木质素磺酸盐对硅酸盐水泥凝结时间的影响及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素磺酸盐减水剂来源于制浆造纸废液,具有价格低、引气性与缓凝性好的优点,从资源、环境和安全等绿色化发展的角度考虑,它是一种具有广泛应用潜力的环保型产品。但它存在减水率低、提高混凝土强度少,同时与水泥相容性差,有时会引起混凝土速凝或不凝等问题,限制其应用范围。经化学改性后木质素磺酸盐减水率提高,可较大程度地提高混凝土的工作性能,但与掺硬石膏的硅酸盐水泥相容性差,易引起水泥速凝(异常凝结)的问题还是不能得到解决,这会导致施工困难和混凝土性能急剧下降,使其应用受到了一定的限制。
     要改善木质素磺酸盐减水剂与水泥的相容性、提高其应用范围,首先需要揭示其引起水泥速凝的原因及作用机理。由于水泥的凝结与水化紧密相关,因此,速凝机理的研究应结合凝结时间与水化过程两个方面来开展。
     本论文首先系统研究了木质素磺酸钙(简称木钙)的超滤级分、石膏形态、碱含量和C_3A含量对硅酸盐水泥凝结时间的影响,发现木钙中的低分子量级分、水泥中的硬石膏和C_3A含量是导致速凝的主要因素。当硅酸盐水泥中调凝剂是硬石膏且C_3A含量较高时,掺加0.4%的低分子量木钙级分能使水泥的初凝时间从不掺时的57min急剧缩短至5min,终凝时间从103min急剧缩短至9min。
     通过UV、HPLC和AAS等测试手段,分析了木钙及其不同分子量级分的木质素、还原糖的含量及其单糖组分和无机盐成分,结果表明,使用截留分子量为2500和150的滤膜超滤分级后,高分子量级分的木钙(CL-A)得到提纯,而低分子量级分木钙(CL-C)含有大部分的还原糖和无机盐。木钙中所含还原糖单糖组分主要是葡萄糖、甘露糖、木糖、阿拉伯糖和半乳糖。进一步研究了还原性单糖及无机盐对硅酸盐水泥凝结时间的影响,得出木钙中的五种单糖是造成水泥CEM-II(调凝剂是硬石膏且C_3A含量较高)速凝的主要成分。
     为了深入揭示木质素磺酸盐引起掺硬石膏硅酸盐水泥速凝的原因与作用机理,以液相为研究目标,通过IC、AAS和精密pH计等测试手段,研究了木钙及其不同分子量级分对C_3A-CaSO_4体系液相离子浓度的影响;以固相为研究目标,通过XRD、TG-DSC和SEM等测试手段,研究了木钙及其不同分子量级分对C_3A-CaSO_4体系不同时间水化产物物相组成和微观形貌的影响。结合木钙对掺二水石膏和硬石膏硅酸盐水泥两种体系凝结时间的不同影响进行分析,得到以下结论:
     (1)在C_3A-二水石膏体系中掺加粗木钙时,液相SO_4~(2-)浓度、Ca~(2+)浓度和CaSO_4饱和率都不同程度地增加。
     在C_3A-二水石膏体系初始水化30min时,与空白样相比,掺加粗木钙的样品中,针棒状钙矾石晶体数量增加,长度为1~2μm,相互搭接紧密;掺加高分子量级分CL-A的样品中,钙矾石数量与空白样接近,但针、棒状钙矾石晶体尺寸更小,长度为0.5~1.5μm,相互搭接更紧密。掺加粗木钙或CL-A级分的样品生成更多或更细的针棒状钙矾石晶体,可在C_3A颗粒表面形成更加密实的保护层,从而延缓C_3A的水化。因此,CL-A级分对水泥P·II42.5R有较强的缓凝作用,木钙掺量较高(≥1.0%)时,水泥P·II42.5R长时间不凝,发生过度缓凝现象。
     与之不同的是,低分子量级分CL-C对水泥P·II42.5R凝结时间的影响很小。水化研究发现,在C_3A-二水石膏体系初始水化30min时,掺加CL-C级分的样品中钙矾石晶体的数量和尺寸与空白样差别不大,因而对C_3A水化的延缓不明显,不影响水泥凝结时间。
     (2)在C_3A-硬石膏体系,与空白水化样相比,掺加粗木钙和CL-C级分的样品液相Ca~(2+)浓度增加,但由于钙矾石晶体的快速形成消耗了大量的硫酸盐,SO_4~(2-)浓度和CaSO_4饱和率都不同程度地降低,尤其在初始水化1min时,液相SO_4~(2-)浓度和CaSO_4饱和率几乎降至零。
     高分子量级分CL-A和低掺量(≤0.3%)的粗木钙能使水泥CEM-II凝结时间延长,但延长幅度较小。水化研究发现,在C_3A-硬石膏体系初始水化30min时,与空白样相比,掺加CL-A级分和木钙的样品中,钙矾石晶体数量大幅度增加,晶体尺寸大于空白样(掺木钙的长度为2~4μm,掺CL-A级分的长度为2μm左右),相互搭接不够紧密。分析认为,这种数量多但较大的钙矾石晶体在C_3A颗粒表面能形成保护层,但不够密实,因此对C_3A和水泥CEM-II水化具有较弱的延缓作用。
     当掺加1.0%的粗木钙或0.4%的低分子量级分CL-C时,水泥CEM-II凝结时间仅10min左右,发生速凝现象。研究发现,在C_3A-硬石膏体系初始水化30min时,掺加CL-C级分的样品与空白样相比,钙矾石晶体数量大幅度增加,呈长棒状且尺寸更大(长度为6~8μm),晶体间有明显孔隙,因此难以在C_3A颗粒周围形成可以阻止液相扩散的密实的保护层,C_3A与硬石膏快速反应,导致水泥CEM-II迅速凝结。
     论文还通过XRD、TG-DSC和SEM等测试手段,研究了低分子量木钙级分CL-C和五种单糖对不同水化时间水泥CEM-II水化产物物相组成和微观形貌的影响,发现低分子量木钙级分CL-C和阿拉伯糖引起水泥CEM-II速凝时,针棒状的钙矾石晶体发育不好,尺寸较小,没有相互搭接呈松散分布,进一步说明由于钙矾石晶体没有在水泥颗粒表面上形成保护层,不能延缓水泥颗粒特别是C_3A的继续水化,引起水泥CEM-II快速凝结。
Lignosulfonate water reducer, recovered from spent sulfite pulping liquor, has theadvantages of low-price, good air-entraining and retarding performances. From the point ofresource, environment and security, it is a kind of eco-friendly product with the potential ofwidespread use. However, there are some problems limiting its application, such as lowwater-reducing efficiency, low-efficiency in improving concrete strength, and poorcompatibility between lignosulfonate and cement which can sometimes lead to quick set orexcessive retarding of concrete. By chemical modification, lignosulfonate water-reducershows a higher water-reducing efficiency, and a better workability of concrete, but theproblem of quick set (abnormal setting) induced by the poor compatibility betweenlignosulfonate and cement containing anhydrite remains unsolved, and in this case,construction becomes very difficult and properties of concrete decline sharply, which addscertain constraints to the application.
