给水处理工艺的系统集成与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水源水质污染的不断加剧和供水水质标准的进一步提高,对供水工艺的要求也逐渐提高。因此,在满足出水水质约束的条件下,水处理工艺的集成优化成为该领域研究的重要课题。
     水源水质的变化对给水处理工艺的选择提出了客观要求。本文以北方地区典型代表城市——天津市的地表水源为主要研究对象,对其给水处理工艺及技术开展了较为系统的研究。主要研究成果和结论如下:
     采用Kmeans聚类分析方法对天津市滦河水源和黄河水源水质进行水质分期,把滦河水源划分为3个水质期(低温低浊期、常温常浊期、高温高藻期),黄河水源共划分为2个水质期(低污染期和高污染期);并给出了各个水质期的日期界线、水质界线,以及主要的区分指标,为水厂处理工艺的优化调度提供依据。
     通过烧杯搅拌试验,确定了适合天津高藻水源的混凝沉淀单元最优运行控制参数:混合转速n=200转/min或Gt=11280~12000;一级反应转速n_1=80转/min;二级反应转速n_2=40转/min;投药量m=8mg/L,沉淀时间t=20min。考虑经济因素,因子重要性排序为:m>G_2>G>t>G_1。滤池级配优化的中试试验结果表明:煤砂双层滤池2中下部滤层的截污能力较大,水头增长速度较慢(3.5cm/h);考虑出水水质和产水能力,煤砂双层滤池2为适合天津水源的较优级配。
     针对斜管沉淀池的布水不均匀性问题,首次提出了不均匀系数(k)的概念,并分析了不同结构参数对k的影响情况:当L/B大于4时,k急剧增加,且布水区的高度不宜小于1.3m。考虑水流对下滑絮团的影响,定性和定量分析了布水不均匀性对临界沉速u_0的影响:随着L/B的增加,u_0逐渐增大,当L/B大于6时(q=10m/h),下滑絮团所受的合力(F_(合))下降为0;适宜的布水区高度h_1为1.2~1.6m。考虑絮体沉降,斜管管径越大,沉淀池平均临界沉速也越大,对絮凝效果的要求也就越高;从絮团下滑的角度考虑,不同表面负荷下存在斜管管径的最小要求:当q=15m/h时,min(d)=18mm;当q=30m/h时,min(d)=65mm。同时,一定管径下也对应有最大的表面负荷,当管径d=35mm时,最大表面负荷不能超过27m/h。
     针对划分的4个水质期(试验期间无滦河低温期),建立了各水质期内给水处理工艺的神经网络(ANN)模型,精确预测常规工艺和深度处理系统的处理效率和出水水质。常规工艺ANN模型的浊度相关系数均大于0.85,COD_(Mn)的相关系数均大于0.89;黄河高污染期需要增加深度处理单元来提高出水水质,且COD_(Mn)的相关系数基本大于0.80。ANN模型预测的相关系数均远大于临界相关系数(R_(0.01)),说明了该模型的模拟精确性和预测稳定性。
     在原水水质变化的情况下根据所建立的ANN模型,利用遗传算法高效搜索功能确定了预设目标下(制水成本最低)的较优运行控制参数。结果表明,对于滦河高藻水源,优化参数结构下强化常规工艺出水COD_(Mn)≤3.0mg/L,出水浊度较非优化运行条件降低0.10~0.16NTU,制水成本降低0.017~0.049元/m~3;混凝剂HPAC(High-efficiency Poly-Aluminium Chloride)效果好于FeCl_3,较优预氧化剂为PPC(高锰酸盐复合药剂)、KMnO_4或O_3。对于有机物较高的黄河高污染期,选择工艺为“混凝-气浮-过滤-O_3-BAC”,且FeCl_3效果略好于HPAC,PPC预氧化措施较为经济。
     利用所建立的层次分析模型,从经济、管理因素和技术指标等多方面,确定了适合天津水源条件的较优组合工艺,为水处理系统的调度提供依据。对于天津滦河水源和黄河水源的低污染期,较优的常规或强化常规工艺排序为:“混凝(HPAC)-絮凝-气浮-过滤”>“PPC预氧化-混凝(HPAC)-絮凝-气浮-过滤”>“PAC预处理-混凝(FeCl_3)-絮凝-气浮-过滤”。在黄河高污染期或原水水质进一步恶化时,较优的深度处理工艺排序为:“混凝(FeCl_3)-絮凝-气浮-过滤-GAC”>“PPC预氧化-混凝(FeCl_3)-絮凝-气浮-过滤-GAC”>“混凝(FeCl_3)-絮凝-气浮-过滤-O_3-BAC”。从进一步提高饮用水安全性考虑,需要增加深度处理单元,且较优的处理工艺为“混凝-絮凝-气浮-过滤-O_3-BAC”。
     目前,该研究的优选工艺:“预处理-混合絮凝-气浮-过滤(-消毒)”已经在示范工程中投入运行,其部分运行控制参数和结构变量为本研究成果。
Along with more and more serious contamination of raw water and the advance of drinking water quality standards, the demand of treatment processes is becoming more and more stringent. And so, with the constraints of water quality, the integration and optimization of drinking water treatment processes is an important problem in water-supply field.
