高超声速多场耦合及其GPU计算加速技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速飞行器,由于其飞行环境中存在激波边界层干扰、高温流动等复杂物理现象,给研制工作带来了一系列新的课题,尤其体现在气动热弹性等问题中,也是目前国际上的研究热点之一。解决这些问题的基础已经远远超出常规的气动弹性力学范畴,必须计入高温气体效应、边界层效应、结构热传导和热辐射等研究内容。它们具有流-固-热多场耦合和计算密集型特点,需要计算流体力学(CFD)、计算结构动力学(CSD)、计算传热学(CTD)等多个学科的相互配合,对理论分析和计算能力都是一个很大的挑战,目前已有的成功分析还较少。本文针对上述问题开展了以下研究工作:
     针对化学反应非平衡流N-S方程,对隐式时间离散格式中的对流项、粘性项及源项的雅可比矩阵表达式进行了推导。采用Menter’SST两方程湍流模型、Roe格式、AUSM+-up格式及LUSGS方法编制了高超声速CFD计算程序,并通过典型算例验证其正确性,为后续研究工作提供基本计算手段。
     从GPU架构特点出发,发展了基于数据并行的隐式CFD求解方法,适用于结构和非结构网格。采用CUDA技术,通过数据结构和算法优化,在GPU上成功实现了高超声速CFD计算。分别在Intel Core2Quad3.0GHz CPU和NVIDIA GTX280GPU上进行了数值仿真,结果表明隐式格式计算速度是显式格式6倍以上,采用显式格式的加速比达到28倍,采用隐式格式加速比达到了28.7倍,同时加速比随问题规模的增加而增加。仿真结果和实验值吻合良好。该工作可为后续研究提供快速计算手段。
     依据几何关系及插值特点,提出了一种带旋转修正的TFI动网格方法,用来解决传统TFI方法在粘性网格和网格大变形时引起的网格正交性问题。以典型二维及三维粘性网格为例进行了方法的有效性研究。结果表明,在显著大变形情况下,引入旋转修正得到了正交性和光顺性良好的变形网格。方法的计算效率虽然较传统TFI有所降低,但相比弹簧方法能提高1到2个量级。
     在位移和温度插值方法上,鉴于常规的基于薄板变形理论的样条方法(TPS/IPS)对于复杂结构外形存在插值困难,且对于温度插值没有明显的物理意义,提出了采用高阶等参单元形函数代替TPS/IPS的方法。算例表明,本文方法不仅成功解决了温度插值问题,而且位移插值精度也优于TPS/IPS方法,并更具普适性。此外,针对压力和热流插值需要保持守恒性的特点,从有限元法和有限体法的单元特性出发,提出一种具有局部守恒特性的界面载荷插值方法,并通过算例验证了方法的有效性。
     采用共享内存技术开发了适用于通用有限元分析(FEA)和计算流体力学(CFD)软件的多场耦合计算平台,并基于分区耦合方式实现了流固耦合传热计算。作为算例,计算了外壁冷却的喷管和高超音速圆柱绕流的耦合传热问题,结果与实验值吻合良好。针对类X-34飞行器的头部热防护结构,考虑材料非线性和辐射效应,对高超音速巡航状态下驻点温度和结构冷却系统功率随热防护层厚度的变化规律进行了研究。计算结果表明,驻点温度随厚度的变化并不明显,而冷却系统功率随厚度增加急剧降低。此外材料发射率非线性对结果影响较大。
     采用Euler方程和N-S方程研究了超声速和高超声速壁板颤振中的湍流边界层效应。低超声速条件下的计算结果表明,湍流边界层对颤振边界影响较为明显,在马赫数1.2左右达到最大值,随后这种差别随马赫数增大而逐渐减小,颤振边界计算结果和试验值吻合较好。在高超声速阶段,湍流边界层效应对颤振动压仍有较明显影响。在马赫数8时,N-S方程的结果高出Euler方程20%左右。这说明,对于高超声速壁板颤振,湍流边界层效应是不可忽略的影响因素。
     采用三阶活塞理论、Euler方程和N-S方程三种气动力模型对二元双楔翼型的气动弹性问题进行了研究。结果表明采用Euler和三阶活塞理论的颤振速度非常接近,但和N-S方程结果差别较大。这可以归结为两方面原因:一是激波边界层干扰引起流场特征发生变化,二是边界层厚度间接改变了结构外形。因此,粘性效应对此类高超声速气弹稳定性有显著影响。
     对典型吸气式高超声速飞行器机翼的三维气动热弹性问题进行了研究。将其分解为静气动热弹性配平和气动热弹性响应问题。其中,对于静气动热弹性配平问题,为避免计算过程不收敛,提出了采用动态过程代替静态过程的计算方法。在海拔10公里标准大气条件下,对一典型非对称高超声速机翼结构进行了气动热弹性计算,其中,气动力模型采用理想气体和化学反应非平衡气体。为进行比较,还采用活塞理论和Euler方程计算了相应的颤振速度。结果表明,采用理想气体时,用活塞理论和Euler方程得到的颤振速度比N-S方程结果分别高164.3和98.7%。而同样在N-S方程中,采用理想气体比化学反应非平衡气体的颤振速度低6.1%。造成上述结果的主要原因是高温引起的热应力及材料特性变化改变了结构的动力学特性。对于这类气动热弹性问题需要采用包含化学反应非平衡效应的N-S方程来求解。
Hypersonic flow with shock-boundary layer interaction, high temperature flow and othercomplex phenomena is significantly different from low speed flows, which bring lots of difficultiesand new problems for vehicle design, especially in aerothermoelastic behavior. Solving theseproblems must take into count the effects of high temperature, boundary layer, structure thermalconduction and thermal radiation, which is in excess of tridiantional aeroelastic problems. Thesemulti-field coupled and high arithmetic intensity problems are depend on the cooperation ofcomputational fluid dynamics (CFD), computational structure dynamics (CSD) and computationalthermal dynamics (CTD), and produce a big challenge for analysis and computing capacity. Thecontributions to the state-of-the-art made in this dissertation are summarized below:
     A details description of the finite speed non-equilibrium chemical reaction Navier-Stokesequations is present and computational methods of gas transport properties and chemical reactionsource term are provied. The formulas of explicit and implicit time discretisation method are derived,the full system Jacobi matrix which contains convective/viscous/source terms is also provided. Acomputer program, which using Roe and AUSM+-up schemes and Menter’s SST two equationsturbulence model and implicit LUSGS method, is developed for solving hypersonic CFD problems,and also verified by some test cases.
