount changes of living algae before and after algae control,so that it is hard to assess the effectiveness of algae control technologies.In order to solve this problem,the dehydorgenase activity(DHA) of living algae was researched to determine the amount of living algae in fresh water.
     Dehydrogenase is a kind of protein,which can activate some special hydrogen atoms to be transferred by some appropriate hydrogen accepters to oxidate the initial substance.During the oxidation,the dehydrogenase is the first enzyme acting on the metabolizing substances,producing necessary energy and reducing equivalent for Organism.The dehydrogenase activity(DHA) of organism can reflect the activated condition of microbes and the capacity of degrading their substrates.Therefore,DHA detection is widely used in detecting activated sludge, total number of bacterial colony,water toxicity,and soil pollution.
     DHA can be detected by using an artificial hydrogen acceptor,TTC (2,3,5-Triphenyl tetrazoliumchloride),which changes from colorless to red triphenyl formazane(TF) when it accepts hydrogen atoms in dehydrogenation. This is an indirect method.Its most important advantage is that the color of TF, which darkens during reaction,is irreversible under such biological conditions. Thus DHA can be observed by the amount of TF produced.
     This study proposed a method to determine the amount of living algae in fresh water by measuring the algal DHA.TTC was selected to be the hydrogen acceptor. The max wave length of absorption of TF is 487nm,measured through wave length scanning.The conditions effecting on the enzyme-catalyzed reaction were studied, such as pH,incubating temperature and duration,and the concentration of TTC. The optimized conditions were decided as follows:using 0.8%of TTC,and incubating in pH 8.4 at 32±1℃of water bath in dark for 1 hour.
     In order to insure the accuracy of calculation of reaction velocity,the terminating reagents were used to end the dehydrogenation in algal cells.Several terminating reagents were compared on their restraining effect of algal dehydrogenase,such as formaldehyde,ethanol,acetone and sulfuric acid(98%). The results showed that formaldehyde did not change the color of algae and filter membrane to interfere the colorimetry as sulfuric acid did,and performed a better effect of ending the reaction.Therefore,1 mL of formaldehyde was added to be the terminating reagent.
     In order to extract TF from algal cells and overcome the interference of chlorophyll,several different extractants were compared with the capacities of extracting chlorophyll and TF.Then a mixed solvent of 4mL acetone and 5mL petroleum ether was decided to be the extractant.
     In order to present DHA by the amount of TF,the calibration curve of TF was prepared,when reducing reagent was needed to reduce TTC to TF.Sodium sulfide and sodium hyposulphite were compared on their stability and reacting speed, finding that TF reduced by sodium sulfide was more stable than sodium hyposulphite.Meanwhile,some conditions impacting the reduction of TTC were studied such as the concentration of sodium sulfide and the reduction duration.The optimized conditions were 1 mL of sodium sulfide solution as a reducer,whose concentration was 8%,and the reduction duration was 5 minutes.
     According to the above research results of conditions,the detecting conditions of algal DHA were as follows:pH 8.4 of buffer solution of tris(hydroxymethyl) aminomethane hydrochloride,0.8%of TTC,32±1℃of water bath,incubating for 1 hour,then extracted by a mixed solvent of 4mL acetone and 5mL petroleum ether.
     This method was used in determining the amount of living algae in fresh water bodies.Its lowest detectable concentration is 0.004μg TF/mL·h when the water sample is 10~1000mL,and its best measuring range is 0.014~6.00μg TF/mL·h with a significant linearity relation and a correlation coefficient of 0.9999.
     This method was applied in determining the amount of living algae in water samples.The results had a positive linearity relation with the volumes of water sample,whose correlation coefficient is 0.9873.Four water samples were collected from four places.Their DHA and chlorophyll a were measured respectively after 0, 15,30 and 45 days of culturing in laboratory.Comparing the determining results of DHA and chlorophyll a of each sample,the positive linearity relations were observed with their correlation coefficients of 0.9369,0.9728,0.9855 and 0.9325.
     This method was used in determining the living algae after algicide treatment. The cell number counting can not tell if the algae cells are alive or dead when the algae cells are not dissolved and broken and their shape has not changed.And the method of chlorophyll a can not determine quantificationally the amount of living algae when the chlorophyll in algae cells has not been oxidated or the color has not changed obviously.This method overcomes the above disadvantages,and presents well the change of algal DHA before and after algicide treatment.It is more sensitive than the method of chlorophyll a in this respect.