     It is necessary to select the optimal treatment process because of the change of raw water quality. Tianjin raw water could represent raw water characters of North-China. In this article, some studies have been finished based on Tianjin raw water, and the main results and conclusions are as follows.
     Clustering Analysis is introduced to divide Tianjin raw water into different periods for the first time. The results show that Luanhe raw water was divided into 3 periods(including low-temperature raw water, natural raw water, high algae raw water), and Huanghe raw water into 2 periods(including mildly contaminated raw water and badly contaminated raw water). At the same time, characters of each period (level) were analyzed and explained, which provide the theory basis of the optimization of water treatment processes.
     Based on laboratory-scale jar test, the optimal running parameters of coagulation-sediment units were obtained. The results include: rotation velocity of coagulation n=200rpm, or Gt=11280~12000; rotation velocity of the first and second flocculation units n_1=80rpm and n_2=40rpm; coagulant dose m=8mg/L, settling time t=20min. For economic consideration, the priority-order is m>G_2>G>t>G_1. From a pilot trial of filter bed grading, it is shown that the anthracite-sand filter has slower increase of head loss(3.5cm/h), and it is the optimal filter bed grading of Tianjin raw water.
     Non-uniformity coefficient (k) of water distribution of Inclined-tube Settling Tank has been put forward and the influences of configuration parameters on k have been discussed as well. The results show that: k will increase sharply when L/B>4 and the height of water distribution area (h_1) should not be lower than 1.3m. The influences of k on sedimentation efficiency (Critical Settling Velocity, CSV) have also been studied. The results show that: CSV increases with L/B; under the conditions of q=10 and L/B≥6, the total force on the sliding flocs(F_(total)) is nearly equal to zero; the feasible height of water distribution area (h_1) is in range of 1.2~1.6m; the mean CSV increases with inclined tube diameter (d), which need the enhancement of coagulation effect. For the down-sliding flocs, different surface load(q) will need different minimum diameters(d). That is, q=15m/h, min(d)=18mm; q=30m/h, min(d)=65mm. Meanwhile, certain diameter will determine the corresponding maximal loads (q). For example, when J=35mm, the maximal surface load should be 27m/h.
     According to the four periods of raw water quality(without Luanhe low temperature section during the experiment), Artificial Neural Network (ANN) models of water treatment processes in each period have been set up to predict the effects and water quality of the conventional systems and advanced systems for process evaluation. For ANN models of conventional system, the correlation coefficient of turbidity is bigger than 0.85 and the coefficient of CODMn is bigger than 0.89. As Huanghe raw water is badly contaminated, advanced treatment is needed to improve the treated water quality, and the correlation coefficient of CODMn is bigger than 0.80. The simulated coefficients of ANN are much bigger than the critical coeffient (R_(0.1)), which indicates the simulation accuracy and prediction stability.
     Based on the changing raw water, Genetic Algorithms (GA) has been first combined with the ANN models to select the optimal running parameters of water treatment processes. The results show that, with high algae-laden raw water of Luanhe river, CODMn of treated water with optimal running parameters are not bigger than 3.0mg/L; comparing with non-optimal parameters, turbidity is reduced by 0.10~0.16NTU and cost of water product is reduced by 0.017~0.049Yuan/m~3; HPAC (High-efficiency Poly-Aluminium Chloride) is the optimal coagulant and PPC, KMnO_4 or O_3 is the optimal pre-oxidant. With badly contaminated raw water of Huanghe river, the optimal process is "Coagulation-DAF-Filter-O_3-BAC"; FeCl_3 is better than HPAC and PPC is the optimal pre-oxidant.