     Based on the features of the GPU architecture, an implicit data-parallel scheme has beendeveloped for solving CFD problems. The presented method is applicable to structured andunstructured mesh and uses upwind scheme to achieve more accurate results. The method has beenimplemented on NVIDIA GTX280GPU by employing CUDA technology and compared with IntelCore2Quad3.0GHz CPU. The results indicate that the implicit scheme proposed in this paper is6times faster than the explicit scheme with same hardware and the computation is speed-up to28.7x byusing GPU and implicit scheme, which will be more efficient for larger scale problems. At last, theresults provide good agreement with the existing experimental data.
     Based on analysis of geometric relationship and interpolation features, an improvement forpresent transfinite interpolation (TFI) method with a rotation correction is proposed to solve theorthogonal problem with large mesh deformation. The computational results of typical two and threedimensional viscous grids indicate that good orthogonal and smoothing properties can be achieved byrotation correction for large mesh deformation. In addition, the computational efficiency is slightlydecreased than the traditional TFI method, but improved by1or2orders of magnitude compared tothe spring analogy method.
     The thin-plate spline (TPS) or infinte-plate spline (IPS) methods are not suitable for complexstructure, and have no physical meanings for temperature interpolating. A new interpolating methodusing high order isoparameter finite element shape function is presented for solving these problems,and validated by some test cases. A local conservative remapping method is presented for thermal fluxand aerodynamic loads interpolation, based on analysis of the element features of finite element andfinite volume. It’s availability is also identified by some test cases.
     A multi-field coupled computing platform using multi-zone iteration method is developed for solving multi-disciplinary problems. Shared memory method is employed for faster data exchange forgeneral finite element analysis (FEA)/computational fluid dynamics (CFD) software. The problems ofconjugate heat transfer for a cooled converging-diverging nozzle and a cylindrical leading edge inhypersonic flow are studied. Effects of mesh density, nonlinear material properties and radiationeffects are considered during the computation,and the results indicate good agreement with theexisting experimental data. The relationship between stagnation temperature, cooling power and thethickness of nose thermal protection structures (TPS), which resemble X-34hypersonic vehicle, underhypersonic cruise condition are emphatically investigated. The results indicate that the thicknessvariations have much less influences on stagnation temperature, while the cooling power dropssharply as the thickness increases. Furthermore, the nonlinear material emission properties havesignificant influences on the analysis results.
     A coupled CFD/CSD method was used to solve supersonic and hypersonic panel flutter problemin time domain using Euler and Navier-Stokes equations. Flutter dynamic pressure was calculatedunder different boundary layer thickness and Mach number; the results show that boundary layerthickness has a large stabilizing influence on the flutter of flat panels. The effect on flutter dynamicpressure is maximum near Ma=1.2and decrease rapidly with increasing Mach number, which agreedwell with experimental data. The dynamic pressure is20%higher than the Euler results at Ma=8, theinfluence of turbulent boundary layer thickness can not be neglected at hypersonic flow.
     Aeroelastic behavior of a typical double-wedge airfoil in hypersonic flow was investigated. Theeigenvalue method using3rdpiston theory, Euler equations, Navier-Stokes equations with adiabaticand isothermal wall boundary were employed to determinate the flutter boundary under differenceflight altitude. The results indicated that Euler equations is very closed to3rdpiston theory, butsignificant difference from Navier-Stokes, and result with difference wall temperature conditaionusing Navier-Stokes is agree well with each other. This conclusion results from two reasons:shock-boundary layer interaction changes the characteristics of flow field, and the thickness ofboundary layer modifies the geometric shape indirectly. Therefore, the viscous effects play a key rolein this aeroelastic problem and can not be neglected.
     Analysis of aerothermoelastic behavior for the nonsymmetric wing structure of typicalairbreathing hypersonic vehicle was accomplished using multi-field coupled method. It can be dividedinto static aerothermoelastic trim and transient aerothermoelastic response. A new iterative methodusing transient coupling method instead of steady method is present to avoid some numericaldifficulties of convergence. The free-stream condition is10km standard atmosphere. Ideal gas andnon-equilibrium chemical reaction gas model are adopted, piston theory and Euler equations are alsoemploy for comparsion. The results indicated that flutter speed calculated with ideal gas is6%higherthan non-equilibrium chemical reaction Navier-Stokes equations. A very large error exists betweenEuler/3rdpiston and Navier-Stokes. The main reason is the modification of structure dynamicproperties produced by the thermal-stress and variation of materials properties under high temperature.The non-equilibrium chemical reaction Navier-Stokes equations must be used for thisaerothermoelastic problem.
引文
[1] Tsien H S. Similarity law of hypersonic flows. J. Math. Phys.,1946,25:247-251.
