无电极电阻率仪在早龄期水泥水化行为的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早龄期水泥混凝土研究有特别的意义,但其多变性和复杂性让研究者感到棘手,因此新的研究方法不断的被开发。无电极电阻率仪法(简称电阻率法)是近年来开发的一种方法,具有无损检测法的优点,可从物理、化学等角度观察、研究早龄期水泥混凝土的性能变化,有很好的前景。在本论文中,首先用电阻率法研究了水泥的水化,并阐述了水泥水化电阻率-时间曲线的意义,然后在水泥水化研究的基础上,用电阻率法测定水泥的凝结时间、快速检验水泥的强度以及研究减水剂与水泥的作用。
     研究表明水泥水化电阻率-时间曲线很好地描述了水泥的水化进程,根据电阻率-时间曲线和电阻率-时间微分曲线的变化规律,可将水泥水化划分为溶解期、诱导期、加速期和减速期四个阶段。XRD、DSC/TG等方法被用来分析水化不同龄期样品的物相组成、Ca(OH)_2含量,结果表明诱导期后浆体电阻率与水泥的Ca(OH)_2含量呈线性关系,电阻率变化反映了水化程度变化;诱导期的开始伴随着电阻率的突然上升和Ca~(2+)浓度的突然减少,样品的DSC/TG分析表明存在某种水化物在411℃吸热失重,该水化物包裹可能导致了诱导期的出现;电阻率-时间微分曲线在加速中期的峰与AFt转化为AFm有关;研究还发现水化电阻率时间-微分曲线与放热曲线有很好的对应性。
     可以用电阻率最小值ρmin和电阻率最小值对应时间Tmin测定硅酸盐水泥的凝结时间,电阻率法与维卡仪法测得的结果线性相关,相关性系数R~2达0.9以上。测定了不同种类、不同级别水泥水化24小时电阻率ρ24h和28天强度R28d,结果表明二者线性相关,相关性系数R为0.85,电阻率法可用来预测水泥的强度,与现行标准方法相比,电阻率法具有简单、适应性好、自动化程度高、准确度高等优点。
     研究发现掺FDN减水剂浆体的初始电阻率-掺量曲线由典型的“L”型(Langmuir型)和“S”型曲线复合而成,“L”型曲线反映了颗粒对减水剂的Langmuir吸附,而“S”型反映了减水剂的溶解电离作用,初始流动度实验表明,掺FDN减水剂浆体良好的流动度是减水剂吸附和溶解综合作用的结果。而掺木钙减水剂浆体初始电阻率-掺量曲线的变化转折点对应掺量与其临界掺量表现出惊人的一致,电阻率法可以用来测定木钙减水剂的临界掺量。研究还发现当FDN掺量高于最大初始电阻率对应的掺量时,水化电阻率-时间曲线有了明显的变化,这可能因为当掺量高于最大初始电阻率对应掺量时,大量减水剂溶解于溶液中,对水化物Ca(OH)_2等的过饱和度、成核、结晶等产生影响。
Behavior of early age hydration of cement and concrete research is of special significance, but its complexity make researchers feel arduous to do it well, so new methods are continually invented. Electrodless Cement and Concrete Resistivity Tests (abbr. CCR) is a new method invented in recent years, it has virtues of NDT (Non-Destructive Test), and can observe and research the early age cement and concrete not only from a physical standpoint but also from a chemical standpoint. In this paper, firstly, CCR was used to research the cement hydration and the resistivity curve was expatiated; then with the results of the hydration research, setting time determination and cement strength prediction were conducted; finally, CCR was also used to research the interaction of cement and plasticizer.
     Results show that the resistivity curve can describe the hydration course well, based on the resistivity curve and derivate curve of resistivity, the hydration course of Portland cement can be divided into four periods, they are the dissolution period , induction period, accelerating period and decelerating period.
     XRD and DSC/TG and other methods were used to analysis the mineral composing and Ca(OH)_2 content. Results show that resistivity and content of Ca(OH)_2 have a linear relationship after entered into induction period, so the resistivity reflects the hydration degree. The peak of derivate curve of resistivity appearing in the accelerating period is caused by the transformation of AFt to AFm. Induction period begins with a sharp rise of resistivity and a sudden decrease of Ca~(2+) concentration, DSC/TG analysis indicated that some substances were absorbing heat and losing weight at temperature of 411℃, encapsulation effect of hydration products may caused the induction period. It is clear that the derivate curve of resistivity have a good relationship with the curve of hydration heat rate, for both of them belong to the rate category.