     Based on the Analytical Hierarchy Process (AHP), the optimal treatment processes are selected from the aspects of economy, management and technology. For Luanhe raw water and lightly contaminated Huanghe raw water, the order of optimal conventional treatment processes is: "Coagulation (HPAC) + Flocculation + DAF + Filter"> "Pre-oxidation (PPC) + Coagulation (HPAC) + Flocculation + DAF + Filter"> "Pre-adsorption (PAC) + Coagulation (FeCl_3) + Flocculation + DAF + Filter". With the badly contaminated Huanghe raw water or worse raw water quality, the order of optimal advanced treatment processes is: "Coagulation Flocculation + DAF + Filter + GAC"> "Pre-oxidation (PPC) + Coagulation (FeCl_3) + Flocculation + DAF + Filter + GAC"> "Coagulation (FeCl_3) + Flocculation + DAF + Filter + O3-BAC". For the enhancement of safe drinking water, it is necessary to select advanced treatment, and the optimal process is "Coagulation + Flocculation+ DAF + Filter + O_3-BAC".
     At present, the selected optimal treatment process, "Pre-oxidation +Coagulation +Flocculation +DAF +Filter + Disinfect", has been applied to a water plant in Tianjin. The running parameters and some configuration parameters are discussed in this article.
引文
[1] 杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略.给水排水.2001,27(1):94~101
    [2] 翁焕新.城市水资源控制与管理[M].杭州:浙江大学出版社,1998
    [3] 国家环保总局.2002中国环境状况公报.2003,:3~7
    [4] 王连生.环境化学进展.化学工业出版社,1995,:18~20
    [5] 金鹏康,王晓昌.天然有机物的混凝特性研究。西安建筑科技大学学报.2000,32(2):155~159
    [6] 连民,刘颖,俞顺章等.氮、磷、铁、锌对铜绿微囊藻生长及产毒的影响.上海环境科学.2001,20(4):166~170
    [7] 彭海清等.给水处理中藻类的去除.中国给水排水.2002,18(2):29~31
    [8] Rehan Sadiq, Manuel J. Rodriguez. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment. 2004,321:21~46
    [9] 魏宏斌.氧化法去除水中有机物的研究与应用现状[J].中国给水排水,1996,22(5):19~22
    [10] 张淑琪,王占生等.臭氧氧化自来水生物稳定性研究.环境科学.1998,19(5):34~36
    [11] 张金松等.饮用水与臭氧化技术的应用进展.给水排水.2002,28(4):7~9
    [12] 马军,李圭白,李晓东.高锰酸盐除微污染效能-GC/MS分析[J].中国给水排水,1999,15(5):13-16
    [13] 马军,刘伟,刘惠.高铁酸盐复合药剂除污染效能研究[J].给水排水,1998,24(2):21-25
    [14] 陈忠林,范杰,马军等.高锰酸钾和粉末活性炭联用去除和控制受污染饮用水源中的致突变物质[J].1998,中国给水排水,14(4):1-5
    [15] 姜成春,马军,李圭白.高锰酸钾强化粉末活性炭吸附效能研究[J].哈尔滨建筑大学学报,2000,33(6):40-44
    [16] 葛旭,陆坤明.组合工艺流程处理微污染源水研究[J].中国给水排水,2000,16(9):1~4
    [17] 钟淳昌,戚盛豪.给水处理技术的现状与发展[J].香港水工业会议论文集,1999
    [18] 崔福义,石明岩,赵天慧.给水处理系统高效经济运行研究之一[J].哈尔滨建筑大学学报,1999,32(6):5-8
    [19] Zhang Hongwei, Tan Xin, CHEN Cunfang. Resarch on Optimal Operation of Water-Production System[J]. Transactions of Tianjin University, 1999, 5 (2): 215-218
    [20] 田一梅,张宏伟,齐庚中等.水处理系统运行状态数学模拟的研究.中国给水排水,1998,14(4):10-13
    [21] 王大志,柳秉洁.混凝剂最优投加量数学模型[J].中国给水排水,1988,4(4):16-20
    [22] 白桦,李圭白.基于神经网络的混凝投药系统预测模型[J].中国给水排水,2002,18(6):46~7
    [23] Mohamed F. H. Integrated wastewater treatment plant performance evaluation using artificial neural netwoks[J].Wat.Sci.Tech., 1999, 40 (7): 55-65
    [24] [40] M.Krofta. An attempt to understand dissolved air flotation using multivariate data analysis[J]. Wat.Sci. Tech, 1995, 31: 191~201
    [25] 汪光焘,肖绍雍,宋仁元.城市供水行业2000年技术进步发展规划[M].北京:中国建筑工业出版社,1993
    [26] 丁士晟.多元分析方法及其应用[M].长春:吉林人民出版社,1981