    [2] Anderson J D Jr. Hypersonic and high temperature gas dynamics. New York: McGraw-HillBook Company,1979:14~24.
    [3] Dana W. The X-15airplane-lessons learned. AIAA-1993-0309,1993.
    [4] Chase R L, Tang M H. A history of the NASP program from the formation of the joint programoffice to the termination of the HySTP scramjet performance demonstration program.AIAA-1995-6031,1995.
    [5] Vincent L R, Charles R M, Joel S, et al. NASA's Hyper-X program. IAF-00-V.4.01,2000.
    [6] Walker S, Rodgers F. FALCON hypersonic technology overview. AIAA-2005-3253,2005.
    [7] Samuel L V, Ahmed K N. Overview and major characteristics of future aeronautical and spacesystems. AIAA-92-2441-CP,1992.
    [8]杨超,许赟,谢长川.高超声速飞行器气动弹性力学研究综述.航空学报,32(1):1-11.
    [9]杨亚政,李松年,杨嘉陵.高超音速飞行器及其关键技术简论.力学进展,2007,37(4):537-550.
    [10] Bergman C M, Vos J B. Parallelization of CFD codes, Computer Methods in AppliedMechanics and Engineering,1991,89:523-528.
    [11]范绪箕.高超声速飞行器热结构分析与应用.北京,国防工业出版社,2009.
    [12]范绪箕.气动加热与热防护系统.北京,科学出版社,2004.
    [13] Spain C, Soistmann D, ParkerE, et al. An overview of selected NASP aeroelastic studies at theNASA Langley research center. AIAA-1990-5218,1990.
    [14] Michael W K. Todd S. Thermoelastic test techniques. NASA TM-101747,1991.
    [15] Rodgers J P. Aerothermoelastic analysis of a NASP like vertical fin. AIAA-1992-2400,1992.
    [16] Spain Charles V, Zeiler T A, Bullock E P, et al. A flutter investigation of all moveable NASPlike wings at hypersonic speeds. AIAA-1993-1315,1993.
    [17] Cole S R, Florance J R, Thomason L B, et al. Supersonic aeroelastic instability results for aNASP-like wing model. AIAA-1993-1369,1993.
    [18] Heeg J, Zeiler T, Pototzky A, et al. Aerothermoelastic analysis of a NASP demonstrator model.AIAA-1993-1366,1993.
    [19] Pak C G, Baker M L. Control surface buzz analysis of a generic NASP wing. AIAA-2001-1581,2001.
    [20] Lawrence J O. Aerothermoelasticity its impact on stability and control of wingedaerospacevehicles. Journal of Aircraft,1965,2(6):517-526.
    [21] Ericsson E L. Hypersonic aerothermoelastic characteristics of a finned missile. Journal ofSpacecraft,1979,16(3):187-190.
    [22] Friedmann P P. Hypersonic aeroelasticity and aerothermoelasticity with application to reusablelaunch vehicles. AIAA-2003-7014,2003.
    [23] Heeg J, Gilbert M G, Pototzky A S. Active control of aerothermoelastic effects for a conceptualhypersonic aircraft. Journal of Aircraft,1993,30(4):453-458.
    [24] Wu Z G, Yang C. Flight loads and dynamics of flexible air vehicles. Chinese Journal ofAeronautics,2004,17(1):17-22.
    [25] Thuruthimattam B J. Fundamental Studies in Hypersonic Aeroelasticity Using ComputationalMethods. Ph.D. thesis, University of Michigan,2005.
    [26]瞿章华,刘伟,曾明等.高超声速空气动力学.国防科技大学出版社,2001:1-4.
    [27] Jameson A, Schmidt W, Turkel E. Numerical solution of the Euler equations by finite volumemethods using Runge-Kutta time-stepping schemes. AIAA-81-1259,1981.
    [28] Jameson A, Baker T J, Weatherill N P. Calculation of inviscid transonic flow over a completeaircraft. AIAA-86-0103,1986.
    [29] Swanson R C, Turkel E. On central difference and upwind schemes. Journal of ComputationalPhysics.1992,101:292-306.
    [30] Steger J L, Warming R F. Flux vector splitting of the inviscid gasdynamic equations withapplication to finite difference methods. Journal of Computational Physics.1981,40:263-293.
    [31] Van Leer B. Flux vector splitting for the Euler equations. ICASE Report82-30,1982.
    [32] Liou M S, Steffen C J Jr. A new flux splitting scheme. Journal of Computational Physics.1993,107:23-39.
    [33] Liou M S. A sequel to AUSM: AUSM+. Journal of Computational Physics.1996,129:364-382.
    [34] Jameson A. Positive schemes and shock modeling for compressible flow. International Journalof Numerical Methods in Fluids.1995,20:743-776.
    [35] Tatsumi S, Martinelli L, Jameson A. A new high resolution scheme for compressible viscousflow with shocks. AIAA-95-0466,1995.
    [36] Edwards J R. A low-diffusion flux-splitting schems for Navier-Stokes calcuations. Computer&Fluids.1997,26:653-659.
    [37] Rossow C C. A flux splitting scheme for compressible and incompressible flows.AIAA-99-3346,1999.
    [38] Kyu H K, Joon H L, Rho O H. An improvement of AUSM schemes by introducing thepressure-based weigth functions. Computer&Fluids.1998,3(27):311-346.
    [39] James N S, Yang Y N. Comparison of limiters in flux-split algorithm for Euler equations.AIAA-93-0068.
    [40] Kyu H K, Chongam K, Rho O H. Methods for the accurate computations of hypersonic flows I.AUSMPW+scheme. Journal of Computational Physics.2001,174:39-80.
