SiO_(2f)/SiO_2复合材料与Invar合金的钎焊接头界面结构及形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiO_(2f)/SiO_2复合材料(Quartz fibers reinforced silica composite,简称SiO_(2f)/SiO_2,限本文使用)具有良好的透波性能和耐高温烧蚀性能,已在航天工业领域逐渐得到应用。目前,该材料是以胶接的方法和Invar合金实现连接。然而,在工程应用中,胶接接头较低的耐热性能和老化问题已成为制约其发展的技术瓶颈。因此,本课题将实现SiO_(2f)/SiO_2与Invar合金的高性能连接作为研究目标,以获得可靠的连接接头。文中提出了一种环氧树脂作用下的钎焊连接方法(Epoxy resin assisted brazing,简称ERAB,限本文使用),即通过环氧树脂的粘附力改善材料的界面特性,并在钎焊过程中实现接头的冶金反应连接。本文深入研究了SiO_(2f)/SiO_2与Invar的ERAB接头界面组织结构及形成机理,揭示了接头形成过程中界面的动力学行为。
     采用ERAB方法对SiO_(2f)/SiO_2和Invar合金进行连接试验,通过界面组织观察及物相分析,确定了接头的典型界面结构为:SiO_(2f)/SiO_2复合材料/TiO+Si+ Cu(s,s)+Ag(s,s)+TiC/Cu(s,s)+Ag(s,s)+Fe2Ti/Invar。在钎焊温度为850℃、保温时间为15min条件时,SiO_(2f)/SiO_2与Invar接头的抗剪强度达到最高值44MPa(约为SiO_(2f)/SiO_2母材强度的4倍),这主要是由于铺展润湿的钎料对界面处的SiO_(2f)/SiO_2起到了金属化增强的作用,此时接头断裂在SiO_(2f)/SiO_2未被钎料包覆增强的母材上。研究表明:此ERAB方法可实现Al2O3陶瓷或Cf/SiC复合材料与Invar合金的可靠连接。
     不同参数条件下的连接工艺试验结果表明,SiO_(2f)/SiO_2与Invar的ERAB接头界面中的物相种类基本保持不变,Cu(s,s)的形态及分布、Fe2Ti化合物的数量及分布、SiO_(2f)/SiO_2侧TiOx+Si界面反应层的厚度受到钎焊工艺参数的影响较大。钎焊温度的升高或保温时间的延长,都会促进Fe2Ti化合物相的增多和TiOx+Si反应层的增厚,弥散分布的Fe2Ti相逐渐聚集并在界面中心到Invar的区域内呈现链状分布;Cu(s,s)先随钎焊温度的升高或保温时间的延长逐渐向细小条状转变,但钎焊温度过高(950℃)或保温时间过长(35min),Cu(s,s)呈大块状分布。
     通过界面组织观察和热力学分析,揭示了SiO_(2f)/SiO_2与Invar接头的界面形成过程,即:界面粘接、活性中间层的热解后界面处的物理接触及TiH2的诱导热解,TiH2的热解及高纯Ti在界面的初步反应,钎料的熔化、SiO_(2f)/SiO_2侧反应层开始形成(TiOx化合物)、Invar侧发生原子扩散反应,SiO_(2f)/SiO_2侧反应层厚度增加、扩散到界面中心区的Fe原子与Ti发生反应,固溶体组织开始形成、SiO_(2f)/SiO_2侧的界面反应结束、Invar侧的扩散反应停止,焊缝中心区固溶体、金属间化合物的凝固及接头的最终形成。通过活性中间层热解动力学和接头形成过程中反应相成长的动力学行为分析,获得了接头粘接阶段活性中间层的热解机理函数、活化能及热解动力学方程和钎焊阶段界面反应层TiOx+Si的成长动力学方程及相关动力学参数。
     通过有限元模拟对SiO_(2f)/SiO_2与Invar套接构件进行残余应力分析,得出采用减薄和等分Invar合金环的方法可有效降低套接结构的残余应力,并采用ERAB方法实现了SiO_(2f)/SiO_2与Invar工程构件的致密连接。
Based on ther properties of well wave transmissivity and heat protection, Quartz fibers reinforced silica composites (QFSC, tell SiO_(2f)/SiO_2 for short) received wide application in aerospace industry. At present, the bad high temperature resistence and heat ageing resistance of adhesive-banded joint is the technical bottleneck in the application. Therefore, brazing of SiO_(2f)/SiO_2 and Invar alloy is expected in the present work to realize reliable joining. Direct and indirect brazing of SiO_(2f)/SiO_2 and Invar were experimented, one kind of new process named as epoxy resin assisted brazing (ERAB) was introduced under the base of above. High quality of SiO_(2f)/SiO_2 and Invar joint is successfully realized by ERAB. Microstructure, bonding mechanism and reaction kinetic equation of joint were identified. In addition, ERAB process can be applied in bonding of Al2O3 and Cf/SiC, respectively.
