用户名: 密码: 验证码:
近空间飞行器信道特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近空间是指航空平台和航天平台所在领域之间的空域(20-100km),近些年各国对近空间及其飞行器的开发和应用十分热衷。目前国内外正在开发或验证的近空间飞行器包括低动态的高空气球、高空飞艇和高动态的高超音速飞行器等类型,近空间飞行器由于其独特的空域优势使得其在通信保障、情报收集、监视、侦察、预警和导航等方面极具发展潜力。然而近空间飞行器的测控和通信问题上存在低信噪比、大动态多普勒、等离子鞘套黑障等问题,一直未能得到深入研究。而无线通信的基础是必须对其信道做深刻的理解,因此要想解决好近空间飞行器的测控和通信问题则必须对近空间飞行器的信道特性做深入研究。
     针对各类近空间飞行器的测控与通信问题,本文主要开展近空间飞行器的信道特性研究,研究近空间高动态和低动态飞行器的大气电波传播链路特性、大气传播信道特性、等离子鞘套电波传播特性、等离子鞘套信道特性,并在此基础上构建近空间大气传播信道模型、等离子鞘套信道模型、近-地/近-空综合信道模型,评估复杂综合信道下测控通信系统性能,并对近空间飞行器的测控通信给出合理的建议。本文所研究的内容可为国内近空间飞行器测控和通信体制的确立提供信道理论基础支撑。具体研究内容和作者的主要贡献概括如下:
     1.研究了近空间低动态飞行器的链路特性和信道特性,提出了频率选择性慢衰落的近空间低动态飞行器信道模型。针对近空间飞行低动态飞行器,首先从通信链路出发,根据ITU相关标准和衰减模型分析预测了近空间的电波传播损耗,包括自由空间衰减和链路上其他大气损耗,其中大气损耗部分包括气体吸收、降雨衰减、云雾损耗和大气闪烁等效应。仿真分析结果表明说雨衰的影响最大,其他效应的影响较小在高频段时甚至可以忽略。其次从无线通信信道理论出发,定性分析得到了近空间大气传播信道的相干时间和相干带宽,并将其建模为频率选择性慢衰落信道。最后分别仿真分析了频率选择性慢衰落信道和Ka雨衰信道对典型测控通信系统性能的影响,并给出了Ka高频段通信时对抗雨衰的建议。通过分析认为近空间低动态飞行器在高速通信方面具有极大的优势。
     2.提出了基于OFDM技术的近空间低动态中继通信系统方案(NLDV-OFDM-TDRS)。在分析我国现有卫星通信中继能力不足和美国TDRSS系统缺陷的基础上,考虑到近空间低动态飞行器的驻留特点以及低动态飞行器大容量高速通信的潜力,提出了基于近空间低动态平台的通信中继系统方案。同时在分析OFDM技术独有的对抗多径能力和支持非对称业务等优势的基础上,首次提出将OFDM技术作为中继通信系统的高速传输的物理层核心技术。
     3.提出了近空间OFDM中继通信系统下一种新的低复杂度的LMMSE信道估计算法。该算法针对LMMSE算法存在信道估计器矩阵求逆运算复杂度大问题,提出了一种以相关带宽为准则提取信道自相关矩阵关键信息的子阵分块算法,根据信道相关带宽所计算的分块尺度将信道自相关矩阵分割为若干子块,包括非重叠分块法和重叠分块法。运算求逆过程中仅利用表征信道主要信息量的低频对角子阵而忽略其他表征高频信道信息子阵,从而降低LMMSE算法中大的自相关信道矩阵求逆运算所带来复杂度。仿真分析表明该算法能以较微弱的性能代价换取系统复杂度的明显降低。
     4.研究了近空间高动态飞行器大气传播信道特性和等离子鞘套信道特性,提出了频率选择性快衰落的近空间高动态信道模型和等离子鞘套信道模型。重点针对近空间高动态飞行器存在的独特的等离子鞘套信道环境,从无线电波传播机理出发,深入研究了电波在等离子体的传播特性。给出了等离子体电参数获取方法,明确了电波传播特性电子密度分布、碰撞频率和入射电波频率之间的关系。研究了FDTD算法在非均匀等离子体电磁计算中的可行性,并采用PLJERC-FDTD算法计算获取了等离子鞘套的透射/反射功率系数和相位偏移特性。最后提出了等离子鞘套信道的数学模型,深入研究并重新定义了等离子鞘套信道的大尺度信道特性和小尺度信道特性。
     5.提出了近-地高/低动态综合信道模型和近-空高/低动态综合信道模型。针对近空间飞行器与地面测控平台和天基平台通信时复杂的信道环境,在大气电波传播信道特性和等离子鞘套信道特性研究的基础上,根据通信对象的不同和飞行器动态性的差异,提出了近-地高/低动态综合信道模型和近-空高/低动态综合信道模型,并给出了四类综合信道模型的仿真实现方法,通过仿真分析了四类综合信道下典型测控通信系统性能,给出了对抗综合信道改善测控通信质量的建议。
Near space is the region of earth's atmosphere that lies between20and100km above sea level,encompassing the stratosphere, mesosphere, and thermosphere. This is above where airliners fly butbelow orbiting satellites. The area is of interest for military purposes as well as commercial interests,especially in its potential in communications support, intelligence gathering, surveillance,reconnaissance, early warning and navigation. Development and validation of the near space vehicleare very prosperous at home and abroad, and recently various vehicles are being developed inprogress, including low dynamic high-altitude balloons, high altitude airship, suborbital, solar UAV,and high dynamic hypersonic vehicle and other types. However, low signal-to-noise ratio, largedynamic doppler, plasma sheath