卟啉/聚芳醚酮光限幅材料的设计和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光器的诞生,人们获得了具有强度高、相干性好的光源,对于新出现的非线性光学现象,人们发展了相关的理论对其进行了解释。激光武器的出现引起了各国的广泛关注,对于低能激光武器进行防护以保护己方光敏元件和人眼免受影响得到了大家的重视。获得具有优异的热稳定性、机械性能并且具有光限幅能力的光限幅材料,成为了大家广泛关注的热点。
     聚芳醚酮以优异的热稳定性、化学稳定性、高温下良好的机械性能和优良的耐辐射性等著称。近些年来,将聚芳醚酮功能化的研究成为一个热点,其中最有效的方法就是将具有特殊功能的组分以物理或化学的方法分散在聚芳醚酮的基体中。为了得到综合性能优异的功能性聚芳醚酮,需要对引入的组分进行遴选,主要原则是具备和聚芳醚酮相匹配的性能,如热稳定性、化学稳定性等。
     卟啉类分子是一类重要的功能性材料,广泛地存在于自然界中,在动植物的生命过程中发挥着特别重要的作用,并且已经在诸多方面得到应用,如模拟光合作用的反应中心或光捕获天线系统、制备分子器件、磁性材料、光限幅材料、高效催化剂、抗肿瘤药物等。大多数卟啉类分子在溶剂中的溶解性偏低,且在高浓度存在聚集现象,使卟啉在应用的过程中受到了限制。将卟啉分子修饰后引入到聚芳醚酮体系中,既改善了它的溶解性,在一定程度上避免了聚集现象的发生,同时,又赋予了聚芳醚酮一些特殊的功能,实现了聚芳醚酮的功能化;另外,卟啉分子的热稳定性和化学稳定性均达到了较高级别,与聚芳醚酮相匹配,在实现聚芳醚酮功能化的同时,不降低其综合性能。
     近年来,利用卟啉类分子的反饱和吸收效应制备光限幅材料成为人们研究的热点。其最基本的要求就是在保持材料的基本性能的前提下,尽量的增加基体中卟啉的含量,同时解决卟啉在聚合物基体中的分散问题。为了使材料便于加工,可以将卟啉以共混或是接枝的方式引入聚合物体系中。采用溶液共混方法时,往往使得卟啉在聚合物基体中分散不好,并且由于卟啉具有大的共轭结构,分子间的π-π共轭作用较强,当在溶液中达到一定浓度时,容易发生聚集现象,影响材料的光限幅效果,并且使材料的机械性能下降;利用共价键将卟啉连接在聚合物的骨架上,得到卟啉封端和卟啉交联的聚合物,在保留材料热稳定性和力学性能的同时,具备光限幅能力,提高卟啉在聚合物中的含量,可以提高其光限幅能力。基于这种思想,本论文合成了一系列卟啉单体(四苯基卟啉、四羟基苯基卟啉、邻位双羟基卟啉)引入聚芳醚酮基体,在保留聚芳醚酮优异的热稳定性和化学稳定性的前提下,赋予材料光限幅性能。将卟啉引入超支化聚芳醚酮体系,改善了卟啉的分散情况,使聚合物的光限幅能力得到提升;将邻位双羟基卟啉以共价键的方式引入到聚芳醚酮的主链上,使聚合物的热稳定性和力学性能得到了加强,增加了聚合物中的卟啉含量,并且邻位双羟基卟啉的独特分子结构使其在聚合物中得到良好的分散,避免了卟啉分子间聚集现象的发生,得到具有较强光限幅能力的聚芳醚酮。
With modern laser technology appearing, the light source of the high intensity andexcellent coherent property was obtained. For a growing need in nonlinear optical(NLO) materials, the relative theory to explain the nonlinear optical phenomenon wasdeveloping rapidly. The laser weapons coming into the world have drawn thewide-ranging attention all over the world, especially for passive-mode optical limiting(OL) applications to protect optically sensitive devices and human eyes from laserdamage in both civilian and military applications. Optical limiters as a special kind ofmaterials, which reduce the intensity of hostile lasers by its instantaneous filteringaction, meanwhile possed the high thermal stability and outstanding mechanicalproperties were devoted the deep research.