    [41] Kyu H K, Chongam K, Rho O H. Methods for the accurate computations of hypersonic flowsII. shock-aligned grid technique. Journal of Computational Physics.2001,174:81-119.
    [42] Liou M S. A sequel to AUSM, PartII: AUSM+-up for all speeds. Journal of ComputationalPhysics.2006,214:137-170.
    [43] Godunov S K. A difference scheme for numerical computational discontinous solution ofhydrodynamic equations. Math. Sbornik(in Russian).1959,47:271-306.
    [44] Osher S, Solomon F. Upwind difference schemes for hypersonic systems of conservation laws.Mathematics of Computation.1982,38:339-374.
    [45] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal ofComputational Physics.1981,43:357-372.
    [46] Barth T J, Jesperson D C. The design and application of upwind schemes on unstructuredmeshes. AIAA-89-0366,1989.
    [47] Einfeldt B. On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal.1988,25:294–318.
    [48] Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL-Riemann solver.Shock Waves.1994,4:25–34.
    [49] Quirk J J. A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fluids,1994,18:555–574.
    [50] Harten A. High resolution schemes for hyperbolic conservation law. Journal of ComputationalPhysics.1983,49:357-393.
    [51] Yee H C, Harten A. Implicit TVD schemes for hyperbolic conservation laws in curvilinearcoordinates. AIAA Journal.1987,25:266-274.
    [52] Yee H C. Construction of implicit and explicit symmetric TVD schemes and their applications.Journal of Computational Physics.1987,151-179.
    [53] Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatoryschemes III. Journal Computational Physics.1987,71:231-303.
    [54] Casper J, Atkins H L. A finite-volume high order ENO scheme for two-dimensional hyperbolicsystems. Journal of Computational Physics.1993:62-76.
    [55] Godfrey A G, Mitchell C R, Walters R W. Pratical aspects of spatially high-order accuratemethods. AIAA Journal.1993,31:1634-1642.
    [56] Ollivier-Gooch C F. High-order ENO schemes for unstructured meshes based on least-squaresreconstruction. AIAA-97-0540,1997.
    [57] Stanescu D, Habashi W G. Essentially nonoscillatory Euler solutions on unstructured meshesusing extrapolation. AIAA Journal.1998,36:1413-1416.
    [58]阎超.计算流体力学方法及应用.北京,北京航空航天大学出版社.2006.
    [59] Roe P L. Discrete models for the numerical analysics of time-dependent multidimensional gasdynamics. Journal of Computational Physics.1986,63:458-476.
    [60] Sidilkover D. A genuinely multidimensional upwind scheme and efficient multigrid solver forthe compressible Euler equations. ICASE-94-84,1994.
    [61] Paillére H, Deconinck H, Roe P L. Conservative upwind residual-distribution schemes basedon the steady characterostics of the Euler equations. AIAA-95-1700,1995.
    [62] Issman E, Degrez G, Deconinck H. Implicit upwind residual-discribution Euler andNavier-Stokes solver on unstructured meshes. AIAA Journal.1996,34:2021-2028.
    [63] Harten A, Hyman J M. Self adjusting grid methids for one dimensional hypersonicconservation laws. Journal of Computational Physics.
    [64] Kermani M J, Plett E G. Modified entropy correction formula for the Roe scheme.AIAA-2001-0083,2001.
    [65] Peery K M, Imlay S T. Blunt-body flow simulations. AIAA-88-2904,1988.
    [66] Lin H C. Dissipation additions to flux-difference splitting. AIAA-91-1544,1991.
    [67] Kim S S, Kim C, Rho O H, et al. Cures for the shock instability: Development of ashock-stable Roe scheme. Journal of Computational Physics.2003,185:342-374.
    [68]张涵信,差分计算中激波上、下游出现波动的探讨.空气动力学学报,1984,2:12-19.
    [69]张涵信,无波动、无自由参数的耗散差分格式.空气动力学学报,1988,6:143-165.
    [70]张涵信,沈孟育.计算流体力学――差分方法的原理和应用.北京:国防工业出版社,2003.
    [71]梁德旺,王可. AUSM+格式的改进.空气动力学学报.2004,22(4):404-409.
    [72]姜贵庆,刘连元.高速气流传热与烧烛热防护.北京:国防工业出版社,2003.
    [73]段占元,童秉刚,姜贵庆.高分辨率有限差分-有限元混合方法及其在气动热计算中的应用.空气动力学学报,1997,15(4).
    [74]段占元,童秉刚,姜贵庆.三维物体表面摩阻的有限元算法.空气动力学学报,2000,18(1)
    [75] Vincenti W G, Kruger C H. Introduction to physical gas dynamics. New York: John Wiley andSons Inc.1965.
    [76]钱学森.物理力学.北京:科学出版社.1962.
    [77] Park C. Nunequilibrium hypersonic aerothermodynamics. New York: Wesley,1965.
    [78] Schexnayder C J, Evans J S. Measurement of the dissociation rate of molecular oxygen.NASA-TR-R108,1961.
    [79] Byron S R. Measurement of dissociation rate of molecular Oxygen. Journal of ChemicalPhysics.1959,30(6):1380-1392.
    [80] Mathews D L. Interferometric measurement in the shock tube dissociation rate of the molecularOxygen. Physics of Fluids.1959,170(2):
    [81] Rink J P, Knight H T, Duff R E. Shock tube determination of dissociation rate of Oxygen.Journal of Chemical Physics.1961,34(6):1942-1947.
    [82] Cary B. Shock tube measurement of the rate of dissociation rate of Nitrogen. Phiscs of Fluids.1966,8(1):26-35.