     In order to improve the compatibility between lignosulfonate and cement, and extend theapplication of lignosulfonate water-reducer, the reason and action mechanism of the quick setinduced by the use of lignosulfonate should be first revealed. The setting of cement is muchrelated to its hydration, so the research of action mechanism of quick set should be carried outfrom two aspects of setting time and hydration process.
     Firstly, the effects of ultrafiltration fraction of calcium lignosulfonate (CL), the form ofcalcium sulfate, the alkali content and the C_3A content on setting time of Portland cementhave been systematically investigated in this paper. The result shows that the major factorsthat lead to the quick set are the low molecular weight fraction of CL, the anhydrite and C_3Acontent in cement. When the retarder is anhydrite and the C_3A content is relatively high inPortland cement, the addition of0.4%CL fraction with a low molecular weight can sharplyshorten initial set from57min to5min and final set from103min to9min.
     By UV, HPLC and AAS, the contents of lignin, the contents of reducing sugar and itsmonosaccharide components and the compositions of inorganic salt of the CL with differentmolecular weight fractions have been analyzed. The result shows that by ultrafiltration andfractionation, the CL fraction with a high molecular weight (CL-A) is purified, and the CLfraction with a low molecular weight (CL-C) contains most of reducing sugar and inorganicsalt. The main monosaccharide components of reducing sugar in CL are glucose, mannose,xylose, arabinose and galactose. The effects of the reductive monosaccharides and inorganic salt on setting time of Portland cement have been further studied. The result shows that theabove-mentioned five monosaccharides in the CL are the principal components of inducingthe quick set of CEM-II (the cement containing anhydrite as a retarder and relatively highC_3A content).
     In order to thoroughly reveal the reason and action mechanism of quick set of the cementcontaining anhydrite induced by the use of lignosulfonate, regarding liquid phase as theresearch target, by IC, AAS and pH meter, the effects of CL and its different molecular weightfractions on the ion concentration of liquid phase in the C_3A-CaSO_4system have been studied;regarding solid phase as the research target, by XRD, TG-DSC and SEM, the effects of theCL and its different molecular weight fractions on the phase compositions and morphology ofhydration products at different time in the C_3A-CaSO_4system have been studied. Based onthe analysis of the different effects of the CL on setting times of the cement containinggypsum and another cement containing anhydrite, the following conclusions have beendrawn:
     When the CL is added to the C_3A-gypsum system, SO_4~(2-)concentration, Ca~(2+)concentration and CaSO_4saturation ratio in the liquid phase all increase to some extent.