     Poly (aryl ether ketone)s (PAEKs), due to its excellent mechanical properties,thermal stability, electrical and chemical resistance properties, were made a candidatefor advanced materials. Recently, the functioning of PAEKs was the focus research inthe field, in which the most effective method was introducing the groups with thespecial functions into the PAEKs matrix by physics or chemical ways. In order toretain the excellent properties of the materials, the choice of the functioning groupsintroduced into PAEKs shown greatly significant, which in the main principle need tomatch the excellent properties of PAEKs, such as the thermal stability, chemicalstability and so on.
     Porphyrins, as one of the most promising candidates existing in the nature, hadbeen widely studied and applied, which acted on the life of animals and plantsimportantly, and was used as the reaction centre of simulating photosynthesis, orantenna system to capture light, synthesizing the molecular device, magnetic material, optical limiters, highly active catalytic agent, and antineoplastic drug, ect. Mostporphyrin materials possed weak solubility in the organic solvent, existing theunfavorable aggregation in the highly dense system, which limited the application ofporphyrin. In recent years, great efforts were made in utilizing porphyrin to developthe efficient OL materials, which could have a large ratio of the excited-state toground-state absorption cross sections (κ=σex/σ0). In order to be convenient formaterial processing, the most effective improving was introducing porphyrin into thePAEKs matrix by blending or branching, which need to meet the demand of retainingthe excellent properties of the materials, in case that increasing the content ofporphyrin as more as possible, we need to solve its dispersion problems in polymermatrix.One of the current challenges was probably the difficulty of handling thematerials in liquid form. The incorporation of porphyrin units into the framework ofthe hyperbranched PAEKs (HPAEKs) could not only help to solve the dissolutionprocessing problems, a necessary condition for avoiding aggregation, but alsoendowed resultant polymers with novel properties. Retained the excellent propertiesof the materials, particularly in thermal stability, preparation of the required NLOactive materials for practical optical limiters was the focus research in the field.
     First of all, we had synthesized tetraphenylporphyrin (TPP). Made TPP and6FPAEK solution blended, cast films. And a series of characterization of thecomposite films were carried out. TPP had nonlinear optical properties, at the sametime the thermal stability of TPP and6FPAEK were matched. As a result, thecomposite films had nonlinear optical properties and good thermal stability. Themechanical properties of the composites films were decreased by the instruction ofTPP. It is mainly due to the aggregation phenomenon occurred, when TPP reached acertain concentration in the solution, simple solution blending did not make the TPPwell dispersed in the polymer, so that the mechanical properties of the compositefilms declined. It was an effective way to obtain the optical limiting materials byblending filler materials with optical limiting property and polymer. But, this couldnot be done by no loss of performance, this problem could be solved by uniformlydispersing fillers in the polymer matrix.
     Further more, in order to obtain Porphyrin/PAEKs optical limiting materials withgood performance, we prepared two series of PAEKs oligomers, with4-hydroxyphenyl porphyrin (THPP) linked in PAEKs segment. The obtained polymerhad good solubility, excellent thermal stability and the enhanced mechanicalproperties. Made oligomers of PAEKs capped or crosslinked by THPP could producesignificant enhancement of the mechanical properties of the composite material, inparticular the crosslinked ones, a substantial increase in mechanical properties of thematerial; The non-linear optical properties and optical limiting properity of thepolymers were given by introduction of THPP, made PAEKs to achieve abreakthrough in optical limiting field; χ(3)and optical limiting capacity of thepolymers increased with porphyrin content; Polymer backbone containing electrondonating groups can strengthen its nonlinear performance; in6FPAEK series polymer,thermal stability and mechanical properties were stronger than that of BPAPAEKseries polymer, and the gap between their nonlinear optical performance was quitsmall,6FPAEK series polymer was more suitable for application as a high damagethreshold of optical limiting materials.
     In order to get better dispersion of porphyrin molecules in PAEKs matrix, weprepared a series of Porphyrin-containing hyperbranched poly (aryl ether ketone)s andits metal derivatives. The polymer obtained had good solubility and excellent thermalstability; Z-scan and optical limiting test results shown that the non-linear opticalproperties and optical limiting properity of the polymers were given by introductionof THPP; χ(3)and optical limiting capacity of the polymers increased with porphyrincontent; The hyperbranched structure made porphyrin optical limiting ability to bemore efficient, in the adverse conditions that the porphyrin content was less than thatof porphyrin capped PAEKs, χ(3)and optical limiting ability exhibited much better;The hyperbranched structure allowed better dispersion of the porphyrin molecule in athree-dimensional network structure of the polymer, to reduce the occurrence of theaggregation phenomenon. When the porphyrin content in polymer was similar, thehyperbranched polymer had stronger optical limiting capability.