blackout impairment problem existed in near space vehicle tracking,telemetry, and command (TT&C) and communication systems, which have not been studiedelaboratively. A deep understanding of wireless channel is a must in wireless communication systemdesign. In order to solve the near space vehicle TT&C and communication problems, it is necessaryto research the channel characteristics of the near space vehicle in-depth.
     For all kinds of near-space vehicle's TT&C and communication problem, this paper is mainlycarried out the study of channel characteristics for near space vehicles, First, atmospheric radio wavepropagation link characteristics of near-space high dynamic and low dynamic vehicle, atmosphericpropagation channel characteristics, plasma sheath radio wave propagation characteristics andplasma sheath channel characteristics are studied. Second, atmospheric propagation channel model,plasma sheath channel model, Nearspace-Ground/Nearspace-Space integrated channel models areestablished on the basis of previous channel characteristics study. Then the performance of typicalTT&C and communication system under complex integrated channels are evaluated. Finally, somereasonable advices are given to against those bad channel environments. The content researched inthis paper provides the theoretical basis of the channel support for the establishment of the domesticnearspace vehicle TT&C and communication system. The specific content and author’s maincontribution are summarized as follows:
     1. A frequency selective slow fading nearspace low dynamic channel model is proposed underthe study of communication link characteristics and its channel characteristics of thenearspace vehicle. Firstly, starting from the communication link view, we analysis andpredict the near-space radio wave propagation loss according to ITU standards andattenuation models, including free space attenuation, gas absorption, rain attenuation, cloudloss and the effects of atmospheric scintillation. Simulation results show that the impact ofrain attenuation is the largest and the other effects are small even can be ignored at high frequencies. Secondly, from the view of wireless communication channel theory, qualitativeanalysis of the coherence time and coherence bandwidth of the near space atmosphericpropagation channel are made, and it is modeled as a frequency selective slow fadingchannel. Then simulation analysis of the frequency selective slow fading channel and Karain attenuation channel for typical TT&C system are conducted. Finally, recommendationsagainst rain attenuation at Ka high band communications are given. It is concluded that thenear space low dynamic vehicles have great advantages in high-speed telemetry/data relay.