     At the first30min of hydration in the C_3A-gypsum system, compared with the blanksample, in the sample containing the CL, ettringite crystals of needle and rod increase in theamount, are about1~2μm in length, overlap each other closely; in the sample containing theCL-A fraction with a high molecular weight, the amount of ettringite is close to that of theblank sample, but ettringite crystals of needle and rod are smaller in size, are about0.5~1.5μm in length, overlap each other more closely. In the sample containing the CL or the CL-A,ettringite crystals of needle and rod are more or smaller, which can form covering layeraround the C_3A grains more tightly, and delay the hydration of the C_3A. So, the CL-A hasrelatively strong setting retarding effect on the P·II42.5R, in the high dosage of CL (≥1.0%),the P·II42.5R cannot coagulate for a long time, and the phenomenon of excessive retardinghappens.
     Unlike the CL-A, the CL-C fraction with a low molecular weight has little effect on thesetting time of P·II42.5R. The result of hydration research shows that at the first30min ofhydration in the C_3A-gypsum system, in the sample containing the CL-C, the amount and sizeof ettringite crystals have little difference from that of the blank sample. As a result, the CL-Ccannot delay the hydration of the C_3A obviously, and has little effect on the setting time.
     In the C_3A-anhydrite system, compared with the blank sample, in the sample containingthe CL or the CL-C, Ca~(2+)concentration in the liquid phase increases, but due to the rapid formation of ettringite crystal depletes large amount of sulfate, SO_4~(2-)concentration andCaSO_4saturation ratio in the liquid phase all decrease to some extent, especially during thefirst1min of hydration, SO_4~(2-)concentration and CaSO_4saturation ratio are close to zero.
     The CL-A fraction with a high molecular weight and the low dosage of CL (≤0.3%) canprolong the setting time of CEM-II, but within a relatively small range. The result ofhydration research shows that at the first30min of hydration in the C_3A-anhydrite system,compared with the blank sample, in the sample containing the CL-A or the CL, the amount ofettringite crystals substantially increase, the crystal sizes are bigger than that of the blanksample (the lengths are about2~4μm in the presence of CL, and about2μm in the presenceof CL-A), and the ettringite crystals do not overlap each other closely. The analysis suggeststhat the ettringite crystals are large in the amount, but big in size, which can form coveringlayer around the C_3A grains, but the covering layer is not tight, so the setting retarding effecton the C_3A and the CEM-II is weak.
     When the CL is added in the dosage of1.0%or the CL-C fraction with a low molecularweight is added in the dosage of0.4%, the setting time of CEM-II is about10min, and thephenomenon of excessive retarding happens. The result of hydration research shows that atthe first30min of hydration in the C_3A-anhydrite system, compared with the blank sample, inthe sample containing the CL-C, ettringite crystals substantially increase in the amount, andare mostly present in the form of long rods, and are much bigger than that of the blank sample(about6~8μm in length), and there are pore spaces between the crystals, so it is hard to formtight covering layer around the C_3A grains to hinder the diffusion of the liquid phase, and theC_3A continues to react with the anhydrite rapidly, leading to the quick set of CEM-II.
     By XRD, TG-DSC and SEM, the effects of the CL-C fraction with a low molecularweight and the above-mentioned five monosaccharides on the phase compositions andmorphology of hydration products of CEM-II at different time have been studied too in thispaper. The result shows that in the case of the quick set of CEM-II induced by the CL-Cfraction with a low molecular weight and arabinose, relatively fine ettringite crystals of needleand rod do not get a well growth or overlap each other. It is further demonstrated that due toettringite crystals do not form complete covering layer around the cement grains to delay thesubsequent hydration of cement and C_3A, the CEM-II reaches to setting quickly.