     In order to improve Porphyrin content in PAEKs, make Porphyrin get optimized distribution in PAEKs. We synthesized5,10-bis (4-hydroxyphenyl)-15,20-diphenylporphyrin (Cis-DHDPP) and got a series of PAEKs contained Porphyrin. The obtainedpolymers had good solubility, excellent thermal stability, good mechanical properties,χ(3)value reached10-12esu (0.5mg mL-1), with certain optical limiting property; ThePorphyrin content in PAEKs was highly improved, at the same time, Cis-DHDPP hada unique molecular structure type, made Cis-DHDPP disorganized dispersed inPAEKs segment, avoided the occurrence of aggregation and improved the opticallimiting ability of the material.
引文
[1]陶国源.聚醚醚酮应用实例(下)[J].塑料制造,2006,(5):46-51.
    [2] FEMIE J A,THREADGILL P L,WATSON M N. Progress in joining advancedmaterials.[J]. Metal Fabrie,1991,5:179-184.
    [3] SANDERS P, Electromagnetic welding: an advance in thermo Plastic assembly.[J]. Mater Design,1987,8:41-45.
    [4]王宏雁,陈君毅.汽车车身轻量化结构与轻质材料[M].北京:北京大学出版社,2009.
    [5]林有希,高诚辉.PEEK的改性及应用[J].工程塑料应用,2005,33:64-6.
    [6] BLOEMBERGEN N, Nonlinear Spectroscopy.[M]. North-Holland, Amsterdam,1977.
    [7] ROBERT W B, Nonlinear Optics.[M]. New York, Rochester,1992.
    [8] FRANKEN P A, HILL A E, PETER C W and WEINREICH G, Generation ofOptical Harmonics.[J]. Phys. Rev. Lett,1961,7:118-122.
    [9] ISHIWATA T, and TANAKA I, Stepwise Two-Photon Excitation of Cl2to theE(Og+) Ion-Pair State.[J]. Chem. Phys. Lett,1984,107:434-441.
    [10] CHIAO R Y, GARMIRE E and TOWNES C H, Self-Trapping of Optical Beams.[J]. Phys. Rev. Lett,1964,13:479-483.
    [11] GIBBIS M, MCCALLI S L and VENKATESAN T N C, Differential Gain andBistability Using A Sodium-Filled Fabry-Perot Interferometer.[J]. Phys. Rev. Lett,1974,36:1135-1142.
    [12] ASHKIN A, BOVEL G D, DZIEDZIC J M, SMITH R G, BALLMAN A A,LEVINSTEIN J J and NASSAU K, Optically Induced RefractiveIndexInhomogenities In LiNbO3and LiTaO3.[J]. Appl. Phys. Lett,1966,9(1):72-74.
    [13] BLAU W, BURNE H, DENNIS W M and KELLY J M, Reverse SatuableAbsorption in Tetraphenylporphyrins.[J]. Opt. Comm,1985,56:25-29.
    [14] CUI Y, HE H B, FAN Z X, et al. Development of high energy laser weapon andresearch of laser protective coatings.[J]. Laser&Optoelectronics Progress,2006,43(6):10-13.
    [15] PERRY J W, MANSOUR K, LEE I Y S, et al. Organic optical limiter with astrong nonlinear absorptive response.[J]. Science,1996,273:1533-1536.
    [16] HERBERT C J, CAPINSKI W S, and MALCUIT M S, Optical power limitingwith nonlinear periodic structures.[J]. Optics Letters,1992,17(15):1037-1039.
    [17] SONG Q W, ZHANG C, RICHARD G, et al. Optical limiting by chemicallyenhanced bacteriorhodopsin films.[J]. Optics Letters,1993,18(10):775-777.
    [18] JUSTUS B L, KAFAFI Z H and HUSTON A L, Excited-stateabsorption-enhanced thermal optical limiting in C60.[J].Optics Letters,1993,18(19):1603-1605.
    [19] GEUSIC J E, SINGLY S, IPPING D W and RICH T C, Three-Photon StepwiseOptical Limiting in Silicon.[J]. Phys. Rev. Lett.,1967,19:1126-1128.