     From the point of view of dynamics of enzymic function,the dehydrogenase-catalyzed reaction in algal cells was studied.The impact of pH,and temperature on the reaction were analyzed,using the theory of dynamics of enzyme-catalyzed reaction,and found out that the experimental results basicly followed the theory.This made a theoretical base for this study.
     Above all,this study proposed a method to determine the amount of living algae in fresh water by DHA,applying the theory of DHA detection.Its reacting and operating conditions were studied,such as pH,incubating temperature and duration,extractants,and so on.Compared with the existing methods of DHA detection and determination of algae in fresh water,this study has the following advantages:
     (1) The single-component solvents were normally used as the extractant in some relevant studies.In this study,a two-component solvent,a mixture of acetone and petroleum ether were decided to be the extractant,to overcome the interference of chlorophyll in algal cells and increase the extracting efficiency of TF.
     (2) This method overcomes the disadvantage of cell number counting and chlorophyll a,which can not determine the living algae amount while the cell number counting can not tell if the algae cells are alive or dead from their shapes, and the chlorophyll has not changed color or the color has not changed obviously. It can quantificafionally determine the amount of living algae,and resolve the problem of quantificational determination of living algae in fresh water after some physical,chemical or biological techniques are used to kill or remove the algae.
引文
[1]Pitois S,Jackson M H,Wood B J B.Sources of the eutrophication problems associated with toxic algae:An overview.Journal of Environmental Health,2001,64(5):25-32.
    [2]孟玉珍,张丁.黄河中下游水源水淡水藻类污染状况研究.中华新医学,2003,4(5):389-391.
    [3]吴静,王玉鹏,蒋颂辉等.某市供水藻类污染及其毒性研究.中国环境科学,2001,21(2):137-139.
    [4]王欣伊,阚振荣,王梅梅.淡水藻类产毒研究进展.生物学杂志,2005,22(2):5-9.
    [5]Duytn et al.Toxicology and risk assessment of freshwater cyanobacterial (blue-green algae)toxins in water.Rev Environ Contam Toxicol,2000,163:113-186.
    [6]Gilroy D J,Kauffman K W,Hall R A et al.Assessing potential health risks from microcystin toxins in blue-algae green dietary supplements.Environ Health Perspect,2000,108(5):435-439.
    [7]Hitzfeldbc et al.Cyanobacterial toxins:remove during drinking water treatment,and human risk assessment.Environ Health Perspect,2000,108:113-122.
    [8]Svrcek C,Smith D W.Cyanobacteda toxins and the current state of knowledge on water treatment options:a review.Journal of Environmental Engineering and Science,2004,3(3):155-185.
    [9]Frederic E,Konstanze M,Jean-louis W.Risk of cyanobacterial toxins in Riga waters.Wat.Res,2000,34(11):2979-2988.
    [10]Falconer I R.An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water.Environmental Toxicology,1999,14(1):5-12.
    [11]Kunimitsu K.Chemistry and toxicology of cyclic heptapeptide toxins.The Microcystins from Cyanobacteria.Microbiol.Cult.Coll.1994,10:5-33.
    [12]Carmichael W W,Azevedo S M F O,An J et al.Human fatalities from cyanobacteria:chemical and biological evidence for cyanotoxins.Environ.Health Perspect,2001,109(7):663-668.
    [13]Jochimsen E M,Carmichael,W W,An J et al.Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil.N.Engl.J.Med.1998,338(13):873-878.
    [14]Codd G.A.Cyanobacterial toxins,the perception of water quality,and the prioritization of cutrophication control.Ecol.Eng.2000,16(1):51-60.
    [15]Gupta S.Cyanobacteria toxins:microcystin-LR.Guidelines for drinking-water quality.Addenda of Section Edition.Geneva:WHO,1999:95-110.
    [16]陈美.淡水藻类毒素的种类、生物学习性及其检测方法.安徽农业科学,2002,30(5):821-82.
    [17]Plammer J D.Effect of ozone on disinfection by-product formation of algae.Water Sci.Tech.,1998,37(2):49-55.