     2. An OFDM based near space low dynamic platform relay communication system solution ispresented. Based on the analysis of the lackage of the existing satellite communications andthe defects of United States TDRSS, we put forward a low dynamic platform based nearspace communications relay system solution taking into account the lingering characteristicsof low dynamic vehicle and its potential high-speed communication capacity. While OFDMtechnology has unique advantages in multipath confrontation capabilities and asymmetricbusiness supporting ability, we first raise OFDM technology as a core physical layerhigh-speed transmission technology in the proposed relay communication system.
     3. A novel low-complexity LMMSE channel estimation algorithm is proposed for the nearspace OFDM relay communication system. The proposed low complexity LMMSE channelestimation algrithom is designed to reduce computational complexity caused by matrixinverse operation in MMSE estimator. Correlation bandwidth was used as a criterion todivide large auto-correlation matrix into numbers of sub-matrixs, including non-overlap andoverlap method. The diaglog sub-matrix blocks representing low-frequency importantchannel information in channel autocorrelation matrix were preserved while the othersub-matrix blocks ignored, thus reducing autocorrelation matrix inversion computationalcomplexity. BER and MSE performance of the new algrithom was evaluated in frequencyselective flat fading channel with comparison to LMMSE, SVD algorithm, simulationresults and complexity anaysis shows that low complexity obtained at cost of performancedegradation slightly.
     4. A frequency selective fast fading nearspace high dynamic channel model and a plasmasheath channel model are established based on the study of high dynamic vehicle near spaceatmospheric propagation channel characteristics and plasma sheath channel characteristics.We focus on near-space high dynamic vehicle unique plasma sheath channel environmentand study the propagation characteristics of radio waves in the plasma in-depth starting fromthe radio wave propagation mechanism. The way to obtain Plasma electrical parameters ispresent, and the relationship between wave propagation properties among the electron density distribution, the collision frequency and the incident wave frequency is given clearly.The feasibility of FDTD algorithm in the calculation of electromagnetic wave innon-uniform plasma is validated, and PLJERC-FDTD algorithm is used to obtain the plasmasheath transmission/reflection power coefficient and phase shift characteristics. Themathematical model of the plasma channel is proposed, and the large-scale and small-scalechannel characteristics of the plasma sheath channel characteristics are studied andre-defined thoroughly.
     5. Nearspace–Ground high/low dynamic integrated channel models and Nearspace–Spacehigh/low dynamic integrated channel models are presented. On the foundation of near spaceatmospheric radio wave propagation channel characteristics and plasma sheath channelcharacteristics study, considering the complexity of the channel environment whennearspace vehicles communicate with ground TT&C platforms and space-based TT&Cplatforms, and according to the difference of communication objects and vehicle dynamicproperty, four integrated channel models are presented,including Nearspace–Ground highdynamic integrated channel model, Nearspace–Ground low dynamic integrated channelmodel, Nearspace–Space high dynamic integrated channel model and Nearspace–Space lowdynamic integrated channel model. The simulation implement method of the four integratedchannel models are given, and simulation analysis of typical TT&C and communicationsystem performance under the four integrated channel models are made as well.Confrontation recommendations to improve the quality of communication performanceunder integrated channel are given finally.
引文
[1]刘娜,吕娜,王延伟.临近空间传输技术研究与探讨.二〇一〇国防空天信息技术前沿论坛论文集.2010.
    [2]柴霖.临近空间测控系统技术特征分析.宇航学报.2010,31(7):1697-1705.
    [3]鲍荣伟,陈树新,临近空间静止通信平台模型研究.二〇一〇国防空天信息技术前沿论坛论文集.2010, pp.1-5.
    [4]徐茂格,席文君.近空间高超音速飞行器射频通信黑障研究.电讯技术.2009,49(10):49-52.
    [5]王艳奎.临近空间飞行器应用前景及发展概况分析.中国航天.2009,(10):39-41,44.
    [6]刘嘉兴.近空间跟踪与数据中继系统初步设想.电讯技术.2008,48(5):46-50.
    [7]李俊,郝成民,贾仁耀等.对临近空间平台的信息对抗问题研究.导弹与航天运载技术.2008,(6):23-26.
    [8]甘仲民.临近空间平台:应急通信的有效手段.数字通信世界.2008,(6):45-49.
