超燃冲压发动机整机非结构网格并行数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声速燃烧冲压发动机简称超燃冲压发动机(Scramjet),采用与机身一体化的设计,主要用在高空大气层内Ma>6飞行的吸气式高超声速飞行器上。超燃冲压发动机燃烧室内流场有超声速燃烧、激波与边界层相互作用等复杂现象。作为重要的研究手段之一,计算流体力学(CFD)能很快得到流场细节,尤其是在初始设计阶段,CFD能为发动机选型提供依据。
     然而,随着飞行器外形的复杂化,生成结构网格越来越困难,费时费力的网格生成成为了设计阶段的瓶颈。非结构网格节点间没有结构性限制,网格的大小和疏密很容易控制,一旦外形确定,可以快速地自动生成网格;另一方面,非结构网格随机的数据结构在进行网格自适应和并行处理时很方便。由于不像结构网格网格邻点是显而易见的,非结构网格必须将网格点的相关性等信息存储下来,因此更耗内存,一些数值算法如LU方法不能直接用于非结构网格CFD计算。现在许多在结构网格上发展成熟的方法逐渐成功地应用到非结构网格中,非结构网格技术广泛地用于各种流动的数值模拟,但国内还没有见到用自己开发的非结构网格计算软件并行求解超燃冲压发动机的复杂燃烧流场。
     本文围绕超燃冲压发动机反应流场的研究,在国内首次基于非结构网格发展了一套适用于超声速湍流反应流数值模拟的大规模并行计算CFD软件平台AHL_UNS3D。在对程序进行了大量的算例验证后,对超燃冲压发动机内部流场开展了细致深入的数值模拟研究。
     为了更准确地模拟超燃冲压发动机燃烧室内的湍流流场,壁面附近采用六面体网格或垂直于壁面“长出”的三棱柱“半结构”网格,其余地方采用四面体网格,金字塔形网格用来连接不同形状的网格单元。
     AHL_UNS3D基于MPI实现并行,采用格点有限体积法离散积分形式的控制方程,能够模拟完全气体和多组分混合气体的二维、轴对称、三维的定常和非定常的无粘流、层流和湍流。时间推进采用显式Runge-Kutta法或LU-SGS方法,无粘通量计算有Steger-Warming、Van Leer、AUSMDV和AUSMPW+四种格式。有多种氢气反应和碳氢燃料乙烯反应的化学动力学模型,有S-A一方程湍流模型和k-ω两方程湍流模型(包括原始的Wilcox k-ω、Kok TNT、Menter BSL和SST)等多种湍流模型,两方程模型可与流动控制方程耦合或解耦求解。
     采用14个定常流和2个非定常流算例考核AHL_UNS3D模拟无粘流、层流、湍流、多组分化学反应流动和非定常流动的能力,证明该软件平台具有较高的计算精度和可靠性。针对超燃冲压发动机燃烧室内流场的特点,选取了Lehr球头激波诱导燃烧、凹槽、压缩拐角和三维圆孔垂直喷氢等多种典型流动,通过和实验值的比较,选择了适合超燃冲压发动机反应流场的化学动力学模型、无粘通量的计算格式和湍流模型。
     为验证AHL_UNS3D对超燃冲压发动机化学反应流场的模拟能力,对经典验证例子,即Burrows & Kurkov的二维氢气顺喷的扩散和燃烧两种流动进行了数值模拟;接着对以氢气为燃料的澳大利亚昆士兰大学高超声速技术中心Hyshot计划的地面实验超燃冲压发动机、日本国家航空与航天实验室(NAL)的双模态燃烧室模型分别进行了二维和三维片式数值模拟,并应用到了气动中心的氢燃料超燃冲压发动机整机冷流和三种当量油气比的燃烧流场三维数值模拟中,最后模拟了半宽度Taha燃烧室无引导乙烯的反应流,分析了凹槽对乙烯点火及燃烧的作用。
     本文共分为七章。
     第一章为引言,简要介绍研究背景和超燃冲压发动机的国内外研究现状;介绍了非结构网格的特点、发展和国外超燃冲压发动机非结构网格数值模拟软件的功能及应用,并从七个方面与本文开发的软件AHL_UNS3D进行了比较;最后简要介绍了本文的主要工作。第二章为计算方法,主要介绍软件所用的数据结构和控制体、控制方程、湍流模型、方程离散方法、无粘通量计算格式和并行算法。第三章是算例验证,第四章、第五章和第六章是氢或碳氢燃料超燃冲压发动机燃烧室及整机数值模拟。第七章为结束语,阐述了论文的主要成果和创新点,并对软件未来的发展进行了展望。
Supersonic Combustion Ramjet (Scramjet for short) is integrated with the airbreathing hypersonic vehicle which aims mainly for the flight in the high altitude environment at Mach number above 6.0. There are complex phenomena such as supersonic combustion and the interactions between the shock and the boundary layer in the internal flowfield of the Scramjet combustor. As one of the important research methods, Computaional Fluid Dynamics(CFD) can get the detail of the flowfield in a short time and it can offer the basis for the choice of an appropriate engine configuration especially in the process of the preliminary design.