     Results also show thatρ_(min), minimum of resistivity, and T_m in, time of minimum resistivity, can be used for testing cement setting time, and the setting time tested by CCR method have a relationship with the setting time tested by Vicat method, the pertinence coefficient is higher than 0.9. Various kinds and classes of cements’resistivity hydrated for 24 hours and their 28-day compressive strength were tested. Results show good linear relationship between 24-hour resistivity and 28-day compressive strength, and CCR method can thus be used for accelerated strength testing.
     When a naphthalene-based super-plasticizer FDN was used to research the interaction of plasticizer and cement, it is found that the curve of initial resistivity versus dosage was compounded by a“L”type curve and a“S”type curve, the“L”type curve reflects the adsorption effect and the“S”type curve reflects the dissolving and ionization effects. The fluidity experiments proved that the best fluidity of slurry with FDN were caused by both adsorption effect and dissolving effect. It is amazing that when the Calcium Lignin Sulfonate was used to be a plasticizer, the dosage of the largest initial resistivity is equal to dosage of the best fluidity. This result means that the resistivity method can be used to test the saturated dosage of Calcium Lignin Sulfonate. It is also found that when the dosage is larger than the dosage of the largest initial resistivity, the resistivity curve of hydration was fundamentally changed, it may because when the plasticizer dissolved in solution, it may affects the hydration products’solubility, nuclear formation and crystallization.
引文
[1] [美]P.K Mehta 著,祝永年,沈威,陈志源译. 混凝土的结构、性能与材料[M]. 上海: 同济大学出版社,1991: 212.
    [2] 隋同波,文寨军,王晶. 水泥品种与性能[M]. 化学工业出版社,2006.
    [3] 隋同波,刘克忠,王晶等. 高贝利特水泥的性能研究[J]. 硅酸盐学报, 27,4(1999):488-492.
    [4] 周士琼. 建筑材料[M]. 北京:中国铁道出版社,2004: 31-36.
    [5] Surendra P. Shah and Kolluru V. Subramaniam. Use of Nondestructive Ultrasonic Techniques for Material Assessment and in-Service Monitoring of Concrete Structures[A]. International Symposium on NDT Contribution to the Infrastructure Safety Systems[C]. 1999 NOV 22-26 Torres, published by UFSM, Santa Maria, RS, Brazil.
    [6] Zhihui Sun, Guang Ye, Thomas Voigt, Surendra P. Shah, Klaas van Breugel. Early age properties of Portland cement pastes investigated with ultrasonic shear waves and numerical simulation[A]. Proceedings of the RILEM International Symposium of Advances in Concrete through and Science and Engineering[C]. Evanston, USA.
    [7] Van der Winden N.G.B. Ultrasonic measurement for setting control of concrete[A]. In: Reinhardt, H.W. (ed.). Testing during concrete construction[C]. Chapman and Hall, London, 1990, 122-137.
    [8] Reinhardt H.-W., Grosse C.U., Continuous monitoring of setting and hardening of mortar and concrete[J]. Construction and building materials, 18(2004)145-154.
    [9] C. U. Grosse, U. Stephanie etc. Ultrasound, Scanning Electron Microscopy and Nuclear Magnetic Resonance Spectroscopy - Comparison of Results Investigating the Hydration Process in Cementitious Materials[A]. Proc. of 15. World Conf. on NDT[C]. Rom 2000.
    [10]G.Ye, P. Lura, K.van Breugel and A.L.A. Fraaij. Study on the development of themicrostructure in cement-based materials by means of numerical simulation and ultrasonic pulse velocity measurement[J]. Cement & Concrete Composites, 2004,(26): 491- 497.
    [11]McSkimin, H.J. Measurements of elastic constants at low temperatures by means of ultrasonic waves-data for silicon and germanium single crystals, and for fused silica[J]. Journal of Applied Physics, Vol. 24 (1953), No. 8, pp. 988-997.
    [12]Stepi?nik, J., Luka?, M. and Kocuvan, I. Measurement of cement hydration by ultrasonics[J]. Ceramic Bulletin, Vol. 60 (1981), No. 4, pp.481-483.