     SiO_(2f)/SiO_2 composite was brazed to Invar using active interlayer composing epoxy resin and TiH2 powder, Ag-Cu eutectic and pure copper as interlayer. After interfacial analysis through SEM, EDS and XRD, the typical interface structure was identified as SiO_(2f)/SiO_2 composite /TiO+Si+Cu(s,s)+Ag(s,s)+TiC/Cu(s,s)+Ag(s,s)+ Fe2Ti/Invar. When the brazing temperature is 850℃and holding time is 15min, the largest shear strength 44MPa of joint was reached, which is about 4 times the shear strength of SiO_(2f)/SiO_2. The spreading and wetting of solder reinforced the base of SiO_(2f)/SiO_2 near junction. The fracture of joint occurred at the base of SiO_(2f)/SiO_2 without solder coated.
     From the brazing experiments with various parameters, it can be identified that the kind of interfacial phases in the SiO_(2f)/SiO_2 and Invar joint was stable, amount and distribution of Cu(s,s) and Fe2Ti, thickness of reaction layer TiOx+Si were influenced obviously by the brazing parameters. With rising of brazing temperature and increasing of holding time, amount of Fe2Ti and thickness of reaction layer TiOx+Si increased, the diffuse spots of Fe2Ti aggregated gradually from Invar to the center of junction. The shape of Cu(s,s) changed into small and thin strip when brazing temperature and holding time increased at first, and aggregated into massive structure when brazing temperature reached 950℃or holding time was over 35min.
     Based on the thermal analysis and interface structure observation, formation of SiO_(2f)/SiO_2 and Invar joint was divided into six stages as follows: adhesive bonding, physical contact after thermal decomposition of active interlayer and induced decomposition of TiH2; decomposition of TiH2 powders and initial reaction of pure Ti in the interface; melting of Ag-Cu alloy, diffusion and reaction at the interfaces of both sides; increase of thickness of reaction layer near SiO_(2f)/SiO_2 and formation of Fe2Ti; formation of solid solution and stop of interfacial reactions; freezing of solid solutions, intermetallic componds and formation of joint. Under the base of thermal decomposition kinetics of active interlayer and reaction layer growth kinetics during the formation of joint, the kinetic behavior of interface in the joining formation was analysed. Thermal decomposition mechanism function, kinetics equation and activation energy of active interlayer in the adhesive bonding stage, growth kinetics equation and corresponding parameters of reaction layer TiOx+Si were calculated.
     Thinning and dividation of Invar ring can effective reduce residual stress in the sleeving structure of SiO_(2f)/SiO_2 and Invar. Joined component of SiO_(2f)/SiO_2 and Invar can be obtained by ERAB in appropriate structure.