     However, it has become more difficult to generate the structured grid when the geometry of the vehicle is more complex, so the design process has been bottlenecked by the time consuming and laborious generation of the grid. Freed from the structural limitation, it is much easier for the unstructured grid to control the size and the density of the mesh and the generation of the unstructured grid can be finished quickly and automatically once the geometry is determined. On the other hand, the data structure of the unstructured grid provides convenience to the adaptation of the grid and the parallelization. Unlike the structured grid, the neighbor points of the unstructured grid are not explicitly known, so the information about the connectivity of the grid etc must be recorded in the preprocessing process and it results in more memory taken than the structured grid. Some numerical methods such as LU decomposition can not be applied directly to the CFD computation on the unstructured grid. Now many technologies which have been maturely developed on the structured grid have been successfully used in the unstructured grid and the unstructured grid technology has wide applications in all kinds of flow simulations, but up to now there is scarcely any literature about the parallel simulations of the complex combustion flowfield of the Scramjet combustor by the independently developed numerical software on the unstructured grid at home.
     A numerical software platform applicable to the supersonic turbulently reacting flow simulation named AHL_UNS3D has been developed by the Airbreathing Hypersonic Laboratory of CARDC on unstructured grids focusing on the research of the Scramjet reacting flow. After a lot of verifications and validations, numerical simulations have been conducted on the internal flowfields of the Scramjet.
     To simulate the turbulent flow of the Scramjet combustor more correctly, the hexahedral or prismatic semi-structured grid is extruded perpendicularly from the wall and tetrahedral grid are used for the rest space. Different kinds of grids are connected by the pyramidal grid.
     AHL_UNS3D achieves parallelization based on MPI and discretizes the integral governing equations by the cell-vertex finite volume method. It can simulate two-dimensional(2D), axisymmetrical and three-dimensional(3D) steady and unsteady invicid, laminar and turbulent flows of the perfect gas and the multispecies mixture. The time evolution can use Runge-Kutta or LU-SGS method. Four schemes including those of Steger-Warming、Van Leer、AUSMDV and AUSMPW+ can be used for the inviscid flux vector calculation. There are several chemical kinetic models for the hydrogen or the hydrocarbon fuel ethylene and there are two types of turbulence models: Spalart-Allmara(S-A) one-equation turbulence model and k-ωtype two-equation turbulence models (including the original Wilcox k-ω, Kok’s TNT, Menter's BSL and SST), and the two-equation turbulence models can be solved coupled or uncoupled with the main govening equations.
     14 steady and 2 unsteady benchmark cases are simulated to validate the capabilities of AHL_UNS3D for the inviscid, laminar, turbulent, multispecies chemically reacting flows and unsteady flows and the results indicate that the numerical software has good resolution and reliability. Considering the characteristics of the internal flow of the Scramjet combustor, typical flows such as Lehr’s shock induced combustion, the cavity flow, the compression corner flow and the perpendicular injection flow of the hydrogen from a circular hole are calculated and the appropriate chemical kinetic model, numerical scheme for the inviscid flux computation and turbulence model are chosen for the reacting flow of the Scramjet by the comparisons with the experimental results.
     To validate the ability of AHL_UNS3D for the chemically reacting flow of the Scramjet, the diffusing and reacting cases of the 2D parallel injection of a well known benchmark, ie. the hydrogen flow of Burrows & Kurkov are simulated. 2D and 3D jet-to-jet simulations are conducted respectively for the Scramjet models of the Hyshot scheme of the hypersonic center of Queesland University of Australia and the National Aerospace Laboratory(NAL) of Japan. Then the numerical simulations for the cold flow and reacting flows of three fuel/air equivalence ratios of a whole Scramjet engine of CARDC fueled by the hydrogen in slice region are conducted. Finally the reacting flow of Taha’s combustor without the piloted ethylene in the half-width region is simulated and the influence of the cavity to the ignition and combustion of the ethylene is analyzed.
     This paper consists of seven chapters.