    [13]Vali?, M. I., and Stepi?nik, J., Applications of pulsed USWR method for materials studies[J]. Kovine Zlitine Tehnologije, 1999, 33(5):341- 344.
    [14]T. ?ztürk, J. Rapoport, J.S. Popovics and S.P. Shah. Monitoring the setting and hardening of cement- based materials with ultrasound[J]. Concrete Science and Engineering, 1999, 1~2: 83- 91.
    [15]J. Rapoport, J.S. Popovics, K.V. Subramaniam and S.P. Shah. The use of ultrasound to monitor the stiffening process of Portland cement concrete with admixtures[J]. ACI Material Journal, 2000, 97 (6):675- 683.
    [16]Chotard, T., Gimet- Breart, N., Smith, A., Fargeot, D., Bonnet, J. P., and Gault, C., Application of ultrasonic testing to describe the hydration of calcium aluminate cement at the early age [J]. Cement and Concrete Research, 2001, 30(3) : 405- 412.
    [17]Thomas Voigt, Yilmaz Akkaya, Surendra P. Shah. Determination of Early Age Mortar and Concrete Strength by Ultrasonic Wave Reflections[J]. Journal of Materials in Civil Engineering,2003, (5-6):247- 252.
    [18]H.C. Kim, S.S. Yoon. Ultrasonic measurements during early-stage hydration of ordinary Portland cement[J]. Journal of materials science, 23(1998), 611-616.
    [19]Boutin C., Arnaud L., Mechanical characterization of heterogeneous materials during setting [J]. Eur. J. Mech. A/Solids, 14, 4, pp. 633-656, (1995).
    [20]Arnaud L., Thinet S., Rheology of concrete during setting and hardening. Experimental approach and rheological measurements[J]. Materials and structures, Vol. 36, July 2003, pp 355-364.
    [21]Thinet S., Arnaud L., A device to monitor continuously the setting of concrete[A]. Proc. of 15th World Conf. On Non Destructive Testing[C]. Rome, 2000(10), 15-21.
    [22]Tarun and R. Naik. Determination of the water content of concrete by the microwave method, Cement and concrete research[J]. Vol.17, No.3, 1987, pp.927-938.
    [23]盛泽明. 微波在线测湿仪的安装调试及应用[J]. 混凝土, 2001(8):61-62.
    [24] 杨医博 , 文梓芸 . 水泥基材料的微波养护技术 [J]. 低温建筑技术 , 2001(3):63:65.
    [25]Wittmann. F.H and Schlude. F. Microwave absorption of hardened cement paste[J]. Cement and Concrete Research, Vol.5, No.1, pp63-71, 1975.
    [26]X. Zhang, Y. Yang and C.K. Ong. Study of early hydration of OPC-HAC blends by microwave and calorimetry technique[J]. Cement and Concrete Research, Vol.27, No.9, pp.1419-1428, 1997.
    [27]Nobuhiro Miura, Naoki Shinyashiki and Shin Yagihara. Microwave dielectric study of water structure in the hydration process of cement paste[J]. Journal of American ceramic society, Vol. 81, No.1, pp. 213-216, 1998.
    [28]K. Gorur, M.K. Smit and F.H. Wittmann. Microwave study of hydration cement paste at early age[J], Cement and Concrete Research, Vol.12, pp.447-454, 1982.
    [29]WEI Xiaosheng. Interpretation of hydration process of cement-based materials using electrical resistivity measurement. Hongkong: Hong Kong University of Science and Technology[D], 2004.
    [30][英]P.BARNES著. 水泥的结构与性能[M]. 吴兆琦,汪瑞芬等译. 中国建筑工业出版社,1991:273-274.
    [31][英]F.M.李著. 水泥和混凝土化学[M]. 唐明述,杨南如,胡道和,闵盘荣译. 3. 中国建筑工业出版社,1980:453-454.
    [32]Z Li, W Li. No-Contacting Method for Resistivity Measurement of Concrete Specimen[P]. US and China Patent in Process, 2001.
    [33]LI Zongjin, WEI Xiaosheng, LI Wenlai. Preliminary interpretation of hydration process of portland cement using resistivity measurement[J]. ACI Mater J, 2003,100(3):253-257.
    [34]肖莲珍, 李宗津, 魏小胜. 用电阻率法研究新拌混凝土的早期凝结和硬化[J]. 硅酸盐学报, 2005, 33(10):1271-1275.