    [9]柴霖,吴潜,雷厉.近空间高动态飞行器测控系统发展趋势分析.电讯技术.2008,48(13-19).
    [10]柴霖.临近空间飞行器测控与信息传输系统频段选择.航空学报.2008,29(4):1007-1012.
    [11]翟华,周伯昭.临近空间高超声速飞行GNC技术与前景展望.国防科技.2007,(1):37-40.
    [12] S. A.Cambone, K. J.Krieg, P. Pace, et al. Unmaned aircraft systemsroadmap(2005-2030).2005, pp.213.
    [13]曾慧,白菡尘,朱涛. X51A超燃冲压发动机及飞行验证计划.导弹与航天运载技术.2010,(1):57-61.
    [14]宋博,沈娟.美国的X51A高超声速发展计划.飞弹导弹.2009,(5):36-40.
    [15]蒋琪,马凌.德国的SHEFEX2高超声速试飞器.飞弹导弹.2009,21-28(6).
    [16]苏鑫鑫.盘点日本的高超声速计划.飞弹导弹.2008,(3):26-31.
    [17]王淑芬,魏国福.美国国防高级研究计划局瞄准Ma=22的飞行器.飞弹导弹.2006,(9):10-11.
    [18]沈剑,王伟.国外高超声速飞行器研制计划.飞弹导弹.2006,(8):1-9.
    [19]沈剑.2004年美国成功的高超声速飞行试验.飞航导弹.2005,(6):34-39.
    [20] C.R. McClinton, V.L. Rausch, L.T. Nguyen, et al. Preliminary X-43flight testresults. Acta Astronautica.2005,57(5):266-276.
    [21]周军,徐文.高超声速技术综述.飞航导弹.2003,(4):1-8.
    [22]占云.高超声速技术HyTech计划.飞弹导弹.2003,(3):43-49.
    [23] F.H. Mitchell, Jr. Communication system blackout during reentry of largevehicles. Proceedings of the IEEE.1967,55(5):619-626.
    [24] J.P. Rybak, R.J. Churchill. Progress in Reentry Communications. Aerospace andElectronic Systems, IEEE Transactions on.1971, AES-7(5):879-894.
    [25] D.D. Morabito, K.T. Edquist, Communications blackout predictions foratmospheric entry of Mars Science Laboratory, Aerospace Conference,2005IEEE,2005, pp.489-500.
    [26] D.D. Morabito,The Spacecraft Communications Blackout Problem Encounteredduring Passage or Entry of Planetary Atmospheres, Jet Propulsion Laboratory,California Institute of Technology Communications Systems and ResearchSection,2002, pp.23.
    [27]谢铭勋.再入遥测技术.再入遥测技术.北京:国防工业出版社,1992.
    [28] N.D. Akey. Overview of RAM Reentry Measurements Program. The EntryPlasma Sheath and its Effects on Space Vehicle Electromagnetic Systems, NASALangley Research Center,1970, pp.25-26.
    [29]赵汉章,吴是静,董乃涵.不均匀等离子体鞘套中电磁波的传播.地球物理学报.1983,26(1):9-15.
    [30]董乃涵,赵汉章,吴是静.非均匀等离子鞘套中电波传输的近似计算.1984,(1):51-57.
    [31]王伯懿,徐燕候,稽震宇.电磁波在非均匀有损耗再入等离子鞘层中的传播.宇航学报.1985(1):36.
    [32]徐燕候,嵇震宇,王柏懿.非均匀等离子体对电波的反射透射和吸收.中国科学技术大学学报.1986,(04):50-58.
    [33] D. K.Kalluri, V. R.Gotei, A. M.Sessler. WKB Solution for Wave Propagation in aTime-Varying Magnetoplasma Medium: Longtitudinal Propagation. IEEETRANSACTION ON ANTENNAS AND PROPAGATION.1993,21(1):70-76.
    [34]赵汉章,吴是静,董乃涵.不均匀等离子体鞘套中电磁波的传播(II).地球物理学报.1995,28,(2):117-125.