     Chapter one is the introduction. The background of this paper and the status of the researches of the Scramjet at home and abroad, the characteristics and the development of the unstructured grid technology, the functions as well as applications of numerical softwares abroad able to simulate the Scramjet flowfield on unstructured grids are introduced and comparisons in seven different aspects with AHL_UNS3D are made. Finally, the main work of this paper is outlined briefly. Chapter two is about numerical methods, including the data structure and the control volume, governing equations, turbulence models, the discretization method of the integral governing equations, numerical schemes for the inviscid flux computation and parallel algorithms used in the software. Chapter three is validations of the numerical software. Chapter four to six are the simulations of the flowfields of the Scramjet combustor and the whole engine fueled by the hydrogen or the ethylene. Chapter seven is the conclusion. The main researches and innovative points are reviewed and the outlook of the future development of the software is given.
引文
[1] William H. Heiser, David T. Pratt. Hypersonic airbreathing propulsion[M], Washington DC, AIAA, 1994.
    [2] John J. Bertin, Russel M. Cummings. Fifty years of hypersonics: where we’ve been, where we’re going[J], Progress in aerospace sciences, 39, 2003:511-536.
    [3] 乐嘉陵,胡欲立,刘陵. 双模态超燃冲压发动机研究进展[J],流体力学实验与测量,14(1),2000:1-12
    [4] 贺武生. 超燃冲压发动机研究综述[J],火箭推进,31(1), 2005:29-32.
    [5] 占云. 超燃冲压发动机的第一个40年[J],飞航导弹,2002(9):32-40
    [6] 刘桐林. 俄罗斯高超声速技术飞行试验计划(一)[J],飞航导弹,2000(4):23-30.
    [7] 刘桐林. 俄罗斯高超声速技术飞行试验计划(二)[J],飞航导弹,2000(5):27-30.
    [8] 刘桐林. 俄罗斯高超声速技术飞行试验计划(三)[J],飞航导弹,2000(6):17-23.
    [9] 刘桐林. 俄罗斯高超声速技术飞行试验计划(四)[J],飞航导弹,2000(7):18-23.
    [10] 沈剑,王伟. 国外高超声速飞行器研制计划[J],飞航导弹,2006(8):1-9.
    [11] 占云. 高超声速技术(HyTech)计划[J],飞航导弹,2003(3):43-49.
    [12] Robert F. Faulkner. The evolution of the HYSET hydrocarbon fueled scramjet engine[R], AIAA 2003-7005.
    [13] C. R. McClinton et al. Hyper-X Program Status[R], AIAA 2001-0828.
    [14] Paul L. Moses. X-43C plans and status[R], AIAA 2003-7084.
    [15] David E. Reubush, Luat T. Nguyen and Vincent L. Rausch. Review of X-43A return to flight activities and current status[R], AIAA 2003-7085.
    [16] Mark C. Davis, J. Terry White. Flight-Test-Determined Aerodynamic Force and Moment Characteristics of the X-43A at Mach 7.0[R], AIAA 2006-8028.
    [17] Hypersonic programs of U.S.A, www.globalsecurity.org, 2006.
    [18] Paull, A., Alesi, H., Anderson, S.. The HyShot flight program and how it was developed[R], AIAA 2002-4939.
    [19] Russell R. Boyce, Sullivan Gerard, Allan Paull. The HyShot Scramjet Flight Experiment Flight Data and CFD Calculations Compared[R], AIAA 2003-7029.
    [20] A description of the HyShot experiment, University of Queensland 主页:http:// www.uq.edu.au.
    [21] Tetsuji SUNAMI, Katsuhiro ITOH, Kazuo SATO and Tomoyuki KOMURO. Mach 8 Ground Tests of the Hypermixer Scramjet for HyShot-IV FlightExperiment[R], AIAA 2006-8062.
    [22] A. Lentsch et al. Air-Breathing Launch Vehicle Activities in France-The Last and the Next 20 Years[R], AIAA 2003-6949.
    [23] Laurent Serre et al. PROMETHEE: The French Military Hypersonic Propulsion Program Status in 2002[R], AIAA 2003-6950.
    [24] Fran?ois Falempin, Laurent Serre. LEA Flight Test Program:A First Step to an Operational Application of High-speed Airbreathing Propulsion[R], AIAA 2003-7031.
    [25] Fran?ois Falempin, Laurent Serre. LEA flight test program: Status in 2006[R], AIAA 2006-7925.
    [26] 张新宇. 高超声速吸气式发动机的研究进展与发展趋势[J],中国力学杂志,2001:478-480.
    [27] 乐嘉陵,刘伟雄. CARDC高超声速吸气式推进技术近期进展[A],第十二届全国激波与激波管学术讨论会论文集[C],2006.
    [28] 刘伟雄,毛雄兵等. 大口径脉冲燃烧风洞关键技术研究与应用[A],全国激波与激波管学术讨论会论文集[C],2006.
    [29] 张涵信, 沈孟育等. 计算流体力学-差分方法的原理和运用,国防工业出版社,2003 年 1 月.
