透波材料介电性能高温宽频测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透波材料广泛应用于天线罩、天线窗等构件中,为适应飞行器在大气层高速飞行时产生的高温环境中微波应用,必须确保天线罩(窗)在高温环境中具有优良的微波性能。天线罩(窗)等构件的微波性能和透波材料的介电性能直接相关,而透波材料在不同温度不同频率下具有不同的介电性能。在透波材料的研制、生产和使用过程中,需要掌握其在高温宽频下的微波介电性能。因此,研究透波材料高温宽频测试技术具有重要意义。
     本文根据透波材料介电性能测试方法及技术指标要求,选用圆柱谐振腔法进行高温宽频介电性能测试技术研究。研究了高温宽频测试物理模型和测试误差分析原理,设计并制作了宽频高温测试谐振腔和变温传输系统,研制了高温加热保护系统,集成并调试了测试系统。攻克了透波材料高温宽频测试难题,填补了国内在该领域的空白。
     在测试原理研究上,提出了在腔体纵向方向上采用分段计算的方法,建立了非等直径谐振腔体的高温测试物理模型,完善了高温测试状态下的测试物理模型,减小了腔体纵向分布上直径和长度的变化对测试结果的影响。
     在校准和测试过程中,提出了实时采集腔体不同位置工作温度和温度线性插值的方法,并根据腔体实际工作温度分布对关键尺寸和微波参数进行修正,降低了腔体热不稳定性对测试结果的影响,提高了高温测试结果稳定性。
     在微波介电性能高温宽频测试中,提出了采用超音频感应加热方式,提高了高温宽频谐振系统中的可操作性和可维护性。
     在提出的分段计算和实时修正方法的基础上,研制了透波材料高温宽频测试系统。根据圆柱腔的组成,结合高温使用环境,设计了一腔多模谐振腔、耦合装置和测试样品台活塞,利用高温金属材料研制了高温宽带谐振系统。根据测试系统需要,利用标准波导的设计方法和性能参数,设计了变温环境中使用的非标双脊矩形波导,研制了非标波导到同轴的微波转换接头,组建了宽带微波变温传输系统。研制了真空保护系统,采用感应加热方式研制了加热系统,为谐振系统提供了高温真空保护环境。调试了感应加热圈和隔热保温装置,获得了符合测试需要的谐振系统温度分布。制定了合理的测试流程,分析并减少了影响测试精度的因素。编写了自动测试软件,集成了测试系统。测试了谐振系统宽带高温微波参数及其稳定性,制作了石英、蓝宝石等高温材料样品,对测试样品在7~18GHz内进行了室温~1500℃的复介电常数变温测试和重复性测试。
     本文最后从测试原理出发进行了测试误差分析研究。分析了测试误差源,结合温度特性分析了误差源的不确定度,讨论了由测试物理模型的理想状态与实际测试中偏差引入的误差,利用Matlab编制了测试误差估算软件。为测试结果的准确性提供了评价依据。
     测试结果和误差分析结果表明:本文基于分段计算方法和感应加热方式,在国内首次建立的测试系统,可对透波材料进行7~18GHz、室温~1500℃的宽带高温介电性能测试,并具有较好的测试重复性,达到了论文要求的测试功能和测试精度的要求。
Microwave transparent materials are widely applied in radome, antenna windows, and other components. While aerospace crafts are flying at a very high speed in atmosphere, high temperature and high speed air flow will occur. In order to work properly in these situations, the microwave properties of radome and antenna windows must be guaranteed first. The microwave properties of these components are directly related to the dielectric properties of microwave transparent materials. Moreover, the transparent materials have different microwave dielectric properties at different temperatures and different frequencies. Therefore, it is very important that we study the dielectric properties of microwave transparent materials at high temperatures over broad frequency band in the researches, productions, and applications of these materials.