    [35] B. J. Hu, G. Wei, S.L. Lai. SMM analysis of reflection, absorption, andtransmission from nonuniform magnetized plasma slab. IEEE TRANSACTIONSON PLASMA SCIENCE.1999,27(4):1131-1136.
    [36]刘江凡,席晓莉,柳杨.等离子体鞘套中电磁波传播特性的ADEFDTD计算.2009年全国天线年会,成都,2009, pp.1027-1030.
    [37] X. Ai, Y. Han, C.Y. Li, et al. Analysis of Dispersion Relation of PiecewiseLinear Recursive Convolution FDTD Method for Space-Varying Plasma. ProgressIn Electromagnetics Research Letters.2011,(22):83-93.
    [38] L. Jiang-Fan, X. Xiao-Li, W. Guo-Bin, et al. Simulation of ElectromagneticWave Propagation Through Plasma Sheath Using the Moving-WindowFinite-Difference Time-Domain Method. Plasma Science, IEEE Transactions on.2011,39(3):852-855.
    [39] J.H. Lee, D. K.Kalluri. Three-Dimensinal FDTD Simulation of ElectromagneticWave Transformation in a Dynamic Inhomogeneous Magnetized Plasma. IEEETRANSACTIONS ON ANTENNAS AND PROPAGATION.1999,47(7):1146-1151.
    [40]陈景云,余国禾.固体火箭喷焰附加相位噪声测量.上海航天.1989,(03):50-54.
    [41]王华峰,李疏芬.固体火箭发动机喷焰对微波的衰减.固体火箭技术.1989,(04):1-12.
    [42]李疏芬,曹金祥.发动机喷焰对微波相移特性的探讨.火炸药学报.1997,(2):1-3.
    [43] S. Lei, Y. Liu, B. Guo, et al. Research on phase shift characteristics of radiopropagate through plasma sheath.20109th International Symposium onAntennas Propagation and EM Theory, ISAPE2010,, IEEE Computer Society,Guangzhou, China,2010, pp.387-390.
    [44] R.A. HARTUNIAN, G.E. STEWART, S.D. FERGASON, et al. Causes andMitigation of Radio Frequency (RF) Blackout During Reentry of ReusableLaunch Vehicles. Space Launch Operations THE AEROSPACE CORPORATIONEl Segundo, CA90245-4691,2007, pp.1-103.
    [45] W.F. Croswell, J. Jones W. Linwood. Effects of Reentry Plasma on RAM C-IVHF Telemetry Antennas, The Entry Plasma Sheath and its Effects on SpaceVehicle Electromagnetic Systems, vol. I.1970, pp.183-201.
    [46] W.L. Grantham. Reentry Plasma Measurements Using a Four-Frequency Reflectmeter. The Entry Plasma Sheath and its Effects on Space Vehicle ElectromagneticSystems, vol. I.1970, pp.65-107.
    [47] B. L. D. Scott, B.R. Rao, Investigations on a Cylindrical Antenna as a DiagnosticProbe for Isotropic and Magnetized Probes. The Entry Plasma Sheath and itsEffects on Space Vehicle Electromagnetic Systems, vol. I.1970, pp.47-52.
    [48] C.T. Swift. Radiation From Slotted-Cylinder Antennas in a Reentry PlasmaEnvironment. Langley Research Center, Langley Station, Hampton, Va,1964, pp.1-68.
    [49]马平,曾学军,石安华等.电磁波在等离子体高温气体中传输特性实验研究.实验流体力学.2010,24(5):7.
    [50]刘江凡.等离子鞘套中电波传播的算法研究.西安理工大学硕士学位论文.西安,2009.
    [51]夏新仁,尹成友,王光明.非均匀磁化等离子体层的电磁特性分析.上海航天.2008,(6):8-11.
    [52]李雪春,等离子体源离子注入介质靶鞘层特性的数值研究.大连理工大学博士学位论文.大连,2008.
    [53]姜彦南,葛德彪.层状介质有限差分方法斜入射平面波引入新方式.物理学报.2008,57(10):6283-6289.