引文
1. C. Ayranci, J. Carey. 2D braided composites: A review for stiffness critical applications. Compos Struct. 2008, 85(1): 43–58
    2. B.H Gu, F. K. Chang. Energy absorption features of 3-D braided rectangular composite under different strain rates compressive loading. Aerospace Science and Technology 2007, 11(7–8): 535–545
    3. Y. Z. Wan, G. Zak, S. Naumann, S. Redekop, I. Slywynska, Y. Jiang. Study of 2.5-D glass-fabric-reinforced light-curable resin composites for orthotic applications.Composites Science and Technology. 2007, 67(13): 2739–2746
    4. I. M. Daniel, J. J. Luo, P. M. Schubel. Three-dimensional characterization of textile composites. Composites: Part B Engineering. 2008, 39(1): 13–19
    5.沈强,陈斐,闫法强,张联盟.新型高温陶瓷天线罩材料的研究进展.材料导报. 2006, 20(9):1–4
    6.齐共金,张长瑞,王思青,胡海峰,曹峰,程海峰.无机天线罩功能材料的新进展.功能材料. 2004增刊, 35:1700–1703
    7. G. Wen, G. L. Wu, T. Q. Lei, Y. Zhou, Z. X. Guo. Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. Journal of the European Ceramic Society. 2000, 20(11): 1923–1928
    8.苏震宇,周洪飞.天线罩用耐高温复合材料的研究.玻璃钢/复合材料. 2005, (6):35–37
    9.张谟杰.俄罗斯导弹天线罩研制情况介绍-赴俄罗斯考察报告.制导与引信. 1998, (1):16–18
    10.齐共金,张长瑞,王思青.高超音速导弹天线罩关键技术.导弹与航天运载技术. 2005, 274(1):30–32
    11.宋银锁.高速战术导弹天线罩材料综述.航空兵器. 2003, 1:42–44
    12.宋银锁.空空导弹天线罩发展展望.航空兵器. 2005, (3):19–23
    13.雷景轩,施志伟,胡伟.高温宽频带陶瓷导弹天线罩研究进展.陶瓷学报. 2007, 2(28):144–148
    14.彭望泽.防空导弹天线罩.北京:宇航出版社, 1993
    15.刘萝葳,曹运红,王蕾,李艳玲.导弹雷达天线罩用的工艺材料.战术导弹技术. 2004, (1):23–28
    16.肖永栋,刘红影,方晓敏.新型无机烧蚀材料的性能及潜在用途.玻璃钢/复合材料. 2002, (3):46–47
    17. M. C. Gilreath, S. L. Castellow. High-temperature dielectric properties of candidate space-shuttle thermal protection system and antenna-window materials. NASA TND-7523. 1974
    18.于佩志,张涛,王晓薇. 2.5D石英纤维织物增强二氧化硅基复合材料弯曲性能测试研究.宇航材料工艺. 2004, (5):58–61
    19. H. Chen, L. M. Zhang, G. Y. Jia, et al. The preparation and characterization of
    3D-silica fiber reinforced silica composites. Key Engineering Materials. 2003, (249):159–162
    20.姜勇刚,张长瑞,曹峰,王思青,曹英斌.高超音速导弹天线罩透波材料研究进展.硅酸盐通报. 2007, 26(3):502-503
    21. Y. J. Wang, L. W. Mo, M. Deng, et al. Thermodynamic analysis on decomposition of feldspar mineral under alkali condition. In: Proc 12th Int Conf on AAR. Beijig. China. 2004,211–220
    22.朝爽,胡海峰,齐共金.无机天线罩材料的研究进展.纤维复合材料. 2006, (4):65–68
    23.曹运红.用于导弹雷达天线罩的材料、工艺现状及未来发展趋势.飞航导弹. 2005, (5):59–64
    24.倪必红,肖志红.复合陶瓷天线罩表面防潮性能的研究.航天制造技术. 2006, 2(1):14
    25.张谟杰.导弹天线罩连接方式的设计.上海航天. 1999, (3):32–33
    26.张谟杰.导弹天线罩的结构可靠性.制导与引信. 2006, 27(2):44–46
    27.蒋海峰,周丽,张万良.大间隙高强度胶粘剂在粘接石英陶瓷与低膨胀合金中的应用.宇航材料工艺. 2004, (4):48–50