    [27] 王学仁,王松桂.实用多元统计分析[M].上海:上海人民出版社,1990
    [28] 胡秉民.聚类分析在生态区划中的应用.自然资源,1984(4)59-61
    [29] 张饶庭,方开泰.多元统计分析引论[M].北京:科学出版社,1982
    [30] 王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999
    [31] Schneider O.D., Nickols D and Lehan E.R. Dissolved air flotation and pllyaluminum chloride-an effective, economical combination[J]. Proceedings of Water Research for the New Decade,Snnual Confrerence American Water Works Association, 1991, (23-27): 367~383
    [32] 金伟,李怀正,范瑾初.粉末活性炭吸附技术应用的关键问题[J].给水排水,2001,27(10):11-12
    [33] 马军,李圭白,王福珍.用粉末活性炭去除水中酚类污染物[J].中国给水排水,1994,10(2),22-25
    [34] 黄廷林,熊向陨.微污染源水中DBPs先质的去除方法[J].中国给水排水,1999,15(11):27-28
    [35] Robert C Cheng, et al. Enhanced Coagulation:a Preliminary Evaluation[J], AWWA, 1995:91-103
    [36] Gil Grozes, et al. Enhanced Coagulation:Its Effect on NOM Removal and Cbemicaral Costs[J]. JAW-WA, 1995:78~89
    [37] Keith E Dennett, et al. Coagulation:Its Effect on Organic Matter [J] AWWA, 1996 (5): 29-142
    [38] Stuart W Krasner. Jar test Evaluations of Enhanced Coagulation [J], AWWA, 1995, (10): 93-107
    [39] Philip C S et al. Control of disinfection by-products in drinking water [J]. Joural Enviromental Engineering, 1994,120:51
    [40] 徐景翼.当前供水及水处理面临的问题和对策的探讨[J].2000年中国水协科技委含藻水处理研讨会,2000
    [41] Kranis Panagiotis, Schoenen Dirk and Seitz H.M. Distribution and removal of giardia and cryptosporidium in water supplies in Germany. Water Sience and Technology, 1998,37(2):9-18
    [42] Sun Liang, Richards Yates, Dean V Davis, Salvador J Pastor, Leslie S Paleneia, Jeanne-Maire Bruno. Treatability of MTBE-contaminated Groundwater By Ozone And Peroxone. Journal AWWA. 2001,6: 110~120
    [43] Juan L. Acero, Stefan B. Haderlein, Torsten C. Schmidt, Marc J.-E Surer, Urs Von Gunten. MTBE Oxidation By Convential Ozonation And The Combination Ozone/Hydrogen Peroxide: Efficiency Of The Processes And Bromate Formation. Environment Science & Technology. 2001, 35:4252~4259
    [44] Ventresque C., Bablon G., Jadas-Hecart A. Ozone: A Means of Sitmulating Biological Activated Carbon Reactors. Ozone Science & Engineering. 1990, 13:91~107
    [45] Woo Hang Kim. et al. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment. Wat. Sci. Tech.. 1997,35(8):21~28
    [46] Victoria Stavridou,Integration in software intensive systems[J],Journal of Systems and Software,1999,48(2): 91-104.
    [47] 钱宇,李秀喜,程华农,江燕斌.化工过程运行系统的集成.化工学报,2003,54(4):557~563
    [48] Venkatasubramanian V, Stanley G M. Integration of Process Monitoring, Diagnosis and Control. Procl FOCAPO'93. Colorado, 1993
    [49] Lin Weilu, Qian Yu, Li Xiuxi, Zheng Xiuyu. Study of Contemporary Integrated Process Operation System. Control and Inst ruments in Chemical Industry,2000,27: (1), 1~3
    [50] Cheng Huanong, Qian Yu, Li Xiuxi, et al. Agent-oriented Approach for Integrated Modeling of Process Systems. Journal of Chemical Indusry and Engineering (China), 2003,54 (1): 128~130
    [51] GOODCHILD MF. Integratng GIS and environmental modeling at global scales [A].GIS/L IS'91 Proceedings[C], 1991:1172127
    [52] 吴秋风.对系统集成的一些认识[J].工业控制计算机,1998(5):14-16