    [83] Byron S R. Shock tube measurement of the rate of dissociation of Nitrogen. Journal ofChemical Physics.1966,44(4):1378-1388.
    [84] Hanson R K, Baganoff D. Shock tube study of Nitrogen dissociation rate using pressuremeasurement. AIAA Journal,1972,10:
    [85] Appleton J P, Steinberg M, Liquornik D J. Shock tube study if Nitrogen dissociation rate usingvacuum-ultraviolet light absorption. Journal of Chemical Physics.1968,48:
    [86] Wary K L, Teare J D. Shock tube study of the kinetics of Nitric Oxide at high temperature.Journal of Chemical Physics.1962,36:
    [87] Park C. A review of reaction rates in high temoperature air. AIAA-89-1740,1989.
    [88] Dunn M G, Kang S W. Theoretical and experimental studies of reentry plasmas.NASA-CR-2232,1973.
    [89] Gupta R N, Yos J M, Thompson R A. A preview of reaction rates and thermodynamics andtransport properties for the11-species air model for chemical and thermal non-equilibriumcalculations to30000K. NASA-TM-101528,1989.
    [90] Park C. Review of chemical-kinetic problem of future NASA missions. I: Earth entries. Journalof Thermophysics and Heat Transfer.1993,7:
    [91] Park C. Review of chemical-kinetic problem of future NASA missions. II: Mars entries.Journal of Thermophysics and Heat Transfer.1994,8:
    [92] Hammerling P, Terre J D, Kivle B. Theory of radiation from Luminous shock waves inNitrogen. Physics of Fluids.1959,2:
    [93] Marrone P V, Treanor C E. Chemical relaxation with preferential dissociation from excitedvibrational levels. Physics of Fluids.1963,6:
    [94]褚以华,模拟高速流的TVD方法研究及在化学非平衡流中的应用,北京航空航天大学博士学位论文,1992.
    [95] Hassan B, Candler G V, Olynick D R. The effect of thermo-chemical nonequilibrium on theaerodynamics of aerobraking vehicles. AIAA-92-2877,1992.
    [96] Candler G V.High enthalpy flow simulation challenges. AIAA-99-2749.1999.
    [97] Lee C H, Park S O. Aerothermal performance constraints for small radius nosetip at hightaltitude. AIAA-2001-1823,2001.
    [98] Peter A G.A Perspective on Computational Aerothermodynamics at NASA. Crown Plaza,GoldCoast,Australia:2007.
    [99]张劲柏.高超音速热化学非平衡流动的反应模型研究及其数值模拟.博士学位论文.北京:北京航空航天大学,2001.
    [100]柳军.热化学非平衡流及其辐射现象的实验和数值计算研究.博士学位论文.长沙:国防科技大学,2004.
    [101]贺旭照.高超声速飞行器气动力气动热数值模拟和超声速流动的区域推进求解.博士学位论文.绵阳:中国空气动力研究与发展中心,2007.
    [102]李海燕.高超声速高温气体流场的数值模拟.博士学位论文.绵阳:中国空气动力研究与发展中心,2007.
    [103]潘沙.高超声速气动热数值模拟方法及大规模并行计算研究.博士学位论文.长沙:国防科技大学,2010.
    [104]姜宗林.触摸高温气体动力学.力学与实践,2006,28(5):1-7.
    [105] Baldwin B S, Lomax H. Thin layer approximation and algebric model for separated turbulentflows. AIAA-78-257,1978.
    [106] Degani D, Schiff L B. Computation of turbulent supersonic flows around pointed bodies havingcross-flow separation. Journal of Computational Physics.1986,66(1):.
    [107] Baldwin B S, Barth T J. A one-eqaution turbulent transport model for high Reynolds numberwall-bounded flows. NASA-TM-102847,1990.
    [108] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows.AIAA-92-0439,1992.
    [109] Spalart P R. Trends in turbulence treatments. AIAA-2000-2306,2000.
    [110] Spalart P R, Rumsey C L. Effective inflow conditions for turbulence models in aerodynamiccalculations. AIAA Journal,2007,45(10):2544-2553.
    [111] Shur M L, Strelets M K, Travin A K, et al. Turbulence modeling in rotating and curvedchannels: assessing the spalart-shur correction. AIAA Journal2000,38(5):784-792.
    [112] Jones W P, Launder B E. The prediction of laminarization with a two equation model ofturbulence. International Journal of Heat and Mass Transfer.
    [113] Launder B E, Sharma B I. Application of the energy-dissipation model of turbulence to thecalculation of flow near spinning disc. Heat Mass Transfer,1974,1:131-138.
    [114] Jones W P, Launder B E. The calculation of low-Reynolds-number phenomena with atwo-equation mode of turbulence. International Journal of Heat and Mass Transfer.1972,16:1119-1130.
    [115] Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models.AIAA Journal,1988,26(11):1299-1310.
    [116] Wilcox D C. Formulation of the k-omega turbulence model revisited. AIAA Journal,2008,46(11):2823-2838.
    [117] Menter F R. Improved two-equation k-omega turbulence models for aerodynamic flows.NASA-TM-103975,1992.
    [118] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications.AIAA Journal,1994,32(8):1598-1605.
    [119] Menter F R, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulencemodel. Turbulence, Heat and Mass Transfer4, Begell House, Inc.,2003:625-632.
    [120] Wilcox D C. Turbulence modeling: an overview. AIAA-2001-0724,2001.
    [121] Chtistopher J R, Frederick G B. Assement of one-and two-equation turbulence models forhypersonic transitional flows. Journal of Spacecraft and Rockets,2001,38(5):699-709.