     According to the dielectric property test method of microwave transparent material and specification requirements, cylindrical cavity was chosen in the study of high temperature broadband dielectric property test techniques. The physical test model at high temperatures over broad band and the analysis theory of measurement error were researched. High temperature broadband resonant cavity and transmission system working at variable temperatures were designed and fabricated. High temperature heating protecting system was developed, and finally the test system was built and debugged. We solved the difficult technical problem of high temperature broadband measurement of microwave transparent material and filled the gap of this field in domestic.
     Subsection calculation method along the longitudinal direction of cavity was brought forward in the study of measurement theory. High temperature physical test model of the resonant cavity with unequal diameters was built and improved so as to reduce the effects on measurement results caused by the changes of diameter and length along the longitudinal direction of cavity.
     During the process of calibration and measurement, real-time temperature acquisition at different position and linear interpolation method were proposed and used to correct the key dimension and microwave parameters of the cavity. The heat instability of the cavity was reduced and the stability of the measurement results at high temperatures was improved.
     Supersonic induction heating method was first used in the microwave high temperature broadband dielectric property measurements. Operability and maintainability of the system were improved.
     Based on the theory of subsection calculation theory and the method of real-time correction, the high temperature broadband test system for microwave transparent material was built. Multimode resonant cavity, coupling device, and piston for holding the test sample were designed according to the composition of cavity and high temperature environment. The high temperature broadband resonant system was fabricated with high temperature metal. Due to the system needs, nonstandard double ridge waveguide used in variable temperature environment and adapter from double ridge waveguide to coaxial were designed and fabricated. They composed the variable temperature broadband microwave transmission system. Induction heating method was applied in the system for heating the resonant cavity and sample, and vacuum protecting system was developed. The induction ring and thermal insulation equipment were debugged, and temperature distribution of the resonant system satisfying the test requirement was obtained. Finally the test system was built. The microwave parameters at high temperatures and stability of the resonant system were tested. Samples made of quartz, sapphire are designed and fabricated. The complex permittivity of the samples was measured at 7-18GHz over the temperature range from room temperature to 1500℃.
     Finally, the measurement errors were analyzed based on the measurement theory. Error sources were analyzed and uncertainties were obtained combining with temperature properties. The errors caused by the deviation between the ideal physical test model and real test were discussed. The measurement errors were calculated with the program complied by using Matlab software. Error analysis provided evaluation approach for the accuracy of the measurement results.
     The measurement results and error analysis results show that the test system bases on subsection calculation method and induction heating method and built for the first time in domestic can be applied to the measurement of high temperature broadband dielectric properties at 7~18GHz over the temperature range from room temperature to 1500℃. The test system features good test repeatability and reaches the requirements of test function and measurement accuracy.
引文
[1]孙银宝,张宇民,韩杰才.耐高温透波材料及其性能研究进展.宇航材料工艺, 2008,(3) : 11-14
    [2]高晓菊,王红洁.高温微波功能复合材料研究进展.硅酸盐通报, 2007, 26(8) : 975-979
    [3]韩桂芳,陈照峰,张立同,等.高温透波材料研究进展.航空材料学报, 2003, 23(1) : 57-62
    [4]仝毅,周馨我.微波透波材料的研究进展.材料导报, 1997, 11(3): 1-5
    [5]黎义,张大海,陈英,等.航天透波多功能材料研究进展.宇航材料工艺, 2000, 30(5): 1-5
    [6]姜勇刚,张长瑞,曹峰,等.高超音速导弹天线罩透波材料研究进展,硅酸盐通报, 2007, 26(3) : 500-505
    [7]张煜东,苏勋家,侯根良.高温透波材料研究现状和展望.飞航导弹, 2006, (3) : 56-58
    [8]张大海,黎义,高文,等.高温天线罩材料研究进展.宇航材料工艺, 2001, (6) : 1-3
    [9] L. F. Chen, C. K. Ong, C. P. Neo, et al. Microwave Electronics: Measurement and Material Characterization. John Wiley & Sons, Inc., New York, 2004.