    [20]杨少辰,龚旗煌,费林等. C60高聚物复合固体材料的反饱和吸收过程研究[J].光学学报,1993,13(4):289-293.
    [21]杨昆,曲士良,张驰等.新型金属团簇化合物光限幅特性实验研究[J].激光技术,2000,24(4):193-195.
    [22]孟献丰,陆春华,张其土等.激光防护材料的研究进展[J].激光与红外,2005,35(2):71-73.
    [23] KING S M, CHAURE S, DOYLE J, COLLI A, FERRARI A C and BLAU W J,Scattering Induced Optical Limiting in Si/SiO2Nanostructure Dispersions.[J]. OpticsCommunications.,2007,276:305-309.
    [24] MOUNTRICHAS G, PISPAS S, XENOGIANNOPOULOU E, ALOUKOS P andCOURIS S, queous Dispersions of C60Fullerene by Use of Amphiphilic BlockCopolymers: Preparation and Nonlinear Optical Properties.[J]. Journal of Physics andChemistry. B.,2007,111:4315-4319.
    [25] XIA T, DOGARIU A, MANSOUR K, HAGAN D J, SAID A A,VANSTRYLAND E W and SHI S, Nonlinear Response and Optical Limiting inInorganic Metal Cluster Mo2Ag4S8(PPh3)4Solutions.[J]. Journal of the OpticalSociety of America B-Optical Physics,1998,15:1497-1501.
    [26] GU Y, WANG Y and GAN F, Third-Order Optical Nonlinearities in Thin Films ofa New Subphthalocyanine.[J]. Materials Letters,2002,52:404-407.
    [27] UNNIKRISHNAN K P, Thomas J, NAMPOORI V P N and VALLABHAN C PG, Nonlinear Absorption in Certain Metal Phthalocyanines at Resonant and nearResonant Wavelengths.[J]. Optics Communications,2003,217:269-274.
    [28] QU S, ZHANG Y, LI H, QIU J and ZHU C, Nanosecond Nonlinear Absorptionin Au and Ag Nanoparticles Precipitated Glasses Induced by a Femtosecond Laser.[J].Optical Materials,2006,28:259-265.
    [29] HENARI F Z, Optical Nonlinearity in Hydrogenated AmorphousSilicon-Selenium Film.[J].Optics Communications,2008,281:5894-5897.
    [30] ZHAO Y, XIAO L, WU F and FANG X, Two-Photon Absorption Properties ofMalononitrile Derivatives.[J]. Optical Materials,2007,29:1206-1210.
    [31] XING X J, LI J, SUN Y P and WANG C K. Theoretical Studies on One-Photonand Two-Photon Absorption Properties of a Series of Dibenzothiophene Derivatives.[J]. Journal of Molecular Structure: Theochem,2008,849:116-121.
    [32] WEN T C, WANG L C H, LIN W Y, CHEN C H and WU C H, NonlinearAbsorption of Light: Two-Photon Absorption and Optical Saturation inMetalloporphyrin-Doped Boric Acid Glass.[J].Chemical Physics,2003,286:293-302.
    [33]顾玉宗,干福熹.被动光限幅器的机制与研究进展[J].物理,2002,31(1):20.
    [34]孟献丰,陆春华,张其土,倪亚茹,许仲梓.激光防护材料的研究进展[J].激光与红,2005,35(2):71-73
    [35]司金海,杨森,宋瑛林,李淳飞.用稳态反饱和吸收法测量C60激发态吸收截面[J].中国激光,1994,21(2):106-200.
    [36] GAO Y C, ZHANG X R, et al. Saturable absorption and reverse saturableabsorption in platinum nanoparticles.[J]. Opt. Commun.2005,(251):429-433
    [37] ANDOR H, NAKAO Y, SATO H, et al. Theoretical Study of Low-Spin,HighSpin, and Intermediate-Spin States of [Fe(III)(pap)(2)](+)-(pap=N-2-Pyridylme–thylidene-2-Hydroxyphenylaminato). Mechanism of Light Induced Excited SpinState Trapping.[J]. Phys. Chem. A,2007,111(25):5515.
    [38] NOLTING D, SCHULTZ T, HERTEL L V, et al. Excited state dynamics andfragmentation channels of the protonated dipeptide H2N-Leu-Trp-COOH.[J].Chemical Physics,2006,8(44):5247-5254.