    [35]魏小胜, 肖莲珍, 李宗津. 采用电阻率法研究水泥水化过程[J ]. 硅酸盐学报, 2004, 32(1): 34-38.
    [36]何 真, 金雪莉, 梁文泉, 骆翔宇. 电学方法研究掺有窑灰水泥的水化特性[J]. 材料科学与工艺, 2005(6):665-668.
    [37]张丽君, 何真, 梁文泉. 电阻率法研究矿物掺合料对水泥早期水化的影响[J]. 混凝土, 2004, 173 (3): 32-35.
    [38]马保国, 许永和, 董容珍. 三聚磷酸钠对硅酸盐水泥初始水化历程的影响[J ]. 混凝土, 2004 , 181(11):3-4.
    [39]马保国,董容珍,许永和,朱洪波,张莉. 硅酸盐水泥初始水化流变特性与结构形成研究[J]. 铁道科学与工程学报, 2004, 2(1):26-29.
    [40]S.G. Bergstrom, Conclusion from the Symposium on Concrete at Early Ages, Paris, April 6-8, 1982, RILEM Bulletin.
    [41][美]P.K. Mehta. 混凝土的结构、性能与材料[M]. 祝永年,沈威,陈志源译. 同济大学出版社,1991:211.
    [42]袁润章. 胶凝材料学[M]. 2. 武汉工业大学出版社,1996:107.
    [43]W.B. Boast, A Conductometric Analysis of Portland Cement Pastes and Mortars and Some of Its Applications[J]. Journal of American Concrete Institute, 33, 131(1936).
    [44]J.Calleja, Determination of Setting and Hardening Time of High-Alumina Cements by Electrical Resistance Techniques[J]. Journal of American Concrete Institute, 23, 525(1952).
    [45]Ping Gu, Ping Xie, J.J. Beaudoin, R. Brousseau. A.C. Impedance spectroscopy(Ⅰ ):A new equivalent circuit model for hydrated Portland cement paste[J]. Cement and Concrete Research, Vol.22, No.5, pp.833-840, 1992.
    [46]Ping Gu, Yan Fu, Ping Xie and J.J. Beaudoin. A study of the hydration and setting behavior of OPC-HAC pastes[J]. Cement and Concrete Research. Vol.24, No.4, pp.682-694, 1994.
    [47]E.J. Garboczi, L.M. Schwartz, D.P. Bentz. Modelling the D.C. electrical conductivity of mortar[J], Material Research Society Symp. Proc370 (1995) 429-436.
    [48]O. Henning and A. Oelschlager, Binde-baustoff-Taschenbuch[M], 305(1984).
    [49]K.R. Backe, O.B. Lile, S.K.Lyomov. Characterizing curing cement slurries by electrical conductivity[J]. December 2001 SPE Drilling & Completing, 201-207.
    [50]F.D. Tamas. Electrical conductivity of cement paste[J]. Cement and Concrete Research, Vol.12, pp.115-120, 1982.
    [51]F.D. Tamas. Low-frequency electrical conductivity of cement, clinker and clinker mineral pastes[J]. Cement and Concrete Research, Vol.17, No.2, pp.340-348, 1987.
    [52]W.J. McCarter. Gel formation during early hydration[J]. Cement and Concrete Research, Vol.17, No.1, pp.55-64, 1987.
    [53]W.J. McCarter, A. B. Afsher. Monitoring the early hydration mechanisms of hydraulic cement[J]. Journal of Materials Science, 23 (1998) 488-496.
    [54]W.J. McCarter, T.M. Chrisp, G. Starrs, J. Blewett. Characterization and monitoring of cement-based systems using intrinsic property measurements[J]. Cement and Concrete Research, 33 (2003), 197-206.
    [55]C.Vernrt, E. Démoulian, P. Gourdin, F. Hawthorn. Hydration kinetics of Portland cement[A]. 7th International Congress on the Chemistry of Cement[C]. Part Ⅱ, Paris, 219-224,1980.
    [56]Youssef EI Hafiane, Agnès. Smith, Jean Pierre Bonnet, Pierre Abélard, Philippe Blanchart. Electrical characterization of aluminous cement at the early age[J]. Cement and Concrete Research 30 (2000) 1057-1062.