    [10]何小瓦,李恩,张其劭,等.介质材料复介电常数变温测量技术综述,宇航材料工艺, 2005, (1): 20-23
    [11]李恩,郭高凤,张其劭,等.一种带状线谐振腔及微波薄膜材料电磁参数测试装置.中国,发明专利, ZL 2005 1 0022222.4, 2008-3-5
    [12] En Li, Gaofeng Guo, Fengmei He. Perturbation Method to Measure Complex Permittivity of Low Loss Dielectric Material by Stripline Resonant Cavity. 7th International Symposium on Test and Measurement, 2007, Vol.2: 1904-1907
    [13] R. M. Hutcheon, M. S. de Jong, P. Lucuta, et al. Measurements of High-Temperature RF and Microwave Properties of Selected Aluminas and Ferrites Used in Accelerators. IEEE PAC 1991: 795-797
    [14] R. M. Hutcheon, M. S. de Jong, F. Adams. A System for Rapid Measurements of RF and Microwave Properties up to 1400℃. Journal of Microwave Power and Electromagnetic Energy, 1992, 27(2): 87-92
    [15] Thoria A. Baeraky. Microwave Measurements of the Dielectric Properties of Silicon Carbide at High Temperature. Egyptian Journal of Solids, 2002, 25(2) : 263-273
    [16] Thoria A. Baeraky. Microwave Measurements of Dielectric Properties of Zinc Oxide at High Temperature, Egyptian Journal of Solids, 2007, 30(1) : 13-18
    [17] Binshen Meng, John Booske, Reid Cooper. A System to Measure Complex Permittivity of Low Loss Ceramics at Microwave Frequencies and over Large Temperature Ranges. Rev. Sci. Instrum., 1995, 60(2) : 1068-1071
    [18] D 2520-01, Standard Test Methods for Complex Permittivity (Dielectric Constant) of Solid Electrical Insulating Materials at Microwave Frequencies and Temperatures to 1650°C, American National Standard, 2001
    [19] Georges Roussy, Jean-Marie Thiebaut, Francis Ename-Obiang, et al. Microwave Broadband Permittivity Measurement with a Multimode Helical Resonator for Studying Catalysts, Measurement Science and Technology, 2001, 12 : 542-547
    [20] Baker-Jarvis J., Janezic M., Riddle B., et al. Dielectric and Conductor-Loss Characterization and Measurements on Electronic Packaging Materials. NIST Technical Note 1520, 2001
    [21]中华人民共和国国家技术监督局. GB5597-1999.中华人民共和国国家统一标准-固体电介质微波复介电常数测试方法.北京:中国标准出版社, 1999-12-01
    [22] W.B. Westphal, and J. Iglesias. Dielectric Measurements on High-Temperature Materials. Laboratory for Insulation Research, Massachusetts Institute of Technology Cambridge, AD873038, 1971
    [23] J.F. Shackelford, W. Alexander. CRC materials and engineering handbook. CRC Press, 2001
    [24]黎义,李建保,何小瓦.采用谐振腔法研究透波材料的高温介电性能.红外与毫米波学报, 2004, 23(2) : 157-160
    [25]郭高凤,李恩,张其劭,等.低损耗介质材料复介电常数的变温测试.航天材料学报, 2003, 23(增刊) : 194-197
    [26] M.Garven, J. P. Calame, B. Myers, et al. Variable Temperature Measurements of the Dielectric Properties of Lossy Materials in W-band, IEEE Spectroscopy and Material Properties, 2005 : 174-175
    [27] Micheal D. Janezic, Edward F. Kuester and James-Baker-Jarvis. Broadband Complex Permittivity Measurements of Dielectric Substrates Using a Split-Cylinder Resonator. 2004 IEEE MTT-S Digest, 2004 : 1817-1820