    [53] 郑无疾,张建军,朱山风.分布式对象在软件系统集成中的应用[J].计算机应用,1998,19(8): 25-28
    [54] 惠建新,叶桦,孙长银,等.基于B/S的楼宇管理系统集成技术[J].三峡大学学报(自然科学版),2001,23(5):413-416
    [55] 张佐.系统集成的概念、方法与实践[J].测控技术,1999,18(9):326
    [56] 钱宇,李秀喜,程华农等.化工过程运行系统的集成.化工学报,2003,54(4):557~563
    [57] 曾文,徐世文.地理信息系统中的常规网络分析功能及相关算法[J].地球科学,1998,23(4):355~356
    [58] Watanabe S, Baba K, Yoda M, et al. Intelligent operation support system for activated sludge process. Water Science & Technology, 1993, 28(11~12): 325~332
    [59] Ladiges G, Kayser R. Online and offline expert systems for the operation of wastewater treatment plants. Water Science & Technology, 1993, 28(11~12): 315~323
    [60] Stimson K R. Activated sludge control adviser. Water Science & Technology, 1993, 28(12): 295~302
    [61] Nam S W, Myung N J, Lee K S. Online integrated control system for an industrial activated sludge process. Water Environment Research, 1996, 68(1): 70~75
    [62] Chong H G, W alley W J. Rule based versus probabilistic approaches to the diagnosis of faults in wastewater treatment processes. Artificial Intelligence in Engineering, 1996, 10(3): 265~273
    [63] 江智军,童立君,何小斌.基于专家系统的水厂自动投药系统的研究.南昌大学学报(工科版),2004,26(3):51~54
    [64] Van der Kooij. Assimilable organic carbon as an indicator of bacterial regrowth. J. AWWA., 1992, 84(2): 57-65
    [65] Van der Kooij. Biological stability: a multidimensional quality aspect of treated water. Water, Air and Soil Pollution, 2000, 123:25-34
    [66] Lechevllier M.W., Coliform Regrowth in Drinking Water: A Review, J.AWWA, 1990, 82(11):74-86
    [67] Gibbs R A, Scutt J E and Croll B J. Assimilable organic carbon concentrations and bacterial numbers in a water distribution system. Water Science and Technology, 1993, 27:159-166
    [68] 刘硕,朱建平,蒋火华.对几种环境质量综合指数评价方法的探讨.中国环境监测,1999,15(5):33~37
    [69] 洪峪森.环境质量综合评价方法的比较研究.环境保护,1998,(1):26~28
    [70] 李祚泳,张辉军,等新民.湖泊营养状态的Hamming贴近度评价法.环境科学研究,2001,19(6):53~55
    [71] 劳期团.环境污染灰色聚类法.环境科学研究,1998,3(1):6
    [72] 柳培文,钱明.灰色系统聚类法在大气环境质量综合评价应用中的修正.重庆环境科学,1999,21(6):7~9
    [73] 肖新平.灰色聚类分析用于环境质量的评价.武汉交通科技大学学报,1997,2l(1):79~83
    [74] 杨继东,侯晓军.灰色关联分析在环境评价中的应用.环境工程,1993,11(3):58~61
    [75] 张松滨.灰色系统聚类分析与湖泊富营养程度评价.吉林化工学院学报,2004,21(2):32~33
    [76] 南京大学数学系.概率统计基础和概率统计方法[M].北京:科学出版社,1979
    [77] 王磊,戚飞虎.大矢量空间聚类的遗传k-均值算法.上海交通大学学报,1999,33(9):1154~1156
    [78] 于水利,孙凤鸣,李玉华等.最优混凝搅拌条件的研究[J].哈尔滨建筑大学学报,1999,32(6):49~52
    [79] 傅文德.高浊度给水工程[M].北京:中同建筑工业出版社,1994:216-260
    [80] 武道吉,谭凤训,等.高浊度水管式混凝动力学及设计研究[J].给水排水,2000,26(6):4~6
    [81] 武道吉,谭凤训,等.絮凝动力学机理及控制指标研究[J].环境工程,2000,18(5):22~25
    [82] 武道吉,李圭白,谭凤训等.高浊度水混凝动力学机理与工艺设计.水处理技术[J],2003,29(1):25~27
    [83] 武道吉,吴濂河,修春海等.水处理絮凝工艺的优化设计和运行[J].中国给水排水,2002,18(1):61~64
    [84] 陈培康,裘本昌.给水净化新技术[M].北京:学术出版社,1990
    [85] John R., Bratby. Interpreting Laboratory Results for the Design of Rapid Mixing and Flocculation Systems. AwwA. 1981
    [86] Harris. Ortho-kinetic Flocculation in Water Purification. ASCE, 1966
    [87] John L., Cleasby. Velocity Gradient——A Valid Turbulent Flocculation Parameter. ASCE. 1981
    [88] 丹保宪仁等.絮凝形成过程的基础研究.水道协会杂志(日文)371,381.882号,1965~196e.