    28.王国雄.弹头技术(上).北京:宇航出版社, 1993
    29.膨胀合金编写组.膨胀合金手册.冶金工业出版社, 1979
    30.刘多,张丽霞,何鹏,冯吉才. SiO2玻璃陶瓷与TC4钛合金的活性钎焊.焊接学报. 2009, 30(2):117–120
    31.刘多.基于AgCu/Ni中间层的SiO2陶瓷与TC4钛合金钎焊工艺及机理研究.哈尔滨工业大学博士论文. 2009
    32.高陇桥.陶瓷–金属材料实用封接技术.北京:化学工业出版社, 2005
    33. Z. H. Zhong, Z. J. Zhou, C. C. Ge. Brazing of doped graphite to Cu using stress relief interlayers. Journal of Materials Processing Technology. 2009, 209(5):2662–2670
    34. H. T. Zhang, J. Cao, H. Lu. Reactive brazing of aluminium to aluminium-based composite reinforced with alumina borate whiskers with Cu interlayer. Vacuum. 2009, 84(4):474–477
    35. A. A. Shirzadi, Y. Zhu, H. K. D. H. Bhadeshia. Joining ceramics to metals using metallic foam.Materials Science and Engineering A. 2008,496(1–2):501– 506
    36. W. Robert. Jr. Messler. Joining of Metals, Alloys, and Intermetallics. Joining of Materials and Structures. 2004:535–582
    37. P. He, J. C. Feng, W. Xu. Mechanical property of induction brazing TiAl-based intermetallics to steel 35CrMo using AgCuTi filler metal. Materials Science and Engineering A. 2006, 418(1–2):45–52
    38. Y. Li, R. K. Shiue, S. K. Wu, L. M. Wu. Infrared brazing Fe3Al intermetallics using the Cu filler metal. Intermetallics. 2010, 18(4):422–428
    39.张启运,庄鸿寿.钎焊手册(第二版).北京:机械工业出版社, 2008
    40.邹家生.材料连接原理与工艺.哈尔滨:哈尔滨工业大学出版社, 2005
    41.中国机械工程学会.焊接手册-第一卷.北京:机械工业出版社, 2006
    42. B. Z. Jang. Control of interfacial adhesion in continuous carbon and kevlar fiber reinforced polymer composites. Composites. 1992, 44(4):333–349
    43. B. M. Parker. Adhesive bonding of fibre-reinforced composites. International Journal of Adhesion and Adhesives. 1994, 14(2):137–143
    44. A. Tezvergil, L. V. J. Lassila, P. K. Vallittu. Composite–composite repair bond strength: effect of different adhesion primers. Journal of Dentistry. 2003, 31(8):521–525
    45.周祝林,吴妙生.复合材料胶接(上).纤维复合材料. 1997, (1):51
    46.盛磊.俄罗斯宇航工程中常用的胶粘剂.航天返回与遥感. 2001, 22(2):48–55
    47.郑立胜,李远才,董玉祥.飞机复合材料粘接修理技术及应用.粘接. 2006, 27(2):51–53
    48.沃西源,涂彬,夏英伟.航天器复合材料胶接连接工艺分析.航天返回与遥感. 2008, 29:62–66
    49.靳武刚.碳纤维复合材料胶接工艺研究.航天工艺. 2001, (3):13–17
    50.韦生文.铝蜂窝复合材料的大面积粘接与应用.粘接. 2004, 25(4):40–41
    51.吕新颖,邸明伟.改性环氧胶在铝合金/复合材料粘接中的应用.粘接. 2008, 29(6):42–44
    52.顾继友.胶接理论与胶接基础.北京:科学出版社, 2004
    53. De Bruyne N A. The adhesive properties of epoxy resins. Journal of Applied Chemistry. 1956, 6(7):303
    54.潘慧铭,黄素娟.表面、界面的作用及粘接机理(二).粘接. 2003, 24(3):41–47
    55.刘丽,王虎,王柏臣,黄玉东. RTM用酚醛树脂在石英纤维表面吸附行动的研究.中国复合材料学会聚合物基复合材料分会广东省复合材料学会2006联合学术年会论文集, 2006