    [28] Gang Zhang, Susumu Nakaoka and Yoshio Kobayashi. Millimeter Wave Measurements of Temperature Dependence of Complex Permittivity of Dielectric Plates by the Cavity ResonanceMethod. 1997 Asia Pacific Microwave Conference, 1997 : 913-916
    [29] Yoshio Kobayashi and Takashi Shimizu. Millimeter Wave Measurements of Temperature Dependence of Complex Permittivity of Dielectric Plates by a Cavity Resonance Method. 1999 IEEE MIT-S Digest, 1999 : 1885-1888
    [30] Takashi Shimizu, Yoshio Kobayashi. 50GHz Measurements of Temperature Dependence of Complex Permittivity of Dielectric Plates by a Cut-off Circular Waveguide Method. Third Topical Symposium on Millimeter Waves, 2001(P-10) : 163-166
    [31] Takashi Shimizu and Yoshio Kobayashi. Millimeter Wave Measurements of Temperature Dependence of Complex Permittivity of GaAs Plates by a Circular Waveguide Method. 2001 MTT-S, 2001 : 2195-2198
    [32] Jerzy Krupkay, Krzysztof Derzakowskiz, Bill Riddle, et al, A Dielectric Resonator for Measurements of Complex Permittivity of Low Loss Dielectric Materials as a Function of Temperature. Measurement Science and Technology, 1998, 9(10) : 1751-1756
    [33] R N Clarke, C B Rosenberg. Fabry-Perot and Open Resonators at Microwave and Millimetre Wave Frequencies 2-300 GHz. J. Phys. E: Sci. Instrum., 1982 ,(15) : 9-24
    [34] Jerzy Krupka. Frequency Domain Complex Permittivity Measurements at Microwave Frequencies. Meas. Sci. Technol. 2006, (17): 55-70
    [35]徐得名.准光腔法电介质材料测量技术.电子测量与仪器学报, 1989, 9(1) : 1-11
    [36]刘宁.准光腔法复介电常数测试研究: [电子科技大学硕士论文].成都:电子科技大学, 1989
    [37]雷丹,张其劭,李恩.用3mm准光腔测试介质片复介电常数.宇航材料工艺, 2006, (2) : 71-74
    [38]夏军,梁昌洪.电磁开腔测量多层介质样品复介电常数.电子学报, 1996, (9) : 60-63
    [39]冯丽萍,韦高. Ku波段开腔电介质高温自动测量系统.强激光与粒子束, 2006, 18(8) : 1323-1326.
    [40] J. P. Calame, D. K. Abe, B. Levush, et al. Variable Temperature Measurements of the Complex Dielectric Permittivity of Lossy AlN–SiC Composites from 26.5–40 GHz. Journal of Applied physics, 2001, 89(10) : 5618-5621
    [41]郭高凤.终端短路法介质材料介电性能高温测试系统研究: [电子科技大学博士论文].成都:电子科技大学, 2008
    [42] David L. Gershon, J. P. Calame, Y. Carmel, et al. Open-Ended Coaxial Probe forHigh-Temperature and Broad-Band Dielectric Measurements. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(9) : 1640-1648
    [43] Xu Deming,Liu Liping,Jiang Zhiyian. Measurement of the Dielectric Properties of Biological Substances Using an Improved Open-Ended Coaxial Line Resonator Method. IEEE Trans.on MTT. , 1987, (12) : 1424-1428
    [44] A. K. Ahassan, D. M. Xu, Y. Chang. Modeling and Analysis of Finite Hange Open-Ended Coaxial Probe for Planar and Convex Surface Coating Materials Testing by FDTD Method. Microwave and Optical Technology Letters, 2000, 24(20) : 117-120