    [18]Rechnow D,Mary V.Formation of disinfection by-products during chlorination of secondary effluent and renoted water.Water Envir.Res.,1997,69(6):1154-1162.
    [19]Nikolaou A D,Kostopoulou M N,Lekkas T D.Organic by-products of drinking water chlorination.Global Nest,1999,1(3):143-156.
    [20]Chen C,Zhang X-J,He W-J et al.Simultaneous control of microorganisms and disinfection by-products by sequential chlorination.Biomedical and Environmental Sciences,2007,2:119-125.
    [21]田宝珍,曲久辉,雷鹏举.饮用水水源的化学灭藻.环境化学,2001,20(1):65-69.
    [22]王士芬.湖泊水库藻类的去除方法.污染防治技术,2000,13(1):23-25.
    [23]袁永锋.池塘微囊藻水华防控技术探讨.河北渔业,2006,154(10):10-13.
    [24]孙大朋,张祖陆,梁春玲.水源富营养化及藻类控制技术.能源与环境,2006,3:31-33.
    [25]刘霞,杜桂森.藻类植物与水体富营养化控制.首都师范大学学报(自然科学版),2002,23(4):56-60.
    [26]彭海清,谭章荣,高乃云等.给水处理中藻类的去除.中国给水排水,2002,18(2):29-31.
    [27]蒋道松,刘其城,章俭等.除藻技术新进展.常德师范学院学报(自然科学版),2000,12(1):25-31.
    [28]裴海燕,胡文容,丁国际等.二氧化氯杀藻特性研究.山东大学学报(工学版),2004,34(5):104-108.
    [29]邓金花,吴清平,阙绍辉.二氧化氯对小球藻杀灭效果的试验观察.中国消毒学杂志,2005,22(3):282-283.
    [30]裴海燕,胡文容.臭氧杀藻特性试验研究.工业水处理,2003,23(9):55-57.
    [31]胡文容,刘培启,裴海燕.O_3和ClO_2杀藻作用特征与机理分析.科学通报,2003,48(5):429-434.
    [32]侯翠荣,贾瑞宝,胡文容.高锰酸钾强化混凝工艺对受污染地表原水中藻类和藻毒素的去除效能研究.国外建材科技,2006,27(3):27-29.
    [33]Drabkova M,Matthijs H C P,Admiraal W et al.Selective effects of H_2O_2 on cyanobacterial photosynthesis.Photosynthetica,2007,45(3):363-369.
    [34]Ma J,Liu W.Effectiveness and mechanism of potassium ferrate(Ⅵ)preoxidation for algae removal by coagulation.Water Research,2002,36:871-878.
    [35]刘卫华,季民,杨洁等.高藻水预氧化除藻效能与水质安全性分析.中国公共卫生,2005,21(11):1323-1325.
    [36]Haughey M A,Anderson M A,Whitney R D et al.Forms and fate of Cu in a source drinking water reservoir following CuSO_4 treatment.Water Research,2000,34(13):3440-3452.
    [37]Roussel H,Ten-Hage L,Joachim S et al.A long-term copper exposure on freshwater ecosystem using lotic mesocosms:Primary producer community responses.Aquatic Toxicology,2007,81:168-182.
    [38]de Oliveira-Filho E C,Lopes R M,Paumgartten F J R.Comparative study on the susceptibility of freshwater species to copper-based pesticides.Chemosphere,2004 56:369-374.
    [39]Murray-Guide C L,Heatley J E,Schwartzman A L et al.Algicidal effectiveness of clearigate,cutrine-plus,and copper sulfate and margins of safety associated with their use.Arch.Environ.Contam.Toxicol,2002,43:19-27.
    [40]Wekrh I M,Barrett P R F.Barley straw as an inhibitor of algal growth Ⅰ:laboratory studies.Japp Phycol,1990,2:231-239.
    [41]Gibson M C,Welth I M.Barley straw as an inhibitor of algal growth Ⅱ:laboratory studies.Japp Phycol,1990,2:241-248.
    [42]Everall N C,Lee D R.The use of barley-straw to control general and blue-green algal growth in a derbyshire reservoir.Wat.Res.1996,30(2):269-276.
    [43]Ferrier M D,Butler Sr.B R,Terlizzi D E et al.The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae.Bioresource Technology,2005,96:1788-1795.