    [89] Lagvankar, R. S. Gemmell. A Size Density Relationship for Flocs. Annual Conference of the AWWA. June 3, 1968
    [90] Y. Argaman, W.J. Kaufman, Turbulence and Flocculation, Journal of the Sanitary Engineering Division. ASCE, 1970, 96(SA2)
    [91] J.L. Cleasby. Is Velocity Gradient a Valid Turbulent Flocculation Parameter? J. of Environmental Engineering, 1984, 110(5)
    [92] M.A. Delichatsios, R.F. Probstein. Coagulation in Turbulent Flow: Theory and Experiment. J. of Colloid Interface Science. 1975, 51
    [93] 高志强.控制絮凝能耗的水力混合絮凝池技术总结[J].中国给水排水,1985,1(2):33~38
    [94] 武道吉,谭凤训,修春海等.混合动力学机理及控制指标研究[J].中国给水排水,2000,16(1):54~56
    [95] 武道吉,谭凤训,张华.高浑浊度水混凝及混凝控制指标的研究.工业水处理,2002,22(2):32~34
    [96] 李圭白,崔福义,等.高浊度水的最优混合反应条件及管道混合试验研究[J]给水排水.1986,12(6):10~15
    [97] 王乃忠.絮凝效果控制指标的选择[J].中国给水排水,1989,5(6):38~40
    [98] 邹品毅.影响斜管沉淀池出水效果的因素.中南工学院学报,1999,13(1):87~90
    [99] 汪光焘,城市供水行业2000年技术进步发展规划,第一版.中国建筑工业出版社,1993
    [100] 钟纯昌.净水厂设计.中国建筑工业出版社[M],1986
    [101] 刘荣光,彭云霓.对斜板斜管“特性参数”公式的商榷.给水技术,1989,(2):1-4
    [102] 黄廷林,李玉仙,张志政等.斜管沉淀池布水均匀性模拟计算与工艺参数分析[J].给水排水[J],2005,(4):16-19
    [103] 上海市政工程设计院.斜板斜管沉淀[M].北京:中国建筑工业出版社,1978
    [104] 廖足良,刘荣光.斜管沉淀效率与斜长关系的试验研究[J].重庆建筑工程学院学报,1993,15(4):45~50
    [105] 刘荣广,罗辉荣,田伟博等.斜管沉淀的斜管长度研究[J].给水排水,1997,22(3):13~15
    [106] 廖足良,刘荣光,罗辉荣等.斜管沉淀的评价指标[J].水处理技术,1996,22(4)
    [107] 段龙武.改善斜管沉淀池沉淀效果的工程措施.水利科技与经济,2003,9(4):209~300
    [108] Mark W LeChevallier and Kwok-Keung Au. Water Treatment and Pathogen Control. World Health Organization (WHO). 2004
    [109] 张宛梅.美国的滤池设计.中国土木工程学会水工业分会给水委员会第八次年会.2000-10-9
    [110] 许保玖.给水处理理论.北京:中国建筑工业出版社,2000,243~312
    [111] 克莱德.奥尔.过滤理论与实践.北京:国防工业出版社,1982
    [112] 袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,1990
    [113] Zurada Jacek M.Introduction to Artificial Neural Systems, New York:West Publishing Company. 1992
    [114] 党建武.神经网络技术及应用[M].北京:中国铁道出版社,2000
    [115] Dae-Sung Joo,Dong-Jin and Heekyung Park. Determination of optimal coagulant dosing rate using an artificial neural network [J]. Journal of water supply:Research and Technology—AQUA[49.1],2000: 49-55
    [116] C.W.Baxter, S.J.Stanley, and Q. Zhang. Development of a full-scale artificial neural network model for the removal of natural organic matter by enhanced coagulation, J. Water SRT—Aqua Vol.48,No.4,1999: 129-136
    [117] 白桦等.基于神经网络的混凝投药系统预测模型[J].中国给水排水,2002,18(6):46-47
    [118] Boger. Z. Applations of neural networks to water and wastewater treatment plant operation. ISA Transactions 31 (1), 1992: 25-31
    [119] 田禹 王宝贞 周定 基于BP人工神经网络的臭氧生物活性炭系统建模研究[J].中国给水排水,1998,14(3):24-27
    [120] 崔福义,石明岩,赵天慧.给水处理系统高效经济运行研究之一[J].哈尔滨建筑大学学报,1999,32(6):5-8
    [121] Zhang Hongwei, Tan Xin, CHEN Cunfang. Resarch on Optimal Operation of Water-Production System[J]. Transactions of Tianjin University, 1999, 5 (2): 215-218
    [122] Simpson A.R., Dandy G.C. & Murphy L.J. Genetic algorithms compared to other techniques for pipe optimization. J. Water Resour. Plug. And Mgnt, 1994,120(4):423-443