    [45] Agilent. Agilent 85070D Dielectric Probe Kit, Agilent Product Note No. 5968-5330E, 2001
    [46]张克潜,顾茂章.微波技术.北京,电子工业出版社, 1989
    [47]梁昌洪,谢拥军,官伯然.简明微波.北京,高等教育出版社, 2006
    [48]周清一.微波测量技术.北京,国防工业出版社, 1961
    [49] En Li, Gaofeng Guo, Qishao Zhang. Broadband complex permittivity measurement of low loss dielectric disk by cylindrical cavity. 2005 Asia-Pacific Microwave Conference, 2005, (5): 3160-3162
    [50]张其劭,李恩,郭高凤.低损耗电介质复介电常数宽带测试技术.电子测量及仪器学术研讨会论文集, 2002
    [51] E. Li, Z. Nie, G. Guo, et al. Broadband Measurements of Dielectric Properties of Low-Loss Materials at High Temperatures Using Circular Cavity Method. Progress In Electromagnetics Research, 2009, 92: 103-120
    [52] En Li, Gaofeng Guo,Qishao Zhang. Multi-Mode Purification Method of TE0mn Cylindrical Cavity for Measuring Complex Permittivity. ISTM/2005: 6th International Symposium on Test and Measurement, 2005, (2) : 7096-7099
    [53]吴万春,梁昌洪.微波网络及其应用.北京,国防工业出版社, 1980
    [54] J. Helszajin. Ridge Waveguides and Passive Microwave Compoments. London: The Institution Electrical Engineers, United Kingdom, 2000
    [55] S.B.Cohn. Properties of Ridged Waveguide. Proc.IRE, Aug. 1947, 35: 783-788
    [56] S.Hopfer. The Design of Ridged Waveguide. IRE Trans. Microwave Theory Tech. , 1955, Vol. MTT-3 :20-29
    [57]张晓春.脊波导中主模及各高次模kc的CAD计算: [电子科技大学硕士论文].成都:电子科技大学, 2003
    [58] M.Lu and P.J Leonard. Design of Trapezoidal-Ridge Waveguide by Finite Element Method. IEEProc.-Microw. Antennas Propag., 2004, 1515(3) : 205-211
    [59] M. A. Hernandez-Lopez and M. Quintillan-Gonzalez. A Finte Element Method Code To Analyse Waveguide Disperdion. J. of Electromagn. Waves and Appl., 2007, 21(3) : 397–408
    [60]王萍.脊波导各种参数的计算.火控雷达技术, 2004, 33(9) : 50~55
    [61] Naval Air Systems Command. Electronic Wafare and Rada Syatems Engineering Handbook. NAWCWPNS, 1997
    [62]林泽祥.后馈式宽带同轴-波导转换器.电子对抗技术, 1994, (4) : 17-21
    [63] R. Levy, L. W. Hendrick. Analysis and Synthesis of In-Line Coaxial-to-Waveguide Adapters. IEEE MTT-S. International Microwave Symposium Digest, 2002, (2) : 809-811.
    [64] Yuri Tikhov, Youn Jin Kim and Jeong Phill Kim.An Over-Octave Compact Transition from Double–Ridge Waveguide to Coaxial Line for Phased Array Feed. 32nd European Microwave Conference, 2002 : 1-4
    [65]孙宁,吕德隆.感应加热技术的应用.机械工人(热加工), 2004 (6) : 21-23
    [66]姜上林,赵长汉.感应加热原理与应用.天津,天津科技翻译出版公司, 1993.
    [67]李恩,何凤梅,李仲平,等.用于微波测量的感应加热装置.中国,发明专利, ZL 200710050350.9, 2009-04-29
    [68]杨世铭,陶文铨.传热学(第4版).北京,高等教育出版社, 2006
    [69]李恩,李仲平,聂在平,等.一种用于高温下微波测试的圆柱形高Q谐振腔.中国,发明专利, 200710050347.7,公开日: 2008-10-01
    [70]何凤梅,李恩,李仲平,等.高温高Q腔法介电性能测试系统稳定性研究.宇航材料工艺, 2009, (1) : 78-81
    [71]李恩.吸波材料电磁参数在X波段的变温测试: [电子科技大学硕士论文].成都:电子科技大学, 2003.
    [72]费业泰.误差理论与数据处理.机械工业出版社, 2001
    [73]李恩,向志军,郭高凤,等.脊波导TRL校准技术的研究.仪器仪表学报, 2006, 27(9): 1041-1043

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700