    56.李俊生,张长瑞,王思青,曹峰,王衍飞. SiO2/(Si3N4+BN)透波材料表面涂层的防潮性能和透波性能研究.涂料工业. 2007, 1:5–8
    57.陈道义,张军营.胶接基本原理.北京:科学出版社, 1994
    58.翁熙祥.粘接理论研究的新进展.中国粘接学会研讨及产品展示会(论文集). 1998, :16
    59.李士学.粘接过程的配位键力作用.粘接. 1983, 4(2):1
    60.王润珩,高忠良,陈连周.粘接过程中配位键力的研究.粘接. 1999, 20(6):8–11
    61.周定沛.粘接配位键机理的实验研究(二).粘接. 1987, 8(4):1
    62.周定沛.粘接配位键机理的实验研究(一).粘接. 1987, 8(1):1
    63.陈根座.胶粘剂应用手册––胶接设计与胶粘剂.北京:电子工业出版社, 1994
    64.顾继友.胶黏剂与涂料.北京:中国林业出版社,1999
    65. G. L?rinci, G. Matuschek, J. Fekete, I. Gebefügi, A. Kettrup. Investigation of thermal degradation of some adhesives used in the automobile industry by thermal analysis/mass spectrometry and GC-MS. Thermochimica Acta. 1995, 263:73–86
    66. Ran Liu, Xiaodong Wang. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin.Polymer Degradation and Stability. 2009, 94(4):617–624
    67.杨正权,胡荣祖,梁燕军,李向东.用单一非等温DSC曲线确定2,62二硝基苯酚热分解反应的最可几机理函数和动力学参数.物理化学学报. 1986, 2(1):13–20
    68.张赞锋.用一条TG曲线确定六硝基二苯胺钾的热分解机理函数.火工品. 1998, (4):28–30
    69.祝红梅,蒋旭光,池涌,严建华.热重-红外联用分析医疗垃圾的热动力学特性.工程热物理学报. 2008, 29(3):519–522
    70.胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001
    71.周彩荣,李秋红,王海峰.甲基磺酸亚锡的热分析研究.高校化学工程学报. 2006, 20(4):669–672
    72.胡荣祖,高胜利,赵凤起,史启祯,张同来,张建军.热分析动力学.北京:科学出版社, 2008
    73.李亚江.特殊及难焊材料的焊接.北京:化学工业出版社, 2003
    74. S. Sugiyama, M. Kiuchi, J. Yanagimoto. Application of semisolid joining–Part 4 glass/metal,Plastic/metal or wood/metal joining. Journal of materials processing technology. 2008, (201):623–628
    75. L. X. Zhang, L. Z. Wu, D. Liu, J. C. Feng, H. B. Liu. Interface microstructure and mechanical properties of the brazed SiO2 glass ceramic and 30Cr3 high-tensile steel joint. Materials Science and Engineering A. 2008, (496):393–398
    76. H. B. Liu, L. X. Zhang, L. Z. Wu, D. Liu, J. C. Feng. Vacuum brazing of SiO2 glass ceramic and Ti-6Al-4V alloy using AgCuTi filler foil. Materials Science and Engineering A. 2008, (498):321–326
    77. S. Mandal, A. K. Ray, A. K. Ray. Correlation between the mechanical properties and the microstructural behaviour of Al2O3–(Ag–Cu–Ti) brazed joints. Materials Science and Engineering A. 2004, (383):235–244
    78. H. L. Ning, Z. T. Geng, J. S. Ma, F. X. Huang, Z. Y. Qian, Z. D. Han. Joining of sapphire and hot pressed Al2O3 using Ag70.5Cu27.5Ti2 brazing filler metal. Ceramics International. 2003, (29):689–694
    79. A. Kar, S. Mandal, K. Venkateswarlu, A. K Ray. Characterization of interface of Al2O3–304 stainless steel braze joint. Materials Characterization. 2007,(58):555–562