    [44]Grover J P,Bakera J W,Urena-Boeckb F.Laboratory tests of ammonium and barley straw extract as agents to suppress abundance of the harmful alga Prymnesium parvum and its toxicity to fish.Water Research,2007,41:2503-2512.
    [45]Lam A K Y,Prepas E,Spink D et al.Chemical control of hepetoxic phytoplankton blooms:implication for human health.Wat.Res.,1995,28(8):1845-1854.
    [46]Zhang Y,Prepas E E.Short-term effect of Ca(OH)_2 additions on phytoplankton biomass:a comparison of laboratory and in situ experiment.Wat.Res,1996,30(5):1285-1294
    [47]Emmanuel E,Keck G.,Blanchard J-M et al.Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater.Environment International,2004,30:891-900.
    [48]况琪军,夏宜,吴紫元.一种新型消毒剂的杀藻研究.重庆环境科学,2001,23(3):42-44.
    [49]吴为中,王占生.不同生物接触氧化法对藻类去除效果的比较及其途径分析.环境科学学报,2001,21(3):277-281.
    [50]张勇,席宇,吴刚.溶藻细菌杀藻物质的研究进展.微生物学通报,2004,31(1):127-131.
    [51]赵以军,刘永定.有害藻类及其微生物防治的基础——藻菌关系的研究动态.水生生物学报,1996,20(2):173-181.
    [52]Lee S O,Kato J,Takiguchi N et al.Involvement of an Extracellular Protease in Algicidal Activity of the Marine Bacterium Pseudoalteromonas sp.Strain A28.Appl Environ Microbiol,2000,66(10):4334-4339.
    [53]Dakhama A,Noue J D,Lavoie M C.Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa.Journal of Applied Phycology,1993,5:297-306.
    [54]Imamura N,Motoike I,Shimada N et al.An efficient screening approach for anti-microcystis compounds based on knowledge of aquatic microbial ecosystem.The Journal of Antibiotics,2001,54(7):582-587.
    [55]周群英,王士芬,吴星五.微电解杀藻研究.上海环境科学,1998,17(1):28-29.
    [56]梁文艳,曲久辉,谌丽斌.脉冲变频电磁场对水中藻类的抑制及去除效能.环境科学,2004,25(4):38-42.
    [57]Baker J S,J udd S J.Magneticamelioration of scale formation.Water Research,1996,30(2):247-260
    [58]Pothakamury U R.,Barbosa Canovas G V,Wanson B G..Magnetic field inactivation of microorganisms and generation of biological changes.Food Technology,1993,12:5-93.
    [59]水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002,649-671.
    [60]刘培启,胡文容,李力.水源水除藻研究中藻类监测方法的选用.环境监测管理与技术,2002,14(3):29-30.
    [61]蔡小宁,陈舒泛,陈莉.5种杀真菌剂对小球藻生长的影响.现代农药,2004,3(1):24-27.
    [62]戴荣继,黄春,佟斌等.藻类叶绿素及其降解产物的测定方法.中央民族大学学报(自然科学版),2004,13(1):75-80.
    [63]Miguel Rodriguez Jr,Charlene A.Sanders,Elias Greenbaum.Biosensors for rapid monitoring of primary-source drinking water using naturally occurring photosynthesis.Biosensors and Bioelectronics,2002,17:843-849.
    [64]Eullaffroy P,Vernet G..The F684/F735 chlorophyll fluorescence ratio:a potential tool for rapid detection and determination of herbicide phytotoxicity in algae.Water Research,2003,37:1983-1990.
    [65]王家玲.环境微生物学.北京:高等教育出版社,2004.
    [66]Rittman B E and McCarty P L.环境生物技术:原理与应用.北京:清华大学出版社,2004.
    [67]陈翔.脱氢酶在环境监测中的应用概况.解放军预防医学杂志,1997,15(6):459-462.
    [68]安立超,钮虹,曾桁等.测定活性污泥脱氢酶活性的研究.污染防治技术,1996,9(3):186-188.
    [69]尹军,付瑶等.活性污泥的基质代谢脱氢酶活性测定.国外环境科学技术,1994,74(1):30-34.