    [122] Chtistopher J R, Frederick G B. Methodology for turbulence model validation: application tohypersonic flow.
    [123] Chtistopher J R, Frederick G B. Review and assement of turbulence models for hypersonicflow. Progress in Aerospace Sciense,2006,42:469-530.
    [124] Rodi W. Experience with two-layer models combining the k-ε model with a one-equationmodel near the wall. AIAA-1991-0216,1991.
    [125] Coakley T J. Turbulence modeling methods for the compressible Navier-Stokes equations.AIAA-1983-1963,1983.
    [126] Rumsey C L. Compressibility considerations for κ-ω turbulence models in hypersonicboundary layer applications. NASA-TM-2009-215705,2009.
    [127] Zeman O. A new model for supersonic/hypersonic turbulent boundary layers. AIAA-93-0897,1993.
    [128] Buck I, Foley T, Horn D, et al. Brook for GPUs: Stream computing on graphics hardware.ACM SigGraph2004:777-786.
    [129] Harris M J. GPUGems, chapter38. Addison-Wesley,2004.
    [130] Crane K, Llamas I, Tariq S. GPU Gems3, chapter30. Addison-Wesley Professional,2007.
    [131] Brandvik T, Pullan G. Acceleration of a3D Euler Solver Using Commodity Graphics Hardware.AIAA-2008-607,2008
    [132] Krüger J, Westermann R, Linear algebra operators for GPU implementation of numericalalgorithms. ACM T Graph.2003,908-916.
    [133] Bolz J, Farmer I, Grinspun E, et al. Sparse matrix solvers on the GPU: conjugate gradients andmultigrid. ACM SigGraph,2003,3:917-924.
    [134] Goodnight N, Woolley C, Lewin G, et al. A multigrid solver for boundary value problems usingprogrammable graphics hardware. Proceedings of the ACM SIGGRAPH/EUROGRAPHICSConference on Graphics Hardware, Eurographics Association, Aire-la-Ville, Switzerland,HWWS'03,2003:102-111.
    [135] Erich Elsen, Patrick LeGresley, Eric Darve. Large calculation of the flow over a hypersonicvehicle using a GPU. Journal ofComputational Physics.2008,227:10148-10161.
    [136] Julien C T, Inanc S. CUDA implementation of a Navier-Stokes solver on multi-GPU desktopplatforms for incompressible flows. AIAA-2009-758,2009.
    [137]陈飞国,葛蔚,李静海.复杂多相流动分子动力学模拟在GPU上的实现.中国科学B辑:化学.2008,38:1120-1128.
    [138]柳有全,刘学慧,吴恩华.基于GPU带有复杂边界的三维实时流体模拟.软件学报.2006,17:568-576.
    [139]周季夫,钟诚文,尹世群等.基于GPGPU的Lattice-Boltzmann数值模拟算法.计算机辅助设计与图形学学报.2008,20:912-918.
    [140]安效民,徐敏,陈士橹.多场耦合求解非线性气动弹性的研究综述.力学进展,2009,39(3):284-298.
    [141] Kim, Y.H., Kim, J.E.. A new hybrid interpolation method using surface tracking, fitting andsmoothing function applied for aeroelasticity. AIAA-2005-2347,2005.
    [142] Murti, V., Valliappan, S.. Numerical inverse isoparametric mapping in remeshing and nodalquantity contouring. Computers and Structures,1986,22(6):1011-1021.
    [143] Gorua, G.S.L., Badcock, K.J.. A data exchange method for fluid-structure interaction problems.The Aeronatuical Journal,1986,22(6):1011-1021.
    [144] Sadeghi, M., Liu, F., Lai, K.L., et al.. Application of three-dimensional interfaces for datetransfer in aeroelastic computations. AIAA Paper2004-5376.
    [145] Guruswany, G.P.. A review of numerical fluids/structures interface methods for computationsusing high-fidelity equations. Computers and Structures,2002,80(1):31-41.
    [146] ZONA. ZAERO theoretical manual, version8.2,2008.
    [147] Smith, M.J., Hodges, D.H., Cesnik, C.. Evaluation of computational algorithms suitable forfluid-structure interactions. Journal of Aircraft,2000,37(2):282-294.
    [148] Cavagna, L., Quaranta, G.., Mantegazza, P.. Application of Navier-Stokes simulations foraeroelastic stability assessment in transonic regime. Computers and Structures,2007,85(11-14):818-832.
    [149]崔鹏,韩景龙.一种局部形式的流固耦合界面插值方法.振动与冲击,2009,28(10):64-68.
    [150] John K D, John W K. Accurate Conservative Remapping(Rezoning) for ArbitraryLagrangian-Eulerian Computations. SIAM J. Sci. Stat. Comput.1987,8(3):305-321.
    [151] Philip W J. First-and Second-Order Conservative Remapping Schemes for Grids in SphericalCoordinates. Monthly Weather Review.1999,127:2204-2210.
    [152] Jeffrey Grandy. Conservative Remapping and Region Overlays by Intersecting ArbitraryPolyhedra. Journal of Computational Physics.1999,148:433–466.
    [153] Milan Kucharik, Mikhail Shashkov, et.al. An efficient linearity-and-bound-preservingremapping method. Journal of Computational Physics.2003,188:462-471.
    [154] Reuther J J. Aerodynamics shape optimization of complex aircraft configurations via an adjointformulation. AIAA-96-20094,1996.
    [155] Byun C, Guruswamy G P. A parallel multi-block moving grid method for aeroelasticapplications on full aircraft. AIAA-98-24782,1998
    [156] Jones W T, Samareh-Abolhassani J. A grid generation system for multi-disciplinary designoptimization. AIAA-95-1689.