引文
[1]杨淑蕙.植物纤维化学(第三版)[M].北京:中国轻工业出版社,2001:5-7
    [2] Dizhbite T., Zakis G., Kizima A., et al. Lignin—a useful bioresource for the productionof sorption–active materials [J]. Bioresource Technology,1999,67:221-228
    [3] Mai C., Majcherczyk A.,Huttermann A.. Chemo-enzymatic synthesis and characterizationof graft copolymers from lignin and acrylic compounds [J]. Enzyme and MicrobialTechnology,2000,27:167-175
    [4] Rajan, Nidhi, Gupta, A., Mathur, R.M., Kulkarni, A.G.. Development of ligninby-products for industrial applications [J]. IPPTA: Quarterly Journal of Indian Pulp andPaper Technical Association,2001,(13):49-55
    [5] Nadif A., Hunkeler D., Kaauper P., Sulfur-free lignins from alkaline pulping tested inmortar for use as mortar additives [J]. Bioresource Technology,2002,8(4):49-55
    [6]蒋挺大.木质素(第二版)[M].北京:化学工业出版社,2009:19-22,58-59
    [7] A. Kamouna, A. Jelidib, M. Chaabouni. Evaluation of the performance of sulfonatedesparto grass lignin as a plasticizer-water reducer for cement [J]. Cement and ConcreteResearch,2003,33:995-10003
    [8]中野凖三.木质素的化学—基础与应用[M].高洁,鲍和,李中正译.北京:中国轻工业出版社,1988:137-143
    [9] Mansue A D. Analytical methods for determining functional groups in various technicallignins [J]. Industrial Crops. and Products,2006,27:116-124
    [10] Rana D, Neale G H, Hornof V. Surface tension of mixed surfactant systems:lignosulfonate and sodium dodecyl sulfate [J]. Colloid Polym. Sci.,2002,280:775-778
    [11] Winowiski. Tom, Lebo.Stu, Gretland, Kristin, et al.. Characterization of sulfonated lignindispersants by hydrophobic interactive chromatography [J]. Journal of ASTMInternational,2005,2(9):369-374
    [12]杨东杰.木素磺酸盐表面物化性能及高效减水剂GCLl作用机理研究[D].广州:华南理工大学,1999
    [13]田震.碱木素的化学改性及其作为减水剂的应用基础研究[D].广州:华南理工大学,2003
    [14]吴达会.共聚改性木质素磺酸盐减水剂的制备研究[D].南京:南京林业大学,2011
    [15] Pang Yuxia, Wen Weineng, Lou Hongming, et al.. Synthesis of lignin-modifiedsulfanilate-phenol-formaldehyde condensate and application as concrete superplasticizer[J]. Applied Mechanics and Materials,2012,174-177:1238-1246
    [16] Wang Zhe, Xue Jingwen, Zhang Jishi, et al.. Concrete superplasticizer prepared fromcatalytic oxidation of lignosulfonate [J]. Advanced Materials Research,2012,424-425:1088-1092
    [17]楼宏铭,邱学青,庞煜霞,等.改性木质素磺酸盐缓蚀阻垢剂对水质的适应性[J].精细化工,2005,22(7):536-539
    [18]吴耿.改性木素磺酸盐缓蚀阻垢剂的应用性能研究[D].广州:华南理工大学,2004
    [19] Ouyang Xinping, Qiu Xueqing, Lou Hongming, et al.. Corrosion and scale inhibitionproperties of sodium lignosulfonate and its potential application in recirculating coolingwater system [J]. Industrial and Engineering Chemistry Research,2006,45:5716-5721
    [20]刘鸿. SJ型木质素复合水泥助磨剂[J].中国科学基金,1988(4):29
    [21]潘兵.木质素基水泥助磨剂的研制及性能研究[D].广州:华南理工大学,2011
    [22] Assaad Joseph J., Asseily Salim E. Use of water reducers to improve grindability andperformance of Portland cement clinker [J]. ACI Materials Journal,2011,108:619-627
    [23]邱学青,王卫星,欧阳新平,等.水煤浆的改性木素磺酸盐分散剂及其制备方法[P].CN:02135096,2003
    [24]周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散降黏作用机理研究[D].广州:华南理工大学,2007
    [25] Zhang Yanlin, Qiu Xueqing, Wang Weixing. Influence of the sodium lignosulfonatesurfactant on the rheological behavior of coal-water suspensions [J]. Sichuan DaxueXuebao (Gongcheng Kexue Ban)/Journal of Sichuan University (Engineering ScienceEdition),2005,37:42-46
    [26] Narayanan., Kolazi S., Edward, et al. Free-flowing, non-dusting water dispersiblegranules of a water-insoluble, hydrophobic agriculturally active chemical having lowfriability and superior crush strength [P]. US:5714157,1997
    [27] Fernández-Pérez M., Garrido-Herrera F. J., González-Pradas E. Alginate andlignin-based formulations to control pesticides leaching in a calcareous soil [J]. Journal ofHazardous Materials,2011,190:794-801