    [70]尹军.消化污泥脱氢酶活性检测的若干问题.中国给水排水,2000,16(10):47-49.
    [71]尹军,刘韬,宋显东.污泥好氧消化处理的若干问题探讨.中国给水排水,2001,17(8):23-25.
    [72]朱南文,闵航,陈美慈等.TTC-脱氢酶测定方法的探讨.中国沼气,1996,14(2):3-5.
    [73]尹军,周春生.TTC-脱氢酶活性检测方法的研究.环境科学学报,1996,16(4):400-405.
    [74]胡子斌.TTC-脱氢酶活性常温萃取测定法.工业水处理,2001,21(10):29-31.
    [75]尹军,周春生.TTC-脱氢酶活性常温萃取测定法及应用.中国给水排水,1995,11(4):16-19.
    [76]周春生,韩相奎.剩余活性污泥好气消化中TTC-DHA与其它活性参数的相关性.环境科学,1991,12(1):2-7.
    [77]尹军,付瑶,荐志远等.TTC-脱氢酶活性测定仪的研制.吉林建筑工程学院学报,2003,20(2):1-4.
    [78]洪梅.脱氢酶活性检测技术在污水处理厂的应用研究.石油化工环境保护,2001,4:30-33.
    [79]牛志卿,刘建荣,吴国庆.TTC-脱氢酶活性测定方法的改进.微生物学通报,1994,21(4):59-61.
    [80]阿满泰.TTC还原快速测定肉新鲜度的试验探讨.草食家禽,1999,3:48.
    [81]田利香,都基丽.TTC应用于化妆品细菌总数检验.环境与健康杂志,1990,7(6):276-277.
    [82]叶秀文,段卫平,韩秀媛.TTC在测定化妆品细菌总数中的应用.环境与健康杂志,1992,9(4):182-183.
    [83]李奇英,张华.应用TTC显色测定食品中菌落总数.食品工业科技,1998.4:74-75.
    [84]秦彦珉,饶健,黄惠英.纸巾细菌总数检测加入氯化三苯四氮唑(TTC)方法的探讨.实用预防医学,2003,10(6):868-869.
    [85]艾玉琴,王作洲,张丽萍等.刃天青快速检验乳粉中总菌数的研究.黑龙江八一农垦大学学报,1993,7(2):96-99.
    [86]陈翔,陈奇洲,张林.野外水质快速评价方法的研究.中国公共卫生,1999,15(1):51-52.
    [87]王立世,张宝贵,陈叙龙等.基于细菌脱氢酶活性的水质综合毒性快速测定仪.南开大学学报(自然科学),1998,31:99-104.
    [88]王立世,莫金垣,冯建兴.水质毒性快速测定仪的研制.分析仪器,1998,4:1-5.
    [89]张林,孙咏梅,林春竹等.细菌脱氢酶生物试验法检测野外水质毒性的探索.解放军预防医学杂志,1997,15(6):423-424.
    [90]张林,孙咏梅,林春竹.生物监测方法在野外水质毒性检验中的应用展望.解放军预防医学杂志,1999,16(3):232-235.
    [91]Obbard J P.Ecotoxicological assessment of heavy metals in sewage sludge amended soils.Applied Geochemistry,2001,16:1405-1411.
    [92]Thalmann A.A procedure for the determination of dehydrogenase activity in the soil by means of triphenyltetrazolium chloride(TTC).Landwirt Forsch.1968,21:249-258.
    [93]Ellis R J,Neish B,Trett M W et al.Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination.Journal of Microbiological Methods,2001,45:171-185.
    [94] Megharaj M, Singleton I, McClure N C. Effect of pentachlorophenol pollution towards microalgae and microbial activities in soil from a former timber processing faciliity. Environmental Contamination & Toxicology,1998,61:108-115.
    [95] Casida J L, Klein D, Santoro T. Soil dehydrogenase activity. Soil Sci, 1964,98: 371-376.
    [96] Megharaja M, Kantachote D, Singleton I et al. Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environmental Pollution, 2000, 109:35-42.
    [97] Baran S, Bielinska J E, Oleszczuk, P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 2004, 118(2):221-232.
    [98] Tam N F Y. Effects of wastewater discharge on microbial populations and enzyme activities in mangrove soils. Environmental Pollution, 1998, 102:233-242.