    [123] 董聪.广义遗传算法[J].大自然探索,1998,16(1):37-41
    [124] 李茂军.单亲遗传算法理论及应用[D].湖南大学博士学位论文,2002
    [125] De Jong K A. An Analysis of the Behavior of a Class of Gentic Adaptive Systems[D]. University of Michigan, No.76-9381,1975
    [126] Malmborg, Charles. Genetic algorithm foe service level based vehicle scheduling[J]. European Journal of Operational Research, 1996, 93 (1): 121-134
    [127] 王黎,马光文.水电厂经济运行的遗传算法[J].四川联合大学学报(工程科学版),1997,1(1):42~47
    [128] Genetic algorithms for least-cost design of water distribution networks[J]. Water Res. Planning & Management, 123(2): 67-77
    [129] Boulos P.F., Wu Z.Y., Orr C.H. Least Cost Design and Rehabilitation of Water Distribution Systems Using Genetic Algorithms[J]. Proceedings of the AWWA IMTech Conference, Seattle, 2000, 4: 16-19
    [130] Goldberg D E. Genetic Algorithms in Search, Optimization and Machine learning Reading, Addison-Wesley, 1989:50~72
    [131] Welters G A and Lohbeck T K: Optimal layout of tree networks using genetic algorithms. Engineering Optimization, 1993, 22:27~48
    [132] Grefenstet te J J. Optimization of control parameters for genetic algorithmsl. IEEE Trans (on syst. Man. and Cybernetics), 1986, 16(1):3~16
    [133] Goldberg D E, Deb K. A comparative analysis of selection schemes used in genetic algorithms In:Procl of The Fourth International Confl on Genetic Algorithms, Los Altos, CA,Morgan Kaufmann Publishers, 1991, 286~302
    [134] 魏权等.数学规划与优化调度[M].北京:水利电力出版社,1984
    [135] 廖昭懋,杨文礼.概率论与数理统计[M].北京:师范大学出版社,1988
    [136] 杜纲.多目标决策讲义[M].天津:天津大学管理工程系,1990.
    [137] 侯亮复.环境系统工程[M].北京:北京理工大学出版社,1992
    [138] 韦鹤平.环境系统工程[M].上海:同济大学出版社,1993.25~32
    [139] 温淑瑶,马占青,周之豪等.层次分析法在区域湖泊水资源可持续发展评价中的应用.长江流域资源与环境,2000,9(2):196~201
    [140] 洪继华,宋衣兰.层次分析法在水环境规划中的应用.环境科学与技术,2000,88:32~39
    [141] 胡天觉,陈维平,曾光明等.运用层次分析法对株洲霞湾污水处理厂污水处理工艺方案择优.环境工程,2000,18(1):61~63
    [142] 彭文启,张祥伟.现代水环境质量评价理论与方法.北京:化学工业出版社,2005
    [143] 雷廷.加强混凝沉淀在处理微污染原水中的作用.给水排水.2003,29(5):24~26
    [144] Matthew T.Valade, James K.Edzwald, John E.Tobiason et. al. Particle removal by flotation and filtration: pretreatment effects. American Water Works Association. Journal. 1996, 88(12):35~49
    [145] 武道吉,谭凤训,张华.谈混凝沉淀烧杯试验标准的编制.工业水处理,2002,22(7):36~38
    [146] 李伟英,范瑾初.烧杯搅拌试验的规范化.城市公用事业,2000,14(4):22~24
    [147] 武道吉,谭凤训,修春海等.混合动力学机理及控制指标研究.中国给水排水.2000,16(1):54~56
    [148] 上海市政工程设计院.给水排水设计手册(第3册).中国建筑工业出版社,1986
    [149] 武道吉,谭凤训,王新文.絮凝动力学机理与控制指标研究.环境工程.2000,18(5):22~25
    [150] S.Kawamura. Optimisation of basic water-treatment processes——design and operatio: coagulation and flocculation. J.Water SRT, 1996, 45(1):35-47
    [151] 张雅君.给水系统费用函数的研究.北京建筑工程学院.1997,13(2):82~89
    [152] 万蔚杰.城乡供水施工与预算[M].西安:西安电子科技大学出版社,1993
    [153] 国家城市给水排水工程技术研究中心.给水排水工程概预算与经济评价手册[M].北京:中国建筑工业出版社,1993
    [154] 严煦世、范谨初,给水工程,第四版中国建筑工业出版社,1999
    [155] 成都科技大学水力学教研室、吴持恭.水力学(上册).第二版.高等教育出版社,1979
    [156] 第四机械工业部第十设计研究院主编,空气调节设计手册,第一版.中国建筑工业出版社.1983
    [157] Yao, K M. Theoretical study of high rate sedimentation. Water Pullution Control Federation,1970.42 (2):218