    [54] C.H. Jones, Report from the Workshop on Communications Through PlasmaDuring Hypersonic Flight. Air Force Office of Scientific ResearchAFFTC-PA-08-08292.2006, pp.25.
    [55]石磊,刘彦明.黑障削弱技术综述及最新进展.临近空间技术与工程.2011,2(2).
    [56] I.F. Belov, V.Y. Borovoy, V.A. Gorelov, et al. Investigation of Remote AntennaAssembly for Radio Communication with Reentry Vehicle. Journal of Spacecraftand Rockets.2001,38(2):249-256.
    [57] E.O. Daso, V.E. Pritchett, T.S. Wang, et al. Dynamics of Shock Dispersion andInteractions in Supersonic Freestreams with Counterflowing Jets. AIAA Journal.2009,47(6):1313-1326.
    [58] J.P. Rybak, Causes, Effects and Diagnostic Measurements of the Reentry PlasmaSheath. AD0718428.1970, pp.1-66.
    [59] T.E. Sims, R.F. Jones. Flight Measurements of VHF Signal Attenuation andAntenna Impedancefor the RAM A1Slender Probe At Velocities up to17,800FeetPer Second. NASA TM X-760.1963, pp.1-17.
    [60] F.P. Russo, J.K. Hughes, Measurements of the Effects of Static Magnetic Fields onVHF Transmission in Ionized Flow Fields. NASA TM X-907.1964.
    [61] H. Usui, Matsumoto, H., Yamashita, F., Yamane, M., and Takenaka, S. ComputerExperiments on Radio Blackout of a Reentry Vehicle Proceedings of the6thSpacecraft Charging Conference.1998, pp.107-110.
    [62] E.D. Gillman, J.E. Foster, I.M. Blankson. Review of Leading Approaches forMitigating Hypersonic Vehicle Communications Blackout and a Method ofCeramic Particulate Injection Via Cathode Spot Arcs for Blackout MitigationGlenn Research Center. NASA/TM-2010-216220.2010, pp.1-25.
    [63] W.L. Weaver. Multiple-Orifice Liquid Injection into Hypersonic Air Streams andApplication to RAM C-III Flight. NASA TM X-2486.1972.
    [64] P.B. Gooderum, D. M.Bushnell. Atomization, drop size, and penetration forcross-stream water injection at high-altitude reentry conditions with application tothe RAM C-1and C-3flights. NASA TN D-6747.1972, pp.55.
    [65] P.B. Gooderum, D.M. Bushnell, Atomization, Drop Size, and Penetration forCross-stream Water Injection at High-altitude Reentry Conditions withApplication to the RAM C-I and C-III Flights, NASA Langley Research Center,Hampton, Va,1972.
    [66] S. Aisenberg, P.N. Hu, The Removal of Free Electrons in a Thermal Plasma byMeans of Rapidly Evaporating Liquid Additives, The Entry Plasma Sheath andits Effects on Space Vehicle Electromagnetic Systems, Vol. I, NASA SP-252NASA Langley Research Center,1970, pp.617–622.
    [67] H.J. Charles, Recommendations from the workshop on communications throughplasma during hypersonic flight, U.S. Air Force T&E Days2009, Albuquerque,New Mexico,2009, pp.5.
    [68] M. Kim, M. Keidar, I.D. Boyd, et al, Plasma Density Reduction UsingElectromagnetic ExB Field During Reentry Flight International TelemeteringConference,, International Foundation for Telemetering Paper07–19–03, LasVegas, NV,2007.
    [69] K. Welling, M. Rice, A Narrowband Model For Aeronautical Telemetry Channels,Proceeding of the Intemational Telemetering Conference, USA SAN DIEGO,1998, pp.115-123.
    [70] M.Rice, A.Davis, G.German, A wideband channel model for aeronauticalte!emetry Part l:Geometric considerations and experimental configuration, InProceedings of the International Telemetering Conference, SAN DIEGO,NV,2002,pp.200-210.
    [71] M.Rice, A.Davis, G.German, A wideband channel model for aeronauticalte!emetry Part l: Modeling results, In Proceedings of the InternationalTelemetering Conference, SAN DIEGO,NV,2002, pp.211-222.