    [30] Dimitri J. Mavriplis. Unstructured Mesh Related Issues In Computational Fluid Dynamics (CFD) – Based Analysis And Design, 11th International Meshing Roundtable, 2002.
    [31] A.Jameson and D.J.Mavriplis. Finite Volume solution of the two-dimensional Euler equations on a regular triangular mesh[J], AIAA Journal, 24, 1986: 611-618.
    [32] Timothy J. Barth and Dennis C. Jespersen. The Design and Application of Upwind Schemes on Unstructured Meshes[R], AIAA 89-0366.
    [33] Timothy J. Barth. A 3-D upwind Euler solver for unstructured meshes[R], AIAA 91-1548.
    [34] Timothy J. Barth. Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes[R], AIAA 91-0721.
    [35] V. Venkatakrishnan and D.J.Mavriplis. Implicit solvers for unstructured meshes[J]. Journal of Computational Physics, 105, 1993:83-91.
    [36] Hong Luo, Dmitri Sharov, Joseph D. Baum, and Rainald L?hner. On the computation of compressible turbulent flows on unstructured grids[R], AIAA 2000-0926.
    [37] Masatoshi Kodera and Kazuhiro Nakahashi. Extention of unstructured hybrid grid method to supersonic combustion flows[R], AIAA 99-0486.
    [38] Wind-US User’s Guide. The NPARC Alliance NASA Glenn Research CenterUSAF Arnold Engineering Development Center, 2006.05.
    [39] R. A. Lee, A. Hosangadi, P. A. Cavallo, S. M. Dash. Application of Unstructured Grid Methodology to Scramjet Combustor Flowfields[R], AIAA 99-0087.
    [40] 张来平. 非结构网格、矩形/非结构混合网格复杂无粘流场的数值模拟[博士论文],中国空气动力学研究与发展中心博士学位论文,1996.12.
    [41] 王刚. 三维非结构粘性网格生成与N-S方程求解[硕士论文],西北工业大学,2001.01.
    [42] 王平. 非结构网格技术研究及复杂流场的数值模拟[博士论文],北京航空航天大学,2000.12.
    [43] 刘学强. 基于混合网格和多重网格上的N-S方程求解及应用研究[博士论文],南京航空航天大学,2001.09.
    [44] 常利娜. 非结构网格上并行求解二维Euler方程的研究[博士论文],西北工业大学博士学位论文,2002.01.
    [45] 张来平,徐庆新,张涵信. 非结构网格及混合网格复杂无粘流场并行计算方法研究[J],空气动力学学报,第20卷增刊,2002:14-20.
    [46] 杨永健,张来平,高树椿,张涵信. 非结构网格、混合网格下计算方法研究[J],空气动力学学报,21(2),2003:144-150.
    [47] 王振亚. 高超声速吸气式一体化飞行器气动特性数值模拟研究[博士论文],中国空气动力学研究与发展中心博士学位论文,2005.06.
    [48] Peter A. Gnoffo. Computational Fluid Dynamics Technology for Hypersonic applications[R], AIAA 2003-2829.
    [49] S. Karl and K. Hannemann, J. Steelant and A.Mack. CFD Analysis of the HyShot Supersonic Combustion Flight Experiment Configuration[R], AIAA 2006-8041.
    [50] Hiroyuki MORINO, Kazuhiro NAKAHASHI. Space-Marching Method on Unstructured Hybrid Grid for Supersonic Viscous Flows[R], AIAA 99-0661.
    [51] Masarosi Kodera and Tetsuji Sunami. Numerical Analysis of Scramjet Combusting Flows by Unstructured Hybrid Grid Method[R], AIAA 2000-0886.
    [52] Toshinori Kouchi, Tohru Mitani, Masatoshi Kodera, and Goro Masuya. Numerical experiments of Scramjet combustion with boundary-layer bleeding[R], AIAA 2003-7038.
    [53] Sharov, D. and Nakahashi, K. Reordering of Hybrid Unstructured Grids for Lower-Upper Symmetric Gauss-Seidel Computations[J], AIAA J, 36(3), 1998:484-486.
    [54] Masatoshi Kodera, Kazuhiro Nakahashi. Scramjet inlet flow computations by hybrid grid method[R], AIAA 98-0962.
    [55] Y. Igarashi, T. Mitani, M. Kodera, K. Nakahashi, T. Shimura. Comparative studies on scramjet engine drag by experiments and numerical analysis[R],AIAA 98-1512.
    [56] http://www.grc.nasa.gov/WWW/wind.
    [57] C. C. Nelson, et al. Recent improvements to the WIND(-US) code at AEDC[R], AIAA 2004-527.
    [58] Zhining, Liu, S.V Ramakrishnan. Aeroheating prediction using the hybrid flow solver ICAT[R], AIAA 2002-2936.