    [28] Garrido-Herrera F.J., Daza-Fernández I., González-Pradas E., et al. Lignin-basedformulations to prevent pesticides pollution [J]. Journal of Hazardous Materials,2009,168:220-225
    [29]李志礼,庞煜霞,葛圆圆,等.木质素磺酸钠分散剂的制备及其在农药中的应用[J].中国造纸,2010,5:38-42
    [30]湛凡更,李忠正.木质素表面活性剂的开发与应用[J].纤维素科学与技术,1995,3(4):1-9
    [31]焦艳华.改性木质素磺酸盐的合成及其在三次采油中的应用研究[D].大连:大连理工大学,2005
    [32]赵颖华,徐艳姝,王海峰,等.木质素磺酸盐的改性及其在三次采油中的应用[J].大庆石油地质与开发,2005,24(4):90-92
    [33]王安安.木质素系陶瓷分散剂的制备及其应用性能研究[D].广州:华南理工大学,2010
    [34] Cerrutti B.M., de Souza C.S., Castellan A., et al. Carboxymethyl lignin as stabilizingagent in aqueous ceramic suspensions [J]. Industrial Crops and Products,2012,36:108-115
    [35] Perdih Franc, Perdih Anton. Lignin selective dyes: Quantum-mechanical study of theircharacteristics [J]. Cellulose,2011,18:1139-1150
    [36]刘纲勇,邱学青,邢德松.工业木质素在木材胶粘剂中应用的研究进展[J].精细化工,2007,24(2):190-193
    [37] Navarrete P., Pizzi A., Tapin Lingua S., et al. Low formaldehyde emitting biobasedwood adhesives manufactured from mixtures of tannin and glyoxylated lignin [J]. Journalof Adhesion Science and Technology,2012,26:1667-1684
    [38] Abdelwahab N. A., Nassar M. A. Preparation, optimisation and characterisation of ligninphenol formaldehyde resin as wood adhesive [J]. Pigment and Resin Technology,2011,40:169-174
    [39]邱学青,杨东杰,欧阳新平.木素磺酸盐在固体颗粒表面的吸附性能[J].化工学报,2003(8):1155-1159
    [40]]邱学青,欧阳新平,杨东杰.工业木索的资源化生态利用[A].金涌,李有润,冯久田.生态工业:原理与应用[C].北京:清华大学出版社,2003:266-283
    [41] Houst Yves F, Paul Bowe, Francois Perche, et al. Design and function of novelsuperplasticizers for more durable high performance concrete(superplast project)[J].Cement and Concrete Research,2008,38:1197-1209
    [42]陈克复.我国造纸工业对环境的污染及解决方法[J].化学进展,1998,10(2):179-184
    [43] Call P H. History, overview and applications of mediated lignolytic systems, especially,laccase-mediator-systems (Lignozym-process)[J]. Journal of Biotechnology,1997,53:163-202
    [44]杨问波,穆环珍,黄衍初. AS法制浆废液改性减水剂实验研究[J].上海环境科学,2001,(4):182-183
    [45]杨问波,穆环珍,黄衍初.造纸制浆废液减水剂研究[J].环境科学与技术,2000,(4):8-10
    [46]熊大玉,王小虹.混凝土外加剂[M].北京:化学工业出版社,2002:65-67
    [47] T. Zhang, S. Shang, F. Yin, A. Aishah, A. Salmiah, T.L. Ooi, Adsorptive behavior ofsurfactants on surface of Portland cement [J]. Cem. Concr. Res.,2001,31:1009–1015
    [48] X. P. Ouyang, X. Q. Qiu, P. Chen, Physicochemical characterization of calciumlignosulfonate–A potentially useful water reducer [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2006,282-283:489-497
    [49] C. Li, Q. W. Pan, J. Zhang, X. J. Qin, Z. F. Wang, L. J. Liu, M. S. Pei, The modificationof calcium lignosulfonate and its applications in cementitious materials[J]. J. DispersionSci. Technol.,2007,28:1205-1208
    [50] Andrew C. Jupe, Angus P. Wilkinson, Karen Luke, Gary P. Funkhouser, Class H oil wellcement hydration at elevated temperatures in the presence of retarding agents: an in situhigh-energy X-ray diffraction study [J]. Ind. Eng. Chem. Res.,2005,44:5579–5584
    [51] X. W. Wu, H. Zhang, Preparation of cement water reducer of modified lignosulfonate [J].Adv. Mater. Res.,2011,168-170:541–544
    [52]冯乃谦,王湘才,张智峰,等.一种水泥混凝土减水剂的制造方法[P].中国:1648099A,2005
    [53]李学平,鲁爱国.改性木质素聚羧酸水泥分散剂的制备方法[P].中国:100453493C,2009
    [54]杨东杰,邱学青,陈焕钦.缓凝高效减水剂GCL1的研制及性能表征[J].精细化工,2001,18(11):674-677
    [55] Lou Hongming,Qiu Xueqing,Yang Dongjie,etc. Study on the Action Mechanism ofModified Calcium Lignosulfonate GCL1Water Reducer [J]. Journal of South ChinaUniversity of Technology (Natural Science Edition),2002,30(1):53-57
    [56]邱学青,杨东杰,王晓东.改性木质素磺酸钙高效减水剂GCL1-3A性能研究[J].化学建材,2001,(2):40
    [57]庞煜霞,楼宏铭,邱学青,等.改性木素磺酸盐高效减水剂对水泥水化及混凝土耐久性的影响[J].四川大学学报(工程科学版),2005,37(1):74-77
    [58]庞煜霞,邱学青,欧阳新平,等.改性木素磺酸盐泵送剂GCL1-3的制备及性能研究[J].精细化工,2001,18(10):595-598
    [59]邱学青,庞煜霞,杨东杰,等.超缓凝高效减水剂GCL1-5的性能研究[J].化学建材,2003,(2):46-49
    [60]谢祥明,林建伟,邱学青.木钙的改性与水工绿色高性能混凝土(GHPC)的探索[J].武汉大学学报(工学版),2001,34(5):92
    [61]江海棉,潘运方,欧阳新平.GCL1系列缓凝高效减水剂在东深供水改造工程的应用[J].广东水利水电,2003,(5):78-79
    [62]覃维祖.混凝土及其外加剂的进展与展望[J].石油工程建设,2002,28(4):1~5