    80.唐朝壁.陶瓷-金属封接中的低银活性钎料试验.分析仪器. 1982, 4:68–72
    81. P. Prakash, T. Mohandas, P. Dharma Raju. Microstructural characterization of SiC ceramic and SiC–metal active metal brazed joints. Scripta Materialia. 2005, (52):1169–1173
    82. J. K. Li, L. Liu, Y. T. Wu, Z. B. Li, W. L. Zhang, W. B. Hua. Microstructure of high temperature Ti-based brazing alloys and wettability on SiC ceramic. Materials and Design. 2009, 30:275-279
    83. A.Guedes, A. M. P. Pinto, M. Vieira, F. Viana. Multilayered interface in Ti/Macor? machinable glass-ceramic joints. Materials Science and Engineering A. 2001, (301):118–124
    84.肖长发.纤维复合材料及其应用.现代化工. 1995, 6:9-13
    85. M. Salvo, Casalegno V., Rizzo S , Smeacetto F, Ferraris M, Merola M. One-step brazing process to join CFC composites to copper and copper alloy. Journal of Nuclear Materials. 2008, (374):69–74
    86. P.Appendino, V.Casalegno, M.Ferraris. Direct joining of CFC to copper.Journal of Nuclear Materials. 2004,(329):1563–1566
    87. Y. Qin, J. Feng . Microstructure and mechanical properties of C/C composite/TC4 joint using AgCuTi filler metal. Materials Science and Engineering A. 2007, (454-455): 322–327
    88. M. Singh,T. P. Shpargel, G. N. Morscher, R. Asthana. Active metal brazing and characterization of brazed joints in titanium to carbon–carbon composites. Materials Science and Engineering A. 2005, (412):123–128
    89. M. Singh, R. Asthana, T. P. Shpargel. Brazing of carbon–carbon composites to Cu-clad molybdenum for thermal management applications. Materials Science and Engineering A. 2007, (452–453):699–704
    90. J. L. Li, L. J. Wang, G. Z. Bai, W. Jiang. Carbon tubes produced during high-energy ball milling process. Scriptal materialia. 2006, 54:93–97
    91. G. B. Lin, J. H. Huang, H. Zhang. Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag–Cu–Ti short carbon fibers. Journal of Materials Processing Technology. 2007, (189):256–261
    92. J. T. Xiong, J. L. Li, F. S. Zhang, W. D. Huang. Joining of 3D C/SiC compositesto niobium alloy. Scripta Materialia. 2006, (55):151–154
    93. R. Asthana, M. Singh. Joining of partially sintered alumina to alumina, titanium, Hastealloy and C–SiC composite using Ag–Cu brazes. Journal of the European Ceramic Society. 2008, 28(3):617–631
    94.童巧英.在线液相渗透连接C/SiC复合材料的显微结构与性能.西北工业大学硕士学位论文. 2003
    95.汪清. C/SiC复合材料连接接头应力与破坏形式数值分析.西北工业大学硕士学位论文.2005
    96.陈维君,张恩天,郭旭,张淑芳.室温固化环氧胶粘剂的研究现状与发展趋势.化学与粘合. 2000, (3):127–129
    97.张智,邢景春,崔卫民.耐高温胶黏剂.化学与黏合,2005,27(3):165–168