    [59] A.Hosangadi, R.A.Lee, P.A.Cavallo, N.Sinha, B.J.York. Hybrid, vicous, unstructured meth solver for propulsive applications[R], AIAA 98-3153.
    [60] James D. Ott, C. Kannepalli, K. Brinckman, and S.M. Dash. Scramjet Propulsive Flowpath Prediction Improvements Using Recent Modeling Upgrades[R], AIAA 2005-432.
    [61] V. Ahuja, A. Hosangadi, R. Ungewitter, S. M. Dash. A hybrid unstructured mesh solver for multi-fluid mixtures[R], AIAA 99-3330.
    [62] J.S. Evans, C.J. Schexnayder Jr. Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames[J], AIAA Journal, 18( 2), 1980.
    [63] A. Hosangadi, R. Ungewitter, P.A. Cavallo, SM. Dash. unstructured Navier-Stokes code simulation of Scramjet combustor flowfield[R], AIAA 99-4899.
    [64] A. Hosangadi, P.A. Cavallo, S. Arunajatesan, R. Ungewitter, R. A. Lee. Aero-propulsive jet interaction simulations using hybrid unstructured meshes[R], AIAA 99-2119.
    [65] R.J. Ungewitter, J.D. Ott, V. Ahuja, and S.M. Dash. CFD Capabilities for Hypersonic Scramjet Propulsive Flowpath Design[R], AIAA 2004-4131.
    [66] Andreas Mark, Volker Hannemann. Validation of the unstructured DLR-TAU code for hypersonic flow[R], AIAA 2002-3111.
    [67] A. Mack and J. Steelant, S. Karl, and J.Odam. Mixing and Combustion Enhancement in a Generic Combustion Chamber[R], AIAA 2006-8134.
    [68] Dieter Schwamborn, Thomas Gerhold and Ralf Heinrich. The DLR TAU-code: Recent Applications in Research and Industry, ECCOMAS CFD 2006.
    [69] Peter A. Gnoffo, Jeffery A. White. Computational Aerothermodynamic Simulation Issues on Unstructured Grids[R], AIAA 2004-2371.
    [70] FUN3D Version 10.3.1 Manual, http://fun3d.larc.nasa.gov/.
    [71] William Z. Strang, Robert F. Tomaro, Matthew J. Grismer. The defining methods of Cobalt60 -A parallel, implicit, unstructured Euler Navier-Stokes flow solver[R], AIAA 99-0786.
    [72] J. H. Miller, J. S. Shang. A Parallel Unstructured Flow Solver for Chemically Reacting COIL Flowfields[R], AIAA 2001-1089.
    [73] 赵慧勇. 超燃冲压整体发动机并行数值模拟,中国空气动力研究与发展中心[博士论文],2005.07.
    [74] 杨顺华. 碳氢燃料超燃冲压发动机数值研究,中国空气动力研究与发展中心[博士论文],2006.05.
    [75] Yingchuan wu, Lan wang, Jialing,Le. A parallel 3D unstructured solver and applications for hypersonic stage separation, 6th Sina-Russia High-Speed Flow Conference, June, 2006, Mianyang, Sichuan.
    [76] 王兰,吴颖川,乐嘉陵. 一种超声速反应流的非结构网格隐式求解器,中国空气动力研究与发展中心计算所青年科技报告会,2005年6月.
    [77] Yingchuan wu, Lan wang, Jialing Le. A parallel, implicit, unstructured Euler/Navier-Stokes solver for supersonic reacting flow, East West High Speed Flow Field Conference 2005, pp97-103, October, 2005, BeiJing.
    [78] Lan wang, Yingchuan wu, Jialing, Le. High speed turbulent flow simulations on unstructured hybrid meshes, 6th Sina-Russia High-Speed Flow Conference, June,2006, Mianyang, Sichuan.
    [79] 王兰,吴颖川,乐嘉陵. 非结构混合网格超声速化学反应流场的数值模拟,第十二届全国激波与激波管学术讨论会论文集,pp342-347,2006 年 7 月,河南洛阳.
    [80] 王兰,吴颖川,乐嘉陵. 基于非结构、混合网格的超燃冲压发动机整机化学反应流数值模拟, 2006 年第一届近代空气动力学与气动热力学会议论文集,CARS-2006 00169, pp925-929, 2006 年 8 月,四川绵阳.
    [81] Steven J. Owen. Non-Simplical Unstructured Mesh Generation[PHD], Carnegie Mellon University,1999.
    [82] Anderson, John D. Jr. Hypersonic and high temperature gas dynamics[M], New York, McGraw-Hill Book Company, 1988.