    [39] PARINDA V, et al. Fast and reversible excited state absorption in II-VI-basednanocomposite thin films [J]. Appl. Phys. Lett,2005,87(6):063104-3.
    [40] YANG Z, et al. Large optical power limiting from self-assembly organiccomplexes.[J]. Appl. Phys. Lett,2005,86(6):061903-3.
    [41] BLANKENSHIP R E, OLSON J M, MILLER M, BLANKENSHIP R E,MADIGAN M T, BAUER C E, Eds. Kluwer Academic Publishers: Dordrecht.[M]The Netherlands,1995; pp339-435.
    [42] ANDERSON H L, MARTIN S J and BRADLY D C, Synthesis and Third-OrderNonlinear Optical Properties of a Conjugated Porphyrin Polymer.[J]. Angew ChemInt Ed Engl,1994,33:655-657.
    [43] ROSSUM V, STEENSGAARD V J, MULDER D B, BOENDER F M,SCHAFFNER G J, HOLZWARTH K, GROOT A R D, A Refined Model of theChlorosomal Antennae of the Green BacteriumChlorobium tepidum from ProtonChemical Shift Constraints Obtained with High-Field2-D and3-D MAS NMRDipolar Correlation Spectroscopy.[J]. Biochemistry,2001,40:1587-1595.
    [44] BURRELL A K, OFFICER D L, PLIEGER P G and REID D C W. SyntheticRoutes to Multiporphyrin Arrays.[J].Chem. Rev,2001,101:2751-2796
    [45] TSUDA A, NAKAMURA Y and OSUKA A, Synthesis of meso-β doubly linkedporphyrin tapes.[J].Chem. Commun,2003,(9):1096-1097
    [46] LI G Y and CHE C M. Highly Selective Intra-and Intermolecular CouplingReactions of Diazo Compounds to Form cis-Alkenes Using a Ruthenium PorphyrinCatalyst.[J].Org. Lett,2004,6(10):1621-1623.
    [47] JOHNSON D G, NIEMCZYK M P, MINSEK D W, WIEDERRECHT G P,SVEC W A, GAINES III G L and WASIELEWSKI M R, Photochemical electrontransfer in chlorophyll-porphyrin-quinone triads: the role of the porphyrin-bridgingmolecule.[J]. J. Am. Chem. Soc.1993,115:5692-5701.
    [48] GUST D, MOORE T A, MOORE A L, GAO F, LUTTRULL D, GRAZIANO D JM, MA X C, et al, Long-lived photoinitiated charge separation incarotene-diporphyrin triad molecules.[J]. Chem. Soc.,1991,113:3638-3649.
    [49] NESTLER O and SEVERIN K. A Ruthenium Porphyrin Catalyst Immobilized ina Highly Cross-linked Polymer.[J]. Org. Lett.2001,3:3907-3909.
    [50] CROSSLEY M J and BURN P L, J. Am. Chem. Soc.[J].1994,98:11878.
    [51] JOHNSTON M R, LATTER M J and WARRENER R N, Porphyrin-ContainingMolecular Capsules: Metal Mediated Dimerization of a Bis-Porphyrin Cavity.[J].Org. Lett.2002,4(13):2165-2168.
    [52] OFAWA K, ZHANG T, YOSHIHARA K and KOBUKE Y, Large Third-OrderOptical Nonlinearity of Self-Assembled Porphyrin Oligomers.[J]. J. Am. Chem. Soc.2002,124(1);22-23.
    [53] BOROVKOV V V, LINTULUOTO J M, SUGIURA M, INOUE Y andKURODA R, Remarkable Stability and Enhanced Optical Activity of a ChiralSupramolecular Bis-porphyrin Tweezer in Both Solution and Solid State.[J]. J. Am.Chem. Soc,2002,124(38):11282-11283.
    [54] NAPOLI D M, NARDIS S, PAOLESSE R, VICENTE M G H, LAUCERI R andPURRELLO R. Hierarchical Porphyrin Self-Assembly in Aqueous Solution.[J].J. Am.Chem. Soc,2004,126(19);5934-5935.
    [55] TONG S L, YAN Y, LI Z H, et al,[J]. Chemical Research in Chinese University,1997,13(4):299.
    [56] HAYCOCK R A, HUNTER C A, JAMES D A, MICHELSEN U and SUTTON LR,[J]. Org. Lett.2000,2(16):2435-2438.