    [57]Wolfgang Brameshuber, Tanja Brockmann. Electrical conductivity measurements to characterize the setting and hardening of mortars[A]. International Symposium of NDT in Civil Engineering 2003[C].
    [58]袁润章. 胶凝材料学[M]. 2. 武汉工业大学出版社,1996:108-109.
    [59]Ping Gu, Ping Xie, J.J. Beaudion and C. Jolicoeur. Investigation of the retarding effect of superplasticizers on cement hydration by impedance spectroscopy andother methods[J]. Cement and Concrete Research, Vol.24, No.3, pp.433-442, 1994.
    [60]史美伦, 张莹. 水泥水化早中期的交流阻抗研究( Ⅰ) ——起始期的交流阻抗分析[J]. 建筑材料学报, 2002, 5(3): 210-214.
    [61]史美伦, 张莹. 水泥水化早中期的交流阻抗研究( Ⅱ) ——诱导期到减速期的交流阻抗响应[J]. 建筑材料学报, 2002, 5(4): 331-335.
    [62]W.J. McCarter, G. Starrs, T.M. Chrisp, Electrical conductivity, diffusion, and permeability of Portland cement-based mortars[J], Cement and Concrete Research, pp: 1395-1440, 30(2000).
    [63]J.M. Torrents, J. Roncero and R. Gettu. Utilization of impedance spectroscopy for studying the retarding effect of a superplasticizer on the setting of cement[J]. Cement and Concrete Research, Vol.28, No.9, pp.1325-1333, 1998.
    [64]Young-Min Kin, Jong-Heun Lee, Seong-Hyeon Hong. Study of alinite cement hydration by impedance spectroscopy[J]. Cement and Concrete Research, Vol.33, No.3, 2003.
    [65]申爱琴, 张登良. 水泥与水泥混凝土[M]. 人民交通出版社,2002:57-68.
    [66][美]Steven H. Kosmatka, Beatrix Kerkhoff, William C. Panarese, 混凝土设计与控制. 钱觉时,唐祖全,卢忠远,王智译,14 版. 重庆大学出版社,2005:58-59.
    [67]陆昌伟. 热分析质谱法[M]. 上海科学技术出版社. 2002.
    [68]袁润章. 胶凝材料学[M]. 2. 武汉工业大学出版社,1996:37-39.
    [69]杨南如, 岳文海. 无机非金属材料图谱手册[M]. 2000.
    [70][英]P.BARNES 著.水泥的结构与性能[M].吴兆琦,汪瑞芬等译.中国建筑工业出版社,1991:243.
    [71][英]P.BARNES 著.水泥的结构与性能[M].吴兆琦,汪瑞芬等译.中国建筑工业出版社,1991:277.
    [72][英]P.BARNES 著.水泥的结构与性能[M].吴兆琦,汪瑞芬等译.中国建筑工业出版社,1991:282.
    [73][美]Steven H. Kosmatka, Beatrix Kerkhoff, William C. Panarese. 混凝土设计与控制[M]. 钱觉时,唐祖全,卢忠远,王智译,14 版. 重庆大学出版社,2005:53.
    [74][美]P.K. Mehta. 混凝土的结构、性能与材料[M]. 祝永年,沈威,陈志源译. 同济大学出版社,1991:229-230.
    [75]袁润章.胶凝材料学[M]. 2. 武汉工业大学出版社,1996:118-119.
    [76]R.W. Carlson and L.R. Forbrick, Ind. Engng Chem, analyt. 10, 382(1938).
    [77]W. Lerch, Proc, Am. Soc. Test. Mater. 46, 1252 (1946).
    [78]Niyogi, S.K., Das Roy, P.K., Roychaudhuri, M. (1990) Acousto-ultrasonic study on hydration of portland cement. Cer. Trans., Vol. 16, pp. 137-145.
    [79]Keating, J., Hannant, D.J., Hibbert, A.P. (1989a) Comparison of shear modulus and pulse velocity techniques to measure the build-up structure in fresh cement pastes used in oil well cementing. Cem. Conc. Res., Vol 19, pp. 554-566.
    [80]Keating, J., Hannant, D.J., Hibbert, A.P. (1989b) Correlation between cube strength, ultrasonic pulse velocity and volume change for oil well cement slurries. Cem. Conc. Res., Vol. 19, pp. 715-726.