    [83] R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller. “Chemkin-Ⅲ: A fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics”, Sandia National Laboratories report SAND 96-8216, 1996.
    [84] David C. Wilcox. Turbulence modeling: an overviw[R], AIAA 2001-0724.
    [85] P.R. Spalart and S.R. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows[R].AIAA 92-0439.
    [86] Wilcox, D. C. Turbulence Modeling for CFD[M], 1st Ed., DCW Industries, La Canada, 1993.
    [87] J.C.Kok. Resolving the dependence on free-stream values for the k-omega turbulence model[R], NLR-TP-99295, July, 1999.
    [88] Menter F R. Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows[R]. NASA TM-103975, 1992.
    [89] V.Venkatakrishnan. Perspective on Unstructured Grid Flow Solvers[J]. AIAAJournal, 34(3), 1996:533-547.
    [90] Imlay, Scott T., Roberts, Donald W., Soetrisno, Moeljo, Eberhardt, Scott. Nonequilibrium Thermo-Chemical Calculations Using a Diagonal Implicit Scheme[R], AIAA 91-0468.
    [91] A. P. Graf and U. Riedel. Numerical Simulation of Supersonic Reactive Flows Using Explicit Runge-Kutta Methods[R], AIAA 2000-0438.
    [92] R. F. Chen and Z. J. Wang. An improved LU-SGS scheme with faster convergence for unstructured grids of arbitrary topology[R], AIAA 99-0935.
    [93] Hong Luo, Joseph D. Baum. A fast, matrix-free implicit method for compressible flows on unstructured grids[R], AIAA 99-0936.
    [94] Culbert B. Laney. Computational gasdynamics[M], Cambridge University Press, 1998.
    [95] Van Leer B. Towards the Ultimate Conservative Difference Scheme V: A Second Order Sequel to Godunov’s Method[J], Journal of Computational Physics, 32, 1979:101-136.
    [96] V.Venkatakrishnan. Convergence to steady solutions of the Euler equations on unstructured grids with limiters[J]. Journal of Computational Physics, 118, 1995:120-130.
    [97] W K Anderson, J L Thomas, B Van Leer. A Comparison of Finite Volume Flux Vector Splittings for the Euler equation[R]. AIAA 85-0122.
    [98] H?nel, D. and Schwane, R. An Implicit Flux-Vector Splitting Scheme for the Computation of Viscous Hypersonic Flow[R], AIAA 89-0274.
    [99] B. Van Leer. Flux-Vector Splitting for the 1990s[C], CP-3078, NASA, Cleveland, OH, 1991:203-214.
    [100] Meng-Sing Liou. Ten years in the making-AUSM-family[R],AIAA 2001-2521.
    [101] Yasuhiro Wada , M. –S. Liou. An accurate and robust flux splitting scheme for shock and contact discontinuities[J], AISM J. Sci. Comput. 118(3), 1997:633- 657.
    [102] Kyu. Hong Kim, Chong Am.Kim, Oh.hyun.Rho. Accurate computa tions of hypersonic flows using AUSMPW+ scheme and Shock-Aligned Grid Technique[R], AIAA 98-2442.
    [103] Kyu Hong Kim, Chonggam Kim, and Oh-Hyun Rho. Methods for the accurate computations of hypersonic flows: I. AUSMPW+ Scheme[J], Journal of computational physics, 174(1), 2001:38-80.
    [104] Christopher W.S.Bruner and Robert W.Walters. Parallelization of the Euler equations on unstructured grids[R], AIAA 97-1894.
    [105] Christopher William Stuteville Bruner. Prallalization of the Euler equations on unstructured grids[PHD], Faculty of Virginia Polytechnic Institute and StateUniversity,1996.
    [106] 都志辉. 高性能计算并行编程技术-MPI 并行程序设计[M],清华大学出版社,2001.
    [107] 张宝琳,谷同祥,莫则尧. 数值并行计算原理和方法[M],国防工业出版社,1999.
    [108] George Karypis, Vipin Kumar. METISA:Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Version 4.0[R], University of Minnesota, Department of Computer Science / Army HPC Research Center,1998.
    [109] George Karypis, Kirk Schloegel, Vipin Kumar. PARMETIS:Parallel Graph Partitioning and Sparse Matrix Ordering Library,Version 3.1[R], University of Minnesota, Department of Computer Science and Engineering, 2003.
    [110] William L. OberKampl and Timothy G. Trucano. Verification and validation in computational fluid dynamics[J], Progress in aerospace sciences, 38, 2002:209-272.
    [111] Krishnendu. Sinha, Graham V. Candler. Convergence improvement of two-equation turbulence model calculations[R], AIAA 98-2649.