    98.张绪刚,张斌,王超,孙明明,李奇力,关长参.室温固化耐高温环氧树脂胶粘剂的研究.中国胶粘剂,2003,12(2):19–22
    99.张恩天,陈维君,李刚,焦心语.俄罗斯的冷固化超高温胶粘剂.化学与粘合. 2003, (5):242–244
    100. A. Melander, M. Larsson, H. Stenso, A. Gustavsson, J. Linder. Fatigue Performance of Weldbonded High Strength Sheet Steels Tested in Arctic, Room Temperature and Tropical Environments. International Journal of Adhesion & Adhesives. 2000, (20):415–425
    101. S. M. Darwish. Analysis of weld-bonded dissimilar materials. Journal of Materials Processing Technology. 2003, (134):352–362
    102. T. B. Jones. Weld-bonding–the mechanism and prop- erties of weldbonded joints. Sheet Metal Industries.1995, 72(9):30–31
    103.陶海清,蔡士铮.焊接–粘接复合工艺在修船中的应用.中国修船. 1998, (1):28–29
    103.常保华,史耀武,董仕节.胶焊技术及其应用.焊接技术. 1998, (1):9–12
    105.纪东莲,王文先.胶焊技术与胶接接头的设计分析.汽车技术. 1999, (3):19–21
    106.常保华,史耀武,卢良清.胶焊搭接接头的应力分布和疲劳行为研究.机械工程学报. 2000, 36(2):106–110
    107.殷勇,涂善东,朱进.胶焊单搭接头长时力学性能分析.航空材料学报. 2001, 21(3):57–62
    108.李松.电子封装焊料润湿性研究.华中科技大学博士学位论文. 2006
    109.刘成有.润湿现象的解释.重庆师范学院学报(自然科学版). 2000, 17(6):143–147
    110. O. V. Voinov. Hydrodynamics of wetting. Fluid Dynamics. 1976, 11:714-721
    111. L. H. Tanner. The Spreading of Silicone Oil Drops on Horizontal Surface. Journal of Physics D:Applied Physics. 1979, 12(9):1473–1484
    112. N. Eustathopoulos. Dynamics of wetting in Reactive Metal/Ceramic Systems. Acta Materialia. 1998, 46(7):2319–2327
    113.龚克成.高聚物胶粘基础.上海科技出版社, 1983
    114.王颖. Al2O3陶瓷的活性金属化及与5A05铝合金扩散钎焊机理研究.哈尔滨工业大学博士学位论文. 2009
    115. J. L. Murray. Calculations and stable of metastable equilibrium diagrams of the Ag-Cu and Cd-Zn systems. Metall. Trans. A. 1984, 15:261–268
    116.李家科,刘磊,刘意春,沈彬,于治水,胡文彬.先进结构陶瓷与金属材料钎焊连接技术的研究进展.机械工程材料. 2010, 4:1–4
    117.李卓然,冯吉才,顾伟.日用陶瓷与不锈钢钎焊连接的界面组织与性能分析.焊接学报. 2008, 29(10):9–12
    118. X. W. Zhang, L. Quitino, C. Allum, J. O. Santos. A simple approach to estimate surface tension of liquid metal. Journal of northern jiaotong university. 1996, 20(4):424–428
    119. D. A. Steenkamer, S. H. Mcknight, D. J. Wilkins. Experimental characterization of permeability and fiber wetting for liquid moulding. Journal of Materials Science. 1995, 30:3207–3215.
    120.周燕,邓诗峰,黄发荣.磷酸盐基复合材料中石英纤维的表面处理.玻璃钢/复合材料. 2009, (2):37–41
    121.邢建申,王树彬,张跃.石英纤维析晶行为.复合材料学报. 2006, 23(6):75– 79
    122.甄强,张大海,王金明,王廷云.石英纤维热损伤机制.复合材料学报. 2008, 25(1):105–111
    123. A. M. Kliauga, D. Travessa, M. Ferrante. Al2O3/Ti interlayer/AISI 304 diffusion bonded joint: Microstructural characterization of the two interfaces. Materials Characterization. 2001, 46(1):65–74.