    [57] ARATANI N and OSUKA A, Synthesis of meso-meso Linked Hybrid PorphyrinArrays by Pd-Catalyzed Cross-Coupling Reaction.[J]. Org. Lett.2001,3(26):4213-4216.
    [58] TASHIRO K and AIDA T, J of inclusion phenomena and Macro.[J]. Chem.2001,215-217
    [59] TETENKIN V L, Structural–Functional Organization of the Main LightHarvesting Complex and Photosystem2of Higher Plants.[J]. Biochemistry,2003,68:810-827.
    [60] Blank A, Levanon H. Triplet line shape simulation in continuous wave electronparamagnetic resonance experiments.[J]. Concepts in Magnetic Resonance Part A,2005,25A (1):18-39.
    [61] GODWIN H A, COLLMAN J P, MARCHON J C, MALDIVI P, YEE G T andCONKLIN B J. Magnetic Properties of Group8Metal Metal-Bonded Porphyrin andTetraazaporphyrin Dimers.[J]. Inorg.Chem,1997,36:3499-3502.
    [62] KURODA Y, KAWASHIMA A, HAYASHI Y and OGOSHI H, Self-OrganizedPorphyrin Dimer as a Highly Specific Receptor for Pyrazine Derivatives.[J]. J. Am.Chem. Soc.,1997,119:4929-4933.
    [63] PANDEY R K, SHIAU F Y et al. Efficient synthesis of porphyrin dimers withcarbon-carbon linkages.[J]. Tetrahedron Lett.,1990,31:789.
    [64] GOMER C J, FERRARIO A, HAYASHI N, RUCKER N, BERMARD C S andMURPHREE A L. Molecular, cellular, and tissue responses following photodynamictherapy.[J]. Lasers in Surgery and Medicine,1988,8:450-463.
    [65]刘育,尤长城,张衡益.超分子化学[M].天津:南开大学出版社,2001.
    [66] GEOFFORY G L and WRIGHTON M S, Organometallic Photochemistry.[M].New York: Academic Press.1979,198-199.
    [67] WILLIAMS D J, Nonlinear optical properties of organic and polumeric materials,ACS Symposium Series233.[M]. Washington DC: American Chemistry Society.1985,277-279
    [68] ZHAN X, LIU Y, ZHU D et al. Large third-order nonlinear optical response of aconjugated copolymer consisting of2,5-diethynylthiop-hene and carbazole units.[J].Chemical Physics Letters,2001,343:493-498.
    [69]刘志斌,潘海滨,金锋等.取代基对卟啉二阶光学非线性及弛豫过程的影响[J].光学学报,1996,16(7):922-925.
    [70] KANDASAMY K, SHETTY J S, PUNTAMBEKAR P N, et al. Non-resonantthird-order optical non-linearity of derivatives.[J]. J.Chem. Soc. Chem. Commun.,1997,13:1159-1160.
    [71] MISHRA S R, RAWAT H S and LAGHATE M. Nonlinear absorption and opticallimiting in metalloporphyrins.[J]. Opt. Commun.,1998,147(4-6):328-332.
    [72] ONO N, ITO S, WU C H, et al. Nonlinear light absorption in meso-substitutedtetrabenzoporphyrin and tetraarylporphyrin solutions.[J]. Chem. Phys.,2000,262(2-3):467-473.
    [73] HENARI F Z, BLAU W J, MILGROM L R, et al. Third-order opticalnon-linearity in Zn(II) complexes of5,10,15,20–tetraarylethynyl-substitutedporphyrins.[J]. Chem.Phys.Lett.1997,267(3-4):229-233.
    [74]刘志斌,张新夷,田宏健等.不同链长二元分子卟啉酞著TTP-O-(CH2)n-O-Pc的二阶光学非线性研究[J].发光学报,1994,15(3):233-236.
    [75] DUPUIS B, MICHAUT C, JOUANIN L, et al. Photoinduced intramolecularcharge-transfer systems based on porphyrin-viologen dyads for optical limiting.[J].Chem. Phys. Lett.,1999,300(1-2):169-176.
    [76] ARUN K S, BIPIN B, BRAJA K M, et al. Nonlinear optical properties of a newporphyrin-containing polymer.[J]. Macromolecules,1995,28(16):5681-5683.