    [63]蔡灿柳,张春晓.工程施工中应重视减水剂与水泥的适应性问题[J].隧道建设,2003,23(1):24~25
    [64] Pierre-Claude Aitcin. Cements of yesterday and today Concrete of tomorrow [J]. Cementand Concrete Research,2000,30:1349-1359
    [65]沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991:179-180
    [66] Fritz Kreppelt, Martin Weibel, Davide Zampini, et al. Influence of solution chemistry onthe hydration of polished clinker surfaces–a study of different types of polycarboxylicacid-based admixtures [J]. Cement and Concrete Research,2002,32:187-198
    [67] Joana Roncero, Susanna Valls, Ravindra Gettu. Study of the influence ofsuperplasticizers on the hydration of cement paste using nuclear magnetic resonance andX-ray diffraction techniques [J]. Cement and Concrete Research,2002,32:103-108
    [68] M. Heikal, M.S. Morsy, I. Aiad. Effect of treatment temperature on the early hydrationcharacteristics of superplasticized silica fume blended cement pastes [J]. Cement andConcrete Research,2005,35:680-687
    [69] S. Chandra, J. Bjo¨rnstro¨m. Influence of superplasticizer type and dosage on theslump loss of Portland cement mortars–Part II [J]. Cement and Concrete Research,2002,32:1613-1619
    [70] Eisa E. Hekal, Essam A. Kishar. Effect of sodium salt of naphthalene-formaldehydepolycondensate on ettringite formation [J]. Cement and Concrete Research,1999,29:1535-1540
    [71] W. Prince, M. Edwards Lajnef, P. C. A tcin. Interaction between ettringite and apolynaphthalene sulfonate superplasticizer in a cementitious paste [J]. Cement andConcrete Research,2002,32:79-85
    [72] M. N. Onofrei, M. N. Gray. Adsorption studies of35S-labelled superplasticizer incement based Grout [A]. Y. M. Malhotra. Proceedings of the Third InternationalConference on Superplasticizers and Other Chemical Admixtures in Concrete [C]. ACISP-119,1989:545-660
    [73] H. Poellmann. Carboxylic acid anions: the reaction mechanisms and products withthealuminate phase of cement [A]. Int. Symp. Chem. Cem.[C]. New Delhi,1992:198-204
    [74] Robet J Flatt, Yves F.Houst. A simplified view on chemical effects perturbing the actionof superplasticizers [J]. Cement and Concrete Research,2001,31:1169-1176
    [75] F. Massazza, U. Costa. Effect of superplasticizers on the C3A hydration [A]. Proceedingsof the7th International Congress on the Chemistry of Cement [C]. Paris,1980:529-534
    [76] S. L. Sarkar, A. Xu. Preliminary study of very early hydration of superplasticizerdC3A+gypsum by environmental SEM [J]. Cement and Concrete Research,1992,22:605-608
    [77] D. M. Roy, K. Asaga. Rheological properties of cement mixes: V. The effects of time onviscometric properties of mixes containing superplasticizers [J]. Cement and ConcreteResearch,1980,10:387-394
    [78] K. Asaga, D. M. Roy. Rheological properties of cement mixes: IV. Effects ofsuperplasticizers on viscosity and yield stress [J]. Cement and Concrete Research,1980,10:287-295
    [79] Sakir Erdogdu. Compatibility of superplasticizers with cements different in composition[J]. Cement and Concrete Research,2000,30:767-773
    [80]孙振平,蒋正武,王玉吉等.混凝土外加剂与水泥适应性的改善措施[A].王培铭,黄兆龙,姚武.新世纪海峡两岸高性能混凝土研究与应用学术会议论文集[C].上海:同济大学出版社,2002:92-98
    [81] A tcin P C, Neville A. High performance concrete demystified [J]. Concrete International,1993,15:21-26
    [82]刘秉京.高效减水剂与水泥的适应性[J].混凝土,2002,(9):20-25
    [83] S Chandra, J Bj rnstr m. Influence of superplasticizer type and dosage on the slumploss of Portland cement mortars-Part II [J]. Cement and Concrete Research,2002,32:1631-1619
    [84]陈建兵,董杰,康惠荣.水泥及粉煤灰与塑化剂的适应性研究[J].水泥,2001,(4):1-3
    [85]姚燕,王文义.我国水泥标准同国际接轨后改进产品质量的分析[J].建材发展导向,2003,1(2):17-24
    [86]覃维祖.混凝土组分的复合与相容性[J].施工技术,1998,(5):1-3
    [87] H. F. W. Taylor. Cement Chemistry (2ndEdition)[M]. Academic Press,1997,218-221
    [88]成希弼.水泥中所用石膏种类与其溶解速度的关系[J].硅酸盐学报,1987,15(2):179-181
    [89]王宏伟,王善拔.水泥与减水剂相容性问题雏议[J].混凝土与水泥制品,2001,4(2):9-11
    [90] V. H. Dodson, T. Hayden. Another look at the Portland cement/chemical admixtureincompatibility problem [J]. Cem. Concr. Aggregates,1980,11:52-56