    [158] 周光炯,严宗毅,许世雄等.流体力学[M].北京:高等教育出版社,2000
    [159] 闻新,周露,王丹力等.MATLAB神经网络应用设计[M].北京:科学出版社,2002
    [160] 苏金明,张莲花,刘波.Matlab工具箱应用[M].北京:电子工业出版社,2004
    [161] 吴望一.流体力学.北京大学出版社[M].1995
    [162] 张晓岚.双层滤料在水厂巾昀应用.城镇供水.2003(2):4~7
    [163] 傅金祥.均匀-非均匀滤料滤池最佳设计参数的实验研究[J],中国给水排水,1986,2(4),22-26
    [164] 钱易.现代废水处理新技术[M],中国科学技术出版社,1993
    [165] Camp, T.R.,et al., Journal of the Sanitary Engineering Division ASCE, 1971, 97(SA6): 903-926
    [166] 阮如新.滤料粒度对过滤的影响.水工业学术研讨会,1999(香港)
    [167] 藤田贤二,《水道协会杂志》(455),2~31,1972
    [168] 钟淳昌主编,净水厂设计,6过滤,P225,中国建筑工业出版社,1992
    [169] JAWWA,67: 535, 1975
    [170] 国家环境保护总局.水和废水监测分析方法.(第四版).中国环境科学出版社.2002:
    [171] 王伟.人工神经网络原理[M].北京:北京航空航天出版社,1995,77-91
    [172] M.T.Valade. Particle removal by flotation and filtration:pretreatment effects, JAWWA, 1999 (12)
    [173] Edzwald,et al. J.Aluminum Coagulation of Natural Organic Matter, Chemical Water and Wastewater Treatment.Springer-Verlag,Berlin(1990)
    [174] Tai Tseng et al.Increasing alkalinity to reduce turbidity. Vol.92,44:54, June 2000
    [175] Langelier et al. Flocculation Phenomena In Turbid Water Clarification,Transactions ASCE,1952, 11:147
    [176] Amirtharajah et al. Destabilizatin of Particles by Turbulent Rapid Mixing. Jour. Envir. Engrg.-ASCE, 1986, 112:1085
    [177] Duran M A, Gro ssmann I E. An outer approximation algorithm for a class of mixed integer nonlinear programs, Math Program, 986, 36:307~339
    [178] Davis L. Handbook of Genetic Algorithm. New York: Van Nostrand Reinhold, 1991
    [179] Koza J R. Genetic Programming: on the Programming of Computers by Means of Nature Selection and Genetics. Cambridge, MA: TheM IT Press, 1992
    [180] Lin C Y, Hajela P. Genetic algorithms in optimization problems with discrete and integer design variables. Eng Opt, 1992, 19 (4): 309~327
    [181] 韩祯祥,文福拴.模拟进化优化方法及其应用——遗传算法.计算机科学,1995,22(2):47~56
    [182] 马光文,王黎.遗传算法在水电站优化调度中的应用.水科学进展,1997,8(3):275~280
    [183] 陈根社,陈新海.遗传算法的研究与进展.信息与控制,1994,23(4),215~222
    [184] 陈守煜.系统模糊决策理论与应用.1994,大连:大连理工大学出版社
    [185] 陈守煜.工程模糊集理论与应用.1998,北京:国防工业出版社
    [186] 陈守煜.复杂水资源系统优化模糊识别理论与应用.2002,长春:吉林大学出版社
    [187] 李玉仙,黄廷林,何文杰.常规给水处理工艺处理效率的神经网络预测与控制.西安建筑科技大学学报,2005(4)
    [188] 天津系统工程教研室编.层次分析法,北京:科学出版社,1986.421
    [189] 陈秉钊.城市规划系统工程学,上海:同济大学出版社,1991.851
    [190] 汤民淮,蔡俊雄.利用层次分析法计算污染治理设施评价指标权重.环境科学与技术,1997.(1)27~341
    [191] 国家环保局计划司编写组.环境规划指标,北京:清华大学出版社,1994.180~1851
    [192] 侯克复.环境系统工程.北京:北京理工大学出版社,1992.297~3231
    [193] 王莲芬,许树柏.层次分析法引论.北京:中国人民大学出版社,1989
    [194] 何文杰主编.安全饮用水保障技术.北京:中国建筑工业出版社,2005
    [195] Vena J E, Graham S, Freudenheim J, Marshall J, Zielezny M, Swanson M and Sufrin G. Drinking water, fluid intake and bladder cancer in western New York. Archives Envir. Health, 1993, 48(3): 191-198
    [196] Bull R J, Birnbaum L S, Cantor K P, Rose J B, Butterworth B E, Pegram R and Tuomisto J. Water chlorination-essential process or cancer hazard. Fund. And Appl. Toxicol., 1995, 23(2): 155-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700