    [112] Scott L. Lawrence. Parabolized Navier-Stokes Methods For Hypersonic Flows[R], von Karman Institute for Fluid Dynamics, N91-32433.
    [113] R.Hakkinen, I.Gerber, etc. The interaction of an oblique shock wave with a laminar boundary layer[R], Memo 2-18-59W, NASA, 1959.
    [114] P. G. Huang, P. Bradshaw and T. J. Coakley. Skin friction and velocity profile family for compressible turbulent boundary layers[J], AIAA Journal, 31(9), 1993:1600-1604.
    [115] Law, C. H. Two-Dimensional Compression Corner and Planar Shock Wave Interactions With A Supersonic Turbulent Boundary Layer[R], ARL TR 75-0157.
    [116] Gary S. Settles, Irwin E. Vas, Seymour M. Bogdonoff. Details of a shock-seperated turbulent boundary layer at a compression corner[J], AIAA Journal, 14(12), 1976:1705-1719, also in AIAA 76-164.
    [117] Gary S. Settles, Thomas J, Fitzpatrick , Seymour M. Bogdonoff. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow[J], AIAA Journal, 17(6), 1979:579-585, also in AIAA 78-1167.
    [118] G.S.Settles, D.R.Williams, B.K.Baca, and S.M.Bogdonoff. Reattachment of a compressible turbulent free shear layer[J], AIAA Journal, 20(1), 1982: 60-67, also in AIAA 80-1408.
    [119] C.C.Hortsman, G.S.Settles, D.R.Williams and S.M.Bogdonoff. A reattachingfree shear layer in compressibile turbulent flow[J], AIAA Journal,1(1), 1982: 79-85.
    [120] S. Aso, S. Okuyama, K. Kawai and Y. Ando. Exprimental study on mixing phenomena in supersonic flows with slot injection[R], AIAA 91-0016.
    [121] James L. Brown. Turbulence model validation for hypersonic flows[R], AIAA 2002-3308.
    [122] Louis A. Cassel. Applying jet interaction technology[J], Journal of spacecraft and rocket, 40(4), 2003.
    [123] Rogers R C. A Study of the Mixing of Hydrogen Injected Normal to a Supersonic Airstream[R], NASA TND-6114, 1971.
    [124] M.Soetrisno and S.T.Imay. Simulation of The Flow field of a Ram Accelerator[R], AIAA 91-1915.
    [125] J.P. Drummond, R.C.Rogers. and M.Y.Hussaini. A detailed numerical model of a supersonic reacting mixing layer[R], AIAA 86-1427.
    [126] Dmitry M. Davidenko, Iskender G?kalp. Systematic Numerical Study of the Supersonic Combustion in an Experimental Combustion Chamber[R], AIAA 2006-7913.
    [127] Woodward P and Collela P. The numerical simulation of two-dimensional fluid flow with strong shocks[J], Journal of computational physics, 54(1), 1984:115-173.
    [128] Rosa Donat and Antonio Marquina. Capturing shock reflections: an improved flux formula Journal of computational physics[J], 125(1), 1996:42-58.
    [129] Chang qing Hu and Chi-Wang Shu. Weighted essentially non-oscillatory schemes on triangular meshes[J], Journal of computational physics, 150(1), 1999:97-127.
    [130] 莫则尧. 实用的并行程序性能分析方法[J],数值计算与计算机应用,2000年 12 月.
    [131] Burrows M. C., Kurkow A. P. Analytical and experimental study of supersonic combustion of hydrogen in a vitiated airstream[R], NASA TM X-2828, 1973.
    [132] Jud Michael Oevermann. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling[J], Aerosp. Sci. Technol, 4, 2000: 463–480.
    [133] H.Weisgerber, R. Martinuzzi, U. Brummund, Ph.Magre. PIV measurements in a Mach 2 Hydrogen-air supersonic combustion[R], AIAA 2001-1857.
    [134] D. Gaffié, U. Wdpler, Ph. Magre. Numerical reacting Hydrogen jets in a hot air coflow [R], AIAA 2001-1864.
    [135] Dmitry M. Davidenko, Iskender G?kalp. Systematic numerical study of the supersonic combustion in an experimental combustion chamber [R], AIAA2006-7913.
    [136] Drummond, J.P., G.S. Cutler, A.D. Fuel-Air Mixing and Combustion in Scramjets[R], Technologies for Propelled Hypersonic Flight, NATO Research and Technology Organization, Working Group AVT 10, Final Report, May, 2002.
    [137] A.D. Cutler, P.M. Danehy, R.R. Springer. CARS Thermometry in a Supersonic Combustor for CFD Code Validation[R], AIAA 2002-0743.
    [138] J. P. Drummond, Glenn S. Diskin, A. D. Cutler. Fuel-Air Mixing and Combustion in Scramjets[R], AIAA 2002-3878.