    [91] A. T. Hamou, P. C. A tcin. Cement and superplasticizer compatibility [J]. World Cement,1993,24:38-42
    [92] A Tagnit-Hamou, M Baalbaki, P C A tcin. Caclium sulphate optimization in lowwater/cement ratio concrete for rheological purposes [J]. Proceedings of9thInternationalCongress of the Chemistry of Cement, New Delhi,1992:21-25
    [93] Shunsuke Hanehara, Kazuo Yamada. Rheology and early age properties of cementsystems [J]. Cement and Concrete Research,2008,21:175-195
    [94] K. Ichitsubo, M. Ichikawa, S. Sano. The effects of the kind and amount of calciumsulfate on the initial hydration of cement and fluidity under the existence ofpolycarboxylate superplasticizer [J]. Proc. JCA.,2004,58:46-53
    [95] Yutaka Nakajima, Kazuo Yamada. The effect of the kind of calcium sulfate in cements onthe dispersing ability of polyβ-naphthalene sulfonate condensate superplasticizer [J].Cement and Concrete Research,2004,34:839-844
    [96]陈建奎.混凝土外加剂的原理与应用[M].北京:中国计划出版社,1997:444-448
    [97] Kazuhiro Yoshioka, Ei-ichi Tazawa, Kenji Kawai, et al.Adsorption characteristics ofsuperplasticizers on cement component minerals [J]. Cement and Concrete Research,2002,32:1507~1513
    [98] H Uchikawai, D Sawaki, S Hanehara. Influence of kind and added timing of organicadmixture on the composition,structure and property of fresh cement paste [J]. Cementand Concrete Research,1995,25:353-364
    [99] C. Wu, M. Tezuka, M. Imai, et al. The effect of type of cement and superplasticizer onhigh plasticity mortar [J]. Proc. Jpn. Concr. Inst.,1996,18:57-62
    [100] K. Yamada, T. Sugamata, H. Nakanishi. Fluidity performance evaluation of cement andsuperplasticizer [J]. J. Adv. Concr. Technol.,2006,4:241-250
    [101] H Uchikawa, S Hanehara, T Shirasaka, et al.Effect of admixture on hydration ofcement,adsorptive behavior of admixture,and fluidity and setting of fresh cement paste[J].Cement and Concrete Research,1992,22:1115-1129
    [102] Shunsuke Hanehara, Kazuo Yamada. Interaction between cement and chemicaladmixture from the point of cement hydration, adsorption behaviour of admixture,andpaste rheology[J]. Cement and Concrete Research,1999,29:1159-1165
    [103]文梓芸,徐海军.水泥与超塑化剂相容性的研究[A].中国硅酸盐学会第八届水泥化学学术会议论文集[C].中国重庆,2001:296~307
    [104]刘秉京.高效减水剂与水泥的适应性[J].混凝土,2002,(9):20-25
    [105]赵平,刘克忠,隋同波,等.高贝利特水泥与高效减水剂相容性研究[J].水泥,2000,(5):1-5
    [106] Shiping Jiang, Byung Gikim, Pierre Claude Aitein. Importance of adequate solublealkali content to ensure cement/superplasticizer compatibility [J]. Cement and ConcreteResearsh,1999,29:71-78
    [107]孙振平.水泥含碱量对萘系高效减水剂作用效果的影响[J].混凝土,2002,(4):6-18
    [108] W. Prince, M. Espagnea, P. C. Aiticin. Ettringite formation: a crucial step incement-superplasticizer compatibility [J]. Cement and Concrete research,2003,33:635-641
    [109]肖军仓,卜建军.粉磨细度对水泥与外加剂相容性的影响[J].水泥,2006,(1):16-18
    [110] Kazuhiro Yoshioka, Ei-ichi Tazawa, Kenji Kawai, Tomoyuki Enohata. Adsorptioncharacteristics of superplasticizers on cement component minerals [J]. Cement andConcrete Research,2002,32:1507-1513
    [111]陈国忠.新鲜水泥与外加剂适应性的探讨[J].混凝土,2003,(4):7-11
    [112] M. Y. A. Mollah, Wenhong Yu, Robert Schennach, et al. A Fourier transform infraredspectroscopic investigation of the early hydration of Portland cement and the influence ofsodium lignosulfonate [J]. Cement and Concrete Research,2000,30:267-273
    [113] Etsuo Sakai, Takayuki Kasuga, Tomomi Sugiyama, et al. Influence of superplasticizerson the hydration of cement and the pore structure of hardened cement [J]. Cement andConcrete Research,2006,36:2049-2053
    [114] Amel Kamoun, Ahmed Jelidi, Moncef Chaabouni. Evaluation of the performance ofsulfonated esparto grass lignin as a plasticizer–water reducer for cement [J]. Cement andConcrete Research,2003,33:995-1003
    [115] S. Chandra, J. Bjo¨rnstro¨m. Influence of cement and superplasticizers type and dosageon the fluidity of cement mortars–Part I [J]. Cement and Concrete Research,2002,32:1605-1611