    [157] Tsai H M, Wong A S F, Cai J, et al. Unsteady flow calculations with a parallel multiblockmoving mesh algorithm. AIAA Journal.2001,39(6):1021-1029
    [158] Gaitonde A L, Fiddes S P. Three-dimensional moving mesh method for the calculation ofunsteady transonic flows. Aeronautical J.1995,99(984):150–160.
    [159] Farhat C, Degand C, Koobus B, et al. Torsional springs for two dimensional dynamicunstructured fluid meshes. Comput. Methods Appl. Mech. Engrg.1998,1(63):231–245.
    [160] Blom F J, Considerations on the spring analogy. Int. J. Numer. Meth. Fluids.2000,Vol.32(6):647–668.
    [161] Degand C, Farhat C. A three-dimensional torsional spring analogy method for unstructureddynamic meshes. Computers and Structures.2002, Vol.80(3-4):305-316.
    [162] Chen P C, Hill L R. A three-dimensional boundary element method for CFD/CSD gridinterfacing. AIAA-99-1213.
    [163] Johnson A A, Tezduyar T E. Simulation of multiple sphere falling in a liquid-filled tube. Comp.Meth. Appl. Mech. Eng.1996,134(4):351-373
    [164] Xueqiang Liu, Ning Qin, Hao Xia. Fast dynamic grid deformation based on Delaunay graphmapping. Journal of Computational Physics.2006,211(2):405-423.
    [165]刘学强,李青等.一种新的动网格方法及其应用.航空学报.2008,29(4):817-822.
    [166] Farhat, C., Zee, K.G., Geuzaine, P.. Provably second-order time-accurate loosely-coupledsolution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl.Mech. Engrg.,2006,195(20):1973-2001.
    [167]叶正寅,张伟伟,史爱明等.流固耦合力学基础及其应用.哈尔滨:哈尔滨工业大学出版社,2010.
    [168] Ahn, H.T., Kallinderis, Y.. Strongly coupled flow/structure interactions with a geometricallyconservative ALE scheme on general hybrid meshes. Journal of Computational Physics,2006,219(2):671-696.
    [169]蒋跃文,张伟伟,叶正寅.基于CFD技术的流场/结构时域耦合求解方法研究.振动工程学报,2007,20(4):396-400.
    [170] FIRE II calculations for hypersonic nonequilibrium aerothermodynamics code verification:DPLR, LAURA, and US3D. AIAA-2007-605,2007
    [171] Menter F R. Zonal two equation k-omega turbulence models for aerodynamic flows.AIAA-93-2906,1993.
    [172] Kato, M, Launder B E. The modelling of turbulent flow around stationary and vibrating squarecylinders. Ninth Symposium on "Turbulent Shear Flows", Kyoto, Japan, August16-18,1993.
    [173] Wilcox D W. Turbulence modeling for CFD,3rd ed. DCW Industries, La Canada,2006:236
    [174] Liu Y, Vinokur M. Upwind algorithms for general thermo-chemical non-equilibrium flows.AIAA89-0201,1989.
    [175] Molvik G A. A computational model for the prediction of hypersonic reacting flows, Ph.D.thesis, The Pennsylvania State University,1989.
    [176] Engquist B, Osher S. One-side difference approximations for nonlinear convervation laws.Mathematics of Computation,1891,36:321-352.
    [177] van Leer B. Towards the ultimate conservation difference scheme V: a second-order sequal toGodunov’s method. Journal of Computational Physics,1979,32:101-136.
    [178] Hall M. A vertex-centroid scheme for improve finite-volume solution of the Navier-Stokesequations. AIAA-91-1540,1991.
    [179] Barth T J. Numerical aspects of computing high-Reynolds number flows on unstructuredmeshes. AIAA-91-0721,1991.
    [180] Luo H, Baum J D, L hner R, et al. Adaptive edge-based finite element schemes for the Eulerand Navier-Stokes equations on unstructured grids. AIAA-93-0336,1993.
    [181] Peter J, Drullion F. Large stencil viscous flux linearization for the simulationof3Dcompressible turbulent flows with backward-Euler schemes. Computers&Fluids,2007,36:1005-1027.
    [182] Imlay S T, Roberts D W, Soetrisno M, et al. Nonequilibrium thermo-chemical calculationsusing a diagonal implicit scheme. AIAA-91-0468,1991.
    [183] Whitfield D L, Janus J M. Three-dimensional unsteady euler equations solution using fluxvector splitting. AIAA-84-1552,1984.
    [184] Smith H E. The flow field and heat transfer downstream of a rearward facing step in supersonicflow. ARL-67-0056,1967.
    [185] Vance D, Stanley R M. Validation of the Wind-US unstructured flow solver for wall-boundedflows. AIAA-2006-637,2006.
    [186] Wen C. Hypervelocity flow over spheres. PhD thesis, Graduate Aeronautical LaboratoriesCalifornia Instituteof Technology,1994.
    [187] Michael C E. Validation of a CFD solver for hypersonic flows. Master of Philosophy, TheUniversity of Queensland,2005
    [188] NVIDIA. CUDA programming guide version2.0,2008.
    [189] Jie Bao. High density ratio multi-component lattice Boltzmann flow model for fluid dynamicsand CUDA parallel computation. PhD. Thesis,Amdahl G M. Validity of the single processorapproach to achieving largeGustafson J L. Reevaluating Amdahl's law. Communications of theACM,1988,31(5):532-533.