    [99] Garcia-Gil J C, Plaza C, Soler-Rovira P et al. Long-Term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology & Biochemistry, 2000,32: 1907-1913.
    [100] Langer U, Gunther T. Effects of alkaline dust deposits from phosphate fertilizer production on microbial biomass and enzyme activities in grassland soils. Environmental Pollution, 2001,112: 321-327.
    [101] Mersi von W, Schinner F. An improved and accurate method for determining the dehydrogenase activity of soils with iodoni-trotetrazolium chloride. Biol.Fertil. Soils, 1991,11: 216-220.
    [102] Aoyama M, Nagumo T. Factors affecting microbial biomass and dehydrogenase activity in apple orchard soils with heavy metal accumulation. Soil Science and Plant Nutrition, 1995,42: 821-831.
    [103] Brohona B, Gourdon R. Influence of soil microbial activity level on the determination of contaminated soil toxicity using lumistox and metplate bioassays. Soil Biology & Biochemistry, 2000, 32: 853-857.
    [104] Benereld C B, Howard P J A, Howard D M. The Estimation of dehydrogenase activity in soil. Soil Biology and Biochemistry, 1977, 9:67-70.
    [105]Trevors J T,Mayreld C I,Inniss W E.Measurement of electron transport system(ETS) activity in soil.Microbial Ecology,1982,8:163-168.
    [106]Trasar-Cepeda C,Leiros M C,Seoane S et al.Limitations of soil enzymes as indicators of soil pollution.Soil Biology & Biochemistry,2000,32:1867-1875.
    [107]Lai K M,Ye D Y,Wong J W C.Enzyme activities in a sandy soil amended with sewage sludge and coal fly ash.Water.Air and Soil Pollution,1999,113(1-4):261-272.
    [108]Lee I S,Kim O K,Chang Y Y et al.Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range.Journal of Bioscience and Bioengineering,2002,94(5):406-411.
    [109]Stuczynski T I,McCarty G W,Siebielec G.Response of soil microbiological activities to cadmium,lead,and zinc salt amendments.Journal of Environmental Quality,2003,32(4):1346-1355.
    [110]Megharaj M,Boul H L,Thiele J H.Effects of DDT and its metabolites on soil algae and enzymatic activity.Biol Fertil Soils,1999,29:130-134
    [111]Sojka R E,Entry JA.Influence of polyacrylamide application to soil on movement of microorganisms in runo.Water,Environmental Pollution,2000,108:405-412.
    [112]Klapwijk A et al.A modified procedure for the TTC-dehydrogenase test in activated sludge.Wat Res,1974,8(2):121-125.
    [113]http://www.chemblink.com/products/298-96-4C.htm.
    [114]http://baike.baidu.com/view/292855.htm.
    [115]http://www.chemblink.com/products/62758-13-8C.htm.
    [116]http://www.chemblink.com/products/146-68-9C.htm.
    [117]尹军,谭学军,张立国等.测定脱氢酶活性的萃取剂选择.中国给水排水,2004,20(7):96-98.
    [118]Bringman G,Kuhn R.Comparison of the toxicity thresholds of water pollutants to bacteria,algae,and protozoon in the cell multiplication inhabition test.Wat Res,1980,14:231.
    [119]武汉大学.分析化学.北京:高等教育出版社,1986,453-495.
    [120]何忠效.生物化学实验技术.北京:化学工业出版社,2004。
    [121]王建龙,文湘华.现代环境生物技术.北京:清华大学出版社,2001.
    [122]张维凡.常用化学危险物品安全手册(第一卷).北京:中国医药科技出版社,1992.
    [123]刘德辉.化学危险品最新实用手册.北京:中国物资出版社,1995.
    [124]陈同来.生物化学产品制备技术(2),北京:科学技术文献出版社,2003.
    [125]中国环境监测总站.环境水质监测质量保证手册(第二版).北京:化学工业出版社,1994.
    [126]刘春光,金相灿,孙凌等.城市小型人工湖围隔中生源要素和藻类的时空分布.环境科学学报,2004,24(6):1039-1045.
    [127]袁勤生.现代酶学.上海:华东理工大学出版社,2001.
    [128]吉尔鲍特.酶法分析.北京:科学出版社,1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700