    [77] GRIEVE M B, RICHARDSON T, ANDERSON H L, et al. Optical properties ofedge-linked polymer porphyrin LB films.[J]. Thin Solid Films,1996,284-285:648-651.
    [78] KUEBLER S M, DENNING R Q and ANDERSON H L, Large third-orderelectronic polarizability of a conjugated porphyrin polymer.[J]. J. Am. Chem. Soc.,2000,122(2):339-347.1
    [79] OGAWA K, ZHANG T, YOSHIHARA K, et al. Large third-order opticalnonlinearity of self-assembled porphyrin oligomers.[J]. J.Am. Chem. Soc.2002,124(1):22-23.
    [80] SCREEN T E O, THOME J R and DENNING R G, et al. Amplified opticalnonlinearity in a self-assembled double-strand conjugated porphyrin polymer ladder.[J]. J. Am. Chem. Soc.,2002,124(33):9712-9713.
    [81] GUST D, MOORE T A, MOORE A L, et al. Efficient multistep photoinitiatedelectron transfer in a molecular pentad.[J]. Science,1990,248:199-201.
    [82] DOUGLAS G J, MARK P N, DAVID W M, et al. Photochemical electrontransfer in chlorophyll-porphyrin-quinone triads: the role of the porphyrin-bridgingmolecule.[J]. J. Am. Chem. Soc.,1993,115(13):5692-5701.
    [83] TSUYOSHI A, MASAYA O, RYOHZI M, NOPBORU M, et al. Intramolecularphotoinduced charge separation and charge recombination of the production pairstates of a series of fixed-distance dyads of porphyrins and quinones: energy gap andtemperature dependences of the rate constants.[J]. J. Am. Chem. Soc.,1993,115(13):5665-5674.
    [84] BONNER W H.[P] USA patent3065205,1962.
    [85] ROSE J B.[P] USA patent4320224,1976.
    [86] ROSE J B.[P] Britian patent1558671,1976.
    [87] ROSE J B.[P] Britian patent1414422,1975.
    [88] ROSE J B.[P] Britian patent1414423,1975.
    [89] ROSE J B.[P] Britian patent1414424,1975.
    [90] KUO M C, TSAI C M, HUANG J C and CHEN M, PEEK composites reinforcedby nano-sized SiO2and A1203particulates.[J]. Mater Chem Phys,2005,90:185-95.
    [91] LAI Y H, KUO M C, HUANG J C and Chen M, On the PEEK compositesreinforced by surface-modified nano-silica.[J]. Mater Sci Eng A,2007,458:158-69.
    [92] GOYAL R K, TIWARI A N and NEGI Y S. High performance nanocompositesfor tribological applications: preparation and characterization.[J]. Mater Sci Eng A,2008,486:602-610.
    [93] WANG Q H, XUE Q J, LIU W M and CHEN J M, Effect of nanometer SiC filleron the tribological behavior of PEEK under distilled water lubrication.[J]. ApplPolym Sci,2000,78:609-614.
    [94] SANDLER J, WERNER P, SHAFFER M S P, DEMCHUK V and ALTSTADT V,Carbon-nanofibre-reinforced poly(ether ether ketone) composites.[J]. Composites:Part A,2002,33:1033-1039.
    [95] SANDLER J, WINDLE A H, WERNER P, ALTSTADT V, et al,Carbon-nanofibre-reinforced poly(ether ether ketone) fibres.[J]. Mater Sci,2003,38:2135-2141.
    [96] ATTWOOD T E, DAWSON P C, FREEMAN J L, HOY R J, ROSE J B andSTANILAND P A, Synthesis and properties of polyaryletherketones.[J]. Polymer,1981,22:1096
    [97] DAWSON P C and BLUNDELL D J, X-ray data for poly(aryl ether ketones).[J].Polymer,1980,21,577-578.
    [98] JONES D P, LEACH D C and MOORE D R, Mechanical properties ofpoly(ether-ether-ketone) for engineering applications.[J]. Polymer,1985,26:1385-1393.
    [99] GARDNER K H, HSIAO B S and FARON K L, Polymorphism in poly(arylether ketone)s.[J]. Polymer,1994,35,2290-2295.
    [100]赵纯,张玉龙.聚醚醚酮[M].北京:化学工业出版社,2008.