    [139] C.G. Rodriguez, A.D. Cutler. CFD Analysis of the SCHOLAR Scramjet model[R], AIAA 2003-7039.
    [140] A. D. Cutler, P. M. Danehy, S. O’Byrne, C. G. Rodriguez, J. P. Drummond. Supersonic combustion experiments for CFD model development and validation(invited) [R], AIAA 2004-266.
    [141] Carlos G. Rodriguez, Andrew D. Cutler. Computational Simulation of a Supersonic-Combustion Benchmark Experiment[R], AIAA 2005-4424.
    [142] A. Ingenito, C. Bruno, E. Giacomazzi, J. Steelant. Supersonic Combustion:Modelling and Simulations[R], AIAA 2006-8035.
    [143] William A. Engblom, Franco C. Frate, Chris C. Nelson. Progress in validation of WIND-US for Ramjet/Scramjet combustion[R], AIAA 2005-1000.
    [144] Judy Odam. Scramjet Experiments using Radical Farming, PHD dissertation, Department of Mechanical Engineering[D], [PHD dissertation], The University of Queensland, 2004.
    [145] Rodriguez C G, White J A, Riggins D W. Three-Dimensional Effects in Modeling of Dual-Mode Scramjets[R], AIAA 2000-3704.
    [146] Ganesh Wadawadigi, John C. Tannehill, Philip E. Buelow. A three dimensional upwind PNS code for chemically reacting scramjet flowfields[R], AIAA 92-2898.
    [147] Bernard Pareent, Jean Pascal Sislian. Validation of Wilcox k-ω model for flows characteristic to hypersonic airbreathing propulsion[J], AIAA Journal, 42(2), 2004: 261-270.
    [148] STAR, JASON B. Numerical Simulation of Scramjet Combustion in a Shock Tunnel[D], [PHD dissertation], North Carolina State University, 2005.
    [149] C. G. Rodriguez. Asymmetry effects in numerical simulation of supersonic flows with upstream separated regions[R], AIAA 2001-0084.
    [150] T. O. Mohieldin, et al. Numerical study of 2D dual-mode scramjet combustor [R], AIAA2003-7036.
    [151] 郑忠华. 双模态冲压发动机燃烧室流场的大规模并行计算及试验验证[D],国防科学技术大学博士论文,2003 年 10 月.
    [152] M. B. Tracy and E. B. Plentovich. Characterization of Cavity Flow Fields Using Pressure Data Obtained in the Langley 0.3-Meter Transonic Cryogenic Tunnel. NASA Technical Memorandum 4436.
    [153] Yu K H, Gutmark E, Smith R A, et al. Supersonic jet excitation using cavity-actuated forcing[R], AIAA 94-0185.
    [154] Kyung Moo Kim, Seung Wook Baek, Cho Young Han. Numerical study on supersonic combustion with cavity-based fuel injection[J], International Journal of Heat and Mass Transfer, 47, 2004: 271–286.
    [155] Mawid, M. A., and Sekar, B. Kinetic Modeling of Ethylene Oxidation in High Speed Reacting Flows[R], AIAA 97-3269.
    [156] Baurle, R. A., Mathur, T. A Numerical and Experimental Investigation of a Scramjet Combustor for Hypersonic Missile Applications[R], AIAA 98-3121.
    [157] Singh, D. J., and Jachimowski, C. J. Quasiglobal Reaction Model for Ethylene Combustion[J], AIAA Journal, 32, 1994: 213-215.
    [158] A.A.Taha, S.N.Tiwari and T.O. Moheldin. Numerical Simulation of Ignition/Combustion Characteristics of Ethylene Combustion in Supersonic Air Streams[R], AIAA 2000-3584.
    [159] S.N.Tiwari, A.A.Taha and T.O.Moheldin. Effect of Pilot Injection and Combustor Configuration on the Flame Holding and Stability of Ethylene in Scramjet Engines[R], AIAA2002-0806.
    [160] R.H. Nichols, C.C.Nelson. Wall function boundary conditions including heat transferand compressibility[R], AIAA 2004-0582.
    [161] 郑鸣,邓有奇,周乃春,吴晓军. 结构/非结构混合网格的应用研究,2006年第一届近代空气动力学与气动热力学会议论文集,CARS-2006 00172, pp925-929, 2006 年 8 月,四川绵阳.
    [162] Daniel Gaiennie Hyams. An investigation of parallel implicit solution algorighms for incompressible flows on unstructured topologies[PHD], Missippi State University, 2000.
    [163] Dimitri J. Mavriplis. Revisiting the Least-Squares procedure for gradient reconstruction on unstructured meshes[R], NASA/CR-2003-212683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700