    [81]H. W. Reinhardt, C. U. Grosse. Ultrasound technique for quality control of cementitious materials. International Committee for Non-destructive Testing(ICNDT). Proceedings of the 15th World Conf. on NDT, Rome (2000)
    [82]H. W. Reinhardt, C. U. Grosse. Setting and hardening of concrete continuously monitored by elastic waves. Bartos, P. J. M. et al. (Ed.). Proc. of the Int. RILEM Conference "Production methods and workability of concrete", Paisley/Scotland, 32(1996):415-425.
    [83]Thomas Voigt and Surendra P. Shah,Properties of Early-Age Portland Cement Mortar Monitored with Shear Wave Reflection Method[J], ACI Materials Journal, V. 101, No. 6, 2004,pp473-482.
    [84]I. Ana, Chem. Oil Gas Roman. 6, 130(1970).
    [85]G.E. Monfore, PCA Res. Dev. Lab. 1968, 35.
    [86]G. Szuk and I. Naray-Szabo, Acta Tech. Acad. Sci. Hung. 22, 83(1958).
    [87][美 ]P.K. Mehta. 混凝土的结构、性能与材料[ M]. 祝 永年,沈威,陈志源译. 同济大学出版社, 1991:180-181.
    [88]袁 润章 . 胶凝材料学 [M]. 2. 武 汉工业大学出版社, 1996:116.
    [89]徐惠珍. 水泥凝结时间测定方法值得改进[J]. 四川水泥,1994:11.
    [90]A. Princigallo, K. van Breugel and G. Levita. Influence of the aggregate on the electrical conductivity of Portland cement concrete[J]. Cement and Concrete Research, 33(2003):1755-1763.
    [91]A. van Beek. Dielectric properties of young concrete-non-destructive dielectric sensor for monitoring the strength development of young concrete[D]. PhD thesis. Delft University of Technology, Delft, 2000.
    [92]袁润章. 胶凝材料学[M]. 2. 武汉工业大学出版社,1996:141-142.
    [93][美]P.K. Mehta.混凝土的结构、性能与材料[M]. 祝永年,沈威,陈志源译. 同济大学出版社, 1991:30.
    [94][英]P.BARNES 著.水泥的结构与性能[M]. 吴兆琦,汪瑞芬等译. 中国建筑工业出版社, 1991:313-314.
    [95]魏小胜,肖莲珍,李宗津. 电阻率法快速测定水泥强度的原理[A]. HPC 2002第四届全国高性能混凝土学术研讨会论文集[C]. 2002:183-186.
    [96][美]P.K. Mehta.混凝土的结构、性能与材料[M]. 祝永年,沈威,陈志源译. 同济大学出版社, 1991:177-179.
    [97]陈文豹,田培,李功洲等. 混凝土外加剂及其在工程中的应用[M]. 煤炭工业出版社, 1998:15-27.
    [98]建筑材料科学研究院水泥研究所等. 建筑材料研究报告:混凝土减水剂[M]. 中国建筑工业出版社,1979:303-331.
    [99]黄大能等. 混凝土外加剂应用指南[M]. 中国建筑工业出版社,1989.
    [100]杨百科主编. 混凝土实用新技术手册[M]. 吉林科学技术出版社,1998:64-71.
    [101]B.G. Kim, S. Jiang and C. Jolicoeur. The Adsorption Behavior of PNS Superplaslicizer and Its Relation to Fluidity of Cement Paste. Cement and Concrete Research, 2000(30):887-893.
    [102]Pierre-Claver Nkinamubanzi, Byung-Gi Kim 等. 影响萘系高效减水剂与普通硅酸盐水泥适应性的一些关键的水泥因素[A]. 第六届超塑化剂及其他混凝土外加剂国际会议[C][译文]. 2001:21-31.
    [103]王子明. “水泥-水-高效减水剂”系统的界面化学现象与流变性能[D]. 北京工业大学博士论文. 2006:27-48.
    [104]颜肖慈,罗明道. 界面化学[M]. 化学工业出版社,2004:148-155.
    [105]刘秉京. 高效减水剂和水泥的适应性[J]. 混凝土, 2002(9):20-25.
    [106]王谦. 萘系减水剂吸附与保塑性能研究[D]. 南京工业大学硕士学位论文. 2003:28-33.
    [107]冯乃谦. 氨基磺酸系高效减水剂的研制及其混凝土的特性[J]. 混凝土与水泥制品, 2002 (2):8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700