    [101] RAMA M, RAO V, RAO L, et al. Synthesis characterization and thermaldegradation studies of poly(ether ether ketone) copolymers.[J]. Polymer,1992,33:2834-2839.
    [102] CHEN M and CHEN J Y. Analysis of Crystallization Kinetics of Poly(etherether ketone).[J].Journal of Polymer Science Part B,1998,36:1348-1355.
    [103]田爱国.纳米氧化铝粉体填充增强聚醚醚酮复合材料及其性能研究[D].上海材料研究所硕士学位论文,2002.
    [104]王贵宾,陈春海,周宏伟,等.含氟侧基聚芳醚酮的合成与表征[J].高等学校化学学报,2000,21:1325.
    [105]王贵宾,王东,姜振华,等.含氟聚芳醚酮的合成与性能研究[J].高等学校化学学报,2001,22:1053.
    [106] LIU B J, HU W, JIANG Z H, et al, Soluble aromatic poly(ether ketone)s with apendant3,5-ditrifluoromethylphenyl group.[J]. Polymer,2004,45:3241.
    [107] LIU B J, WANG G B, HU W, et al, Poly (aryl ether ketone) s with (3-methyl)phenyl and (3-trifluoromethyl) phenyl side groups.[J]. J. Polym. Sci., Polym. Chem,2002,40:3392.
    [108]朱晓亮.含金刚烷侧基的聚芳醚酮的分子设计与性能研究[D].吉林大学博士学位论文,2008.
    [109] GENG Z, BA J Y, ZHANG S L, LUAN J S, JIANG X, HUO P F and WANG GB, Ultra low dielectric constant hybrid films via side chain grafting reaction ofpoly(ether ether ketone) and phosphotungstic acid.[J]. J. Mater. Chem.,2012,22:23534.
    [110]张云鹤.含金属酞蔷聚芳醚酮的制备及性能研究[D].吉林大学博士学位论文,2007.
    [111]陈兴波.含偶氮聚芳醚光响应材料的制备及性能研究[D].吉林大学博士学位论文,2009.
    [112]庞金辉.侧链型磺化聚芳醚质子传导交换膜材料的制备及性能研究[[D]。吉林大学博士学位论文,2008.
    [113] BAHAE M S, Said A A and STRYLAND V E W, High-sensitivity, Single-beamn2Measurements.[J]. Opt. Lett.1989,14:955-957.
    [114] BAHAE M S, Said A A, WEI T. H., HAGAN D J and STRYLAND V E W,Sensitive Measurement of Optical Nonlinearities Using a Single Beam.[C]. IEEEJ.Quantum Electron.1990,26:760-769
    [115]郭喜明,卟啉二联体的合成及其性质研究[J],博士学位论文,吉林大学,2006-5。
    [116] PENG H, CHENG L, LUO J D, XU K T, SUN Q H, DONG Y P, SALHI F,LEE P P S, CHEN J W and TANG B Z. Simple synthesis, outstanding thermalstability, and tunable light-emitting and optical-limiting properties of functionalhyperbranched polyarylenes.[J]. Macromolecules (2002)35:5349-5351.
    [117] ZHANG C, SONG Y L, WANG X, et al, Study on a series of pentanuclearplanar ‘open’ clusters: synthesis, characterization, strong third-order opticalnonlinearities and superior optical limiting properties.[J]. J Mater Chem (2002)12:239-248.
    [118] SHIRK J S, PONG R G S, FLOM S R, HECKMANN H and HANACK M,Effect of Axial Substitution on the Optical Limiting Properties of IndiumPhthalocyanines.[J] J. Phys. Chem. A.,2000,104:1438-1449.
    [119] ADRONOV A, FRéCHET J M J, HE G S, KIM K S, CHUNG S J,SWIATKIEWICZ J and PTASAD P N, Novel Two-Photon Absorbing DendriticStructures.[J], Chem. Mater.,2000,12:2838-2841.
    [120] DROBIZHEV M, KAROTKI A, RRBANE A and SPANGLER C W, Dendrimermolecules with record large two-photon absorption cross section.[J] Opt. Lett.,2001,26:1081-1083.
    [121] DROBIZHEV M, KAROTKI A, DZENIS Y, RRBANE A, SUO Z andSPANGLER C W, Strong Cooperative Enhancement of Two-Photon Absorption inDendrimers.[J] J. Phys. Chem. B,2003,107,7540-7543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700