    [116] A.M. Cody, H. Lee, R.D. Cody, et al. The effects of chemical environment on thenucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3·26H2O [J]. Cement andConcrete Research,2004,34:869-881
    [117] Min-Hong Zhang, Kritsada Sisomphon, Tze Siong Ng, Dao Jun Sun. Effect ofsuperplasticizers on workability retention and initial setting time of cement pastes [J].Construction and Building Materials,2010,24:1700-1707
    [118] Hiroshi Uchikawa, Daisuke Sawaki, Shunsuke Hanehara. Influence of kind and addedtiming of organic admixture on the composition, structure and property of fresh cementpaste [J]. Cement and Concrete Research,1995,25:353-364
    [119] Pierre Claude Aitcin, Carmel Jolicoeur, James G. MacGregor. Superplasticizers: howthey work and why they occasionally don’t [J]. Concr. Int.,1994,16:45-52
    [120] V. H. Dodson, T. D. Hayden. Another look at the Portland cement/chemical admixtureincompatibility problem [J]. Cem. Concr. Aggregates,1989,11:52-56
    [121]胡玉初.减水剂对掺硬石膏的硅酸盐水泥凝结的影响[J].混凝土与水泥制品,1983,(3):9-13
    [122]胡玉初.外加剂对掺硬石膏的矿渣硅酸盐水泥异常凝结的影响[J].混凝土与水泥制品,1986,(3):15-20
    [123]胡秀春,刘翠玉,姚柏平.混凝土减水剂对水泥的适应性[J].工业建筑,1987,(8):33-38
    [124] A. Lagosz, J. Malolepszy. Tricalcium aluminate hydration in the presence of calciumsulfite hemihydrates [J]. Cement and Concrete Research,2003,33:333–339
    [125] V. S. Ramachandran. Action of triethanolamine on the hydration of tricalciumaluminate [J]. Cement and Concrete Research,1973,3:41-54
    [126]王子明.“水泥-水-高效减水剂系统”的界面化学现象与流变性能[D].北京:北京工业大学,2006
    [127] M. M. Radwan, M. Heikal. Hydration characteristics of tricalcium aluminate phase inmixes containing β-hemihydate and phosphogypsum [J]. Cement and Concrete Research,2005,35:1601–1608
    [128] Liane E. C. L, Grealdo Larg, Sant’Anna Jr, et al. Molecular weight distribution ofchlorolignin in bleached kraft effluent by GPC and ultrafiltration[J]. BioresourceTechnology,1999,68:63-70
    [129]张树彪,乔卫红,李宗石.木质素分散剂相对分子质量分布的测定[J].色谱,2000,18(3):277-279
    [130]谌凡更,李静,张旭峰.凝胶渗透色谱法测定木素磺酸盐相对分子质量分布[J].分析化学,2001,29(11):1363-1363
    [131]王俊刚,张树珍,杨本鹏,等.3,5-二硝基水杨酸(DNS)法测定甘蔗茎节总糖和还原糖含量[J].甘蔗糖业,2008,5:45-49
    [132] Abdul Aala Najmus Saqib, Philip John Whitney. Differential behaviour of thedinitrosalicylic acid (DNS) reagent towards mono-and di-saccharide sugars [J]. Biomassand Bioenergy,2011,35:4748-4750
    [133] Breuil C., Saddler J. N.. Comparison of the3,5-dinitrosalicylic acid andNelson-Somogyi methods of assaying for reducing sugars and determining cellulaseactivity [J]. Enzyme and Microbial Technology,1985,7:327-332
    [134] Lingyi Zhang, Jin Xu, Lihua Zhang, et al. Determination of1-phenyl-3-methyl-5-pyrazolone-labeled carbohydrates by liquid chromatography andmicellar electrokinetic chromatography [J]. Journal of Chromatography B,2003,793:159–165
    [135] Jun Dai, Yan Wu, Shangwei Chen, et al. Sugar compositional determination ofpolysaccharides from Dunaliella salina by modified RP-HPLC method of precolumnderivatization with1-phenyl-3-methyl-5-pyrazolone [J]. Carbohydrate Polymers,2010,82:629-635
    [136]田灵敏,邱雪梅,潘子敬,等.新型糖组成高效液相色谱分析技术的构建及其在水飞蓟多糖质控中的应用[J].药学学报,2010,45(4):498-504
    [137]陈银洲,马保国.复合外加剂对混凝土性能的影响[J].武汉工业大学学报,1998,20(4):47-51
    [138] Honda S, Akao E, Suzuki S, et al. High-performance liquid chromatography of reducingcarbohydrates as strongly ultraviolet-absorbing and electrochemically sensitivederivatives [J]. Anal Biochem,1989,180:351-357
    [139] Hannuksela T, Herve du Penhoat C. Carbohydr. Res.,2004,339:301
    [140] Zhang P, Zhang Q, Whistler R L. Cereal Chem.,2003,80:252
    [141] S. Pourchet, L. Regnaud, J. P. Perez, et al. Early C3A hydration in the presence ofdifferent kinds of calcium sulfate [J]. Cem. Concr. Res.,2009,39:989-996
    [142] H. Uchikawa, S. Uchida, K. Ogawa, S. Hanehara. Influence of CaSO4·2H2O,
    CaSO4· H2O and CaSO4on the initial hydration of clinker having different burning
    degree [J]. Cem. Concr. Res.,1984,14:645-656

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700