    [192] Fatica M, Jameson Tobias B, Graham P. Acceleration of a two-dimensional euler flow solverusing commodity graphics hardware. Journal of Mechanical Engineering Science,2007,221(12):1745-1748.
    [194] Tobias B, Graham P. Acceleration of a3D Euler solver using commodity graphics hardware.AIAA-2008-607,2008.
    [195] Thareja R R, Stewart J R. A point implicit unstructured grid solver for the Euler andNavier-Stokes equations. AIAA-88-0036,1988.
    [196] Graham V C, Michael J W. Data-parallel lower-upper relaxation method for reacting flows.AIAA Journal.1994,32:2380-2386.
    [197] Chen R F, Wang Z J. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrarygrids. AIAA Journal.2000,38:2238-2245.
    [198] NVIDIA GPU computing sdk, version3.0. NVIDIA Inc.2009.
    [199] Tai C H, Sheu J H, Van Leer B. Optimal multistage schemes for Euler Schmitt V, Charpin F."Pressure distributions on the ONERA-M6-Wing at transonic mach numbers" experimentaldatabase for computer program assessment. AGARD-AR-138,1979.
    [201] Gordon W N, Hall C.A. Construction of curvilinear coordinate systems and application to meshgeneration. Int. J. Num. Methods in Engineering.1973,7(4):461-477.
    [202] Thompson J F, Thames F C, Mastin C.W. Automatic numerical generation of body-fittedcurvilinear coordinate system for field containing any number of arbitrary two-dimensionalBodies. Journal of Computational Physics.1974,15(3):299-319.
    [203] Chew L P. Constrained Delaunay triangulations. Algorithmica.1989,4(1):97–108.
    [204] Batina J T. Unsteady Euler airfoil solitions using unstructured dynamic meshes. AIAA-89-0115,1989.
    [205] Tsai H M, Wong A S F, Cai J, et al. Unsteady flow calculations with a parallel multiblockmoving mesh algorithm. AIAA Journal.2001,39(6):1021-1029
    [206] Lee D T, Wong C K. Worst-cast analysis for region and partial region searches inmultidimensional binary search trees and balanced quad trees. Acta Informatica.1977,9:23-29
    [207] ANSYS Inc. Programmer's Manual for Mechanical APDL version12.1,2009
    [208] ANSYS Inc. ANSYS FLUENT UDF Manual version12.0,2009
    [209] Back L H, Massier P F. Convective heat transfer in a convergent-divergent nozzle. InternationalJournal of Heat Mass Transfer.1964,7:549-568.
    [210] Liu Q, Luke E A. Coupling heat transfer and fluid flow solvers for multi-disciplinarysimulations. AIAA-2004-966,2004.
    [211] Allan R. Wieting. Experimental study of shock wave interference heating on a cylindricalleading edge. NASA-TM-100484,1987.
    [212] Pramete Dechaumphai. Flow-thermal-structural study of aerodynamically heated leading edges.Journal of Spacecraft.1999,26:201-209.
    [213] Wei H. N, Friedmann P P. Thermomechanical analysis of a thermal protection system withdefects and heat shorts. AIAA-2006-2212,2006.
    [214] Dowell E H. A review of the aeroelastic stability of plate and shells. AIAA Journal,1970,8(3):385-399.
    [215] Mei C. Abdel-Motagaly K, Chen R. Review of nonlin-ear panel flutter at supersonic andhypersonic speeds. Applied Mechanics Reviews,1999,52(10):321-332.
    [216]杨智春,夏巍.壁板颤振分析模型、数值求解方法和研究进展.力学进展,2010,40(1):81-98.
    [217] Dowell E H. Theoretical and experimental panel flutter studies in the mach number range1.0to5.0. AIAA Journal,1965,3(12):2292–2304
    [218] Fung Y C. Some recent contribution to panel flutter research. AIAA Journal,1963,1(4):898–909.
    [219] Muhlstein L, Gaspers P A, and Riddle D W. An experi-mental study of the influence of theturbulent boundary layer on panel flutter. NASA TND-4486,1968.
    [220] Dowell E H. Generalized aerodynamic forces on a flexible plate undergoing transient motion ina shear flow with an application to panel flutter. AIAA Journal,1971,9(5):834–841.
    [221] Nydick I, Friedmann P P, Zhong Xiaolin. Hypersonic Panel Flutter Studies on Curved Panels.AIAA-95-1458,1995.
    [222] Davis G A, Bendiksen O O. Transonic panel flutter. AIAA-93-1476,1993.
    [223] Gordnier R E, Visbal M R. Development of a three-dimensional viscous aeroelastic solver fornonlinear panel flutter. Journal of Fluids and Structures,2002,16(4):497-527.
    [224] Gordnier R E, Visbal M R. High-fidelity computational simulation of nonlinear fluid-structureinteraction problems structure interaction problems. The Aeronautical Journal,2005,109(7):301-331.
    [225] Selvam R P, Visbal M R, Morton S A. Computation of nonlinear viscous panel flutter using afully-implicit aeroelastic solver. AIAA-98-1844,1998.
    [226] Atsushi H, Takashi A. Effects of turbulent boundary layer on panel flutter. AIAA Journal,2009,47(12):2785-2791
    [227] Thomas P D, Lombard C K. Geometric conservation law and its application to flowcomputations on moving grids. AIAA Journal,1979,17(10):1030-1037.
    [228] McNamara J J. Aeroelastic and aerothermoelastic behavior two and three dimensional liftingsurfaces in hypersonic flow. PhD thesis, The University of Michigan,2005.
    [229]《中国航空材料手册》编辑委员会.中国航空材料手册第4卷.北京:中国标准出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700