    [72]黄强,等待接收再入遥测信道特性研究.电子科技大学博士学位论文.成都,2006.
    [73]严匡武,贺知明,黄强.双径模型在PCM/FM再入遥测系统分析中的应用.电子科技大学学报.2006,35(6):4.
    [74]黄强,贺知明,张健等.等待接收遥测系统中接收信号变化规律研究.系统工程与电子技术.2005,27(9):1515-1518.
    [75]黄强,贺知明,张健等.等待接收再入遥测信道的近地衰落模型.电波科学学报.2007,22(1)53-58:.
    [76]柴霖.临近空间飞行器测控与信息传输系统频段选择.航空学报.2008,29(4):1007-1012.
    [77]欧阳向京,陈树新,鲍荣伟等.临近空间移动通信信道模型研究.计算机工程.2011,37(7):97-99.
    [78]杨明川,姜义成,郭庆等.低仰角动态环境下高空平台站通信信道的衰落特性.华南理工大学学报(自然科学版.2009,37(1):27-32.
    [79] B. Zheng, Q. Ren, Y. Liu, et al. Characteristic and Simulation of the Near SpaceCommunication Channel. Microwave, Antenna, Propagation and EMCTechnologies for Wireless Communications,2007International Symposium on,2007, pp.769-773.
    [80] N. Sternberg. Transmission of radio-frequency signals through plasma duringhypersonic flight, The United States Air Force. Air Force Office of ScientificResearch AFRL-SR-AR-TR-10-0130. Worcester, MA,2010, pp.1-35.
    [81] H. Yang, X. Duan, H. Lu. Simulation of Electromagnetic Wave Reflection onPlasma by Multiresolution Time-Domain Method. Journal of Infrared, Millimeterand Terahertz Waves.2009,30(1):51-55.
    [82] C.S. Gurel, E. Oncu. Interaction of Electromagnetic Wave and Plasma Slab withPartially Linear and Sinusoidal Electron Density Profile. Progress InElectromagnetics Research Letters.2009,12:171-181.
    [83]. Gürel, E. ncü. Frequency Selective Characteristics of a Plasma Layer withSinusoidally Varying Electron Density Profile. Journal of Infrared, Millimeter andTerahertz Waves.2009,30(6):589-597.
    [84] L. Shi, B.-L. Guo, Y.-M. Liu, et al. Research on integrated channel model forNear-space hypersonic vehicle. Yuhang Xuebao/Journal of Astronautics.2011,32(7):1557-1563.
    [85] B. Skar, Digital Communications Fundamentals and Applications, Prentice HallPTR, Upper Saddle River, New Jersey,2001.
    [86] P. Bello. Characterization of Randomly Time-Variant Linear Channels.Communications Systems, IEEE Transactions on.1963,11(4):360-393.
    [87] A. Goldsmith. Wireless Communication. Wireless Communication, WestSussex: John Wiley&Sons,2005.
    [88] M.C. Jeruchim, P. Balaban, K.S. Shanmugan. Simulation Of CommunicationSystems:Modeling, Methodology, and Techniques. Simulation Of CommunicationSystems:Modeling, Methodology, and Techniques (Second Edition ed). New York:Kluwer Academic Publishers,2002.
    [89] W. H. Tranter, K.S. Shanmugan, T.S. Rappaport, et al. Principles ofcommunication systems simulation with wireless applications. Principles ofcommunication systems simulation with wireless applications. Upper Saddle River,New Jersey: Prentice Hall,2004.
    [90] U.K. M. P¨atzold, and F. Laue. An extended Suzuki model for land mobile satellitechannels and its statistical properties. IEEE Trans. Veh.Technol.1998,47(2):617-630.
    [91] A. Papoulis. Probability, Random Variables, and Stochastic Processes:3rd ed. NewYork:McGraw-Hill,1991.
    [92] S.O. Rice. Statistical Properties of a Sine Wave Plus Random Noise. Bell SystemTechnical Journal.1948,27(1):109-157.