    124. R. K. Shiue, S. K. Wu, C. H. Chan. The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys. Alloys and Compounds. 2004, 372(1-2):148–157
    125.宋敏霞,赵熹华,郭伟,冯吉才.钛合金与其它金属材料扩散连接研究现状与发展.焊接. 2005, 1:5–7
    126. A. Kar, S. Mandal, K. Venkateswarlu, A. K. Ray. Characterization of interface of Al2O3–304 stainless steel braze joint. Materials Characterization. 2007, (58):555–562
    127.Y. C. Yoo, J. H. Kim, K. Park. Microstructural characterization of Al2O3/AISI 8650 steel joint brazed with Ag–Cu–Sn–Zr alloy. Materials Letters. 2000, (42):362–366
    128.H. L. Ning, Z. T. Geng, J. S. Ma, F. X. Huang, Z. Y. Qian, Z. D. Han. Joining of sapphire and hot pressed Al2O3 using Ag70.5Cu27.5Ti2 brazing filler metal. Ceramics International. 2003, (29):689–694
    129. M. I. Barrena, L. Matesanz, J. M. Gómez de Salazar. Al2O3/Ti6Al4V diffusion bonding joints using Ag–Cu interlayer. Material characterization. 2009, (60):1263–1267
    130. J. H. Xiong, J. H. Huang, H. Zhang, X. K. Zhao. Brazing of carbon fiber reinforced SiC composite and TC4 using Ag–Cu–Ti active brazing alloy. Materials Science and Engineering: A. 2010, 527(4–5):1096–1101
    131.史启祯.无机化学与化学分析.高等教育出版社. 2005
    132.余先纯,孙德林.胶黏剂基础.化学工业出版社, 2010
    133. H. L. Yakel Jnr. Thermocrystallography of higher hydrides of titanium and zirconium. Acta Crystallographica. 1958, (11):46–50
    134. R.L.Crane, S.C.Chattoraj, M.B.Strope. A room-temperature polymorphic transition of titanium hydride. Journal of the Less Common Metals. 1971, 25(2):225–227
    135.罗渝然.化学键能数据手册.科学出版社, 2005
    136.秦优琼. C/C复合材料与TC4钎焊接头组织及性能研究.哈尔滨工业大学博士学位论文. 2007
    137. M. ARITA, R. KINAKA, M. SOMENO. Application of the metal-hydrogen equilibration for determining thermodynamic properties in the Ti-Cu system.Metallurgical Transactions A. 1979, 10(5): 529–34.
    138. M. E. Brown, M. Maciejewski , S. Vyazovkin, R. Nomen, et al. Computational aspects of kinetic analysis. Part A: The ICTAC Kinetics Project– Data, methods and results. Thermochim Acta. 2000, 355:125–143.
    139. M. Maciejewski. Computational aspects of kinetic analysis. Part B: The ICTAC Kinetics Project - the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic mine field. Thermochim Acta. 2000, 355:145–154
    140. S. Vyazovkin. Computational aspects of kinetic analysis.: Part C. The ICTAC Kinetics Project–the light at the end of the tunnel. Thermochim Acta. 2000, 355:155–163
    141. A. K. Burnham. Computational aspects of kinetic analysis. Part D: The ICTAC kinetic project-multi-thermal-history model-fitting methods and their relation to isoconversional methods.Thermochim Acta. 2000, 355:165–170
    142. B. Roduit. Computational aspects of kinetic analysis. Part E: The ICTAC Kinetics Proj- ect–Numerical techniques and kinetics of solid state processes. Thermochim Acta. 2000, 355:171–180
    143.张志斌,胡良元,林彬.超燃冲压发动机热防护结构的理论计算.航天制造技术. 2008, 4:47-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700