    [93] W.C. Jakes. Microwave mobile communications. Microwave mobilecommunications, New York:Wiley,1974.
    [94] S.O. Rice. Mathematical Analysis of Random Noise. Bell System TechnicalJournal.1944,23(3):282-332.
    [95] S.O. Rice. Mathematical Analysis of Random Noise. Bell System TechnicalJournal.1945,24(1):46-156.
    [96] W.C. Jakes. Microwave mobile communications. Microwave mobilecommunications. New York:Wiley,1993.
    [97] M. P tzold. Mobile Fading Channels. Mobile Fading Channels. Chichester:JohnWiley&Sons, Ltd,2002.
    [98] U.K. M. P¨atzold, Y. Shi, and F. Laue. A discrete simulation model for the WSSUSmultipath channel derived from a specified scattering function. Proc.8. AachenerKolloquium¨uber Mobile Kommunikationssysteme, RWTH Aachen, Aachen,Germany,1994, pp.347–351.
    [99] U.K. M. P¨atzold, F. Laue, and Y. Li. An efficient deterministic simulation modelfor land mobile satellite channels. Proc. IEEE46thVeh. Technol. Conf., VTC’96,Atlanta, Georgia, USA,1996, pp.1028-1032.
    [100]ITU-R, Rec. ITU-R P.525-2:Calculation of free-space attenuation. ITUElectronic Publication. Genava,1994, pp.1-21.
    [101]张更新,张杭.卫星移动通信系统.北京:人民邮电出版社,2001.
    [102]ITU-R, Rec. ITU-R P.676-7:Attenuation by atmospheric gases, ITU ElectronicPublication. Geneva,2007, pp.1-23.
    [103]ITU-R, Rec. ITU-R P.836-4:Water vapour: surface density and total columnarcontent, ITU Electronic Publication. Geneva,2009, pp.1-16.
    [104]A.W. Dissanayake, J.E. Allnut, F. Haidara. A Prediction Model that CombinesRain Attenuation and Other Propagation Impairments Along Earth-Satellite Paths.IEEE Trans. on Antennas and Propagation.1997,10(45):1546-1558.
    [105]弓树宏.电磁波在对流层中传输与散射若干问题研究。西安电子科技大学博士学位论文,2008.
    [106]卢昌胜.降雨衰减的预报模式研究.电子科学大学硕士学位论文,2008.
    [107]G. Brussaard. Atmospheric Modelling&Millimetre Wave Propatation. EindhovenUniversity of Technology Thesis.Netherlands,1991.
    [108]ITU-R, Rec. ITU-R P.618-10:Propagation data and prediction methods requiredfor the design of Earth-space telecommunication systems.ITU ElectronicPublication. Geneva,2009, pp.1-26.
    [109]ITU-R, Rec. ITU-R P.838-3:Specific attenuation model for rain for use inprediction methods. ITU Electronic Publication. Geneva,2005, pp.1-8.
    [110]ITU-R, Rec. ITU-R P.839-3:Rain height model for prediction methods. ITUElectronic Publication. Geneva,2001, pp.1-3.
    [111]ITU-R, Rec. ITU-R P.840-5:Attenuation due to clouds and fog. ITU ElectronicPublication. Geneva,2012, pp.1-10.
    [112]ITU-R, Rec. ITU-R P.453-10:The radio refractive index: its formula andrefractivity data. ITU Electronic Publication. Geneva,2012, pp.1-30.
    [113]林乐科,赵振维,董庆生等.地空路径水凝物交叉极化特性研究.电波科学学报.2006,21(1):49-52.
    [114]赵振维.雨致交叉极化理论的二阶小变量近似及交叉极化预测.电波科学学报.1990,5(3):52~58.
    [115]D.Tse, P.Viswanath. Fundamentals of Wireless Communication Fundamentals ofWireless Communication. Cambridge: Cambridge University Press,2005.
    [116]翁木云,付晓研. Ka频段卫星信道的衰减特性.电讯技术.2005,45(5):5.
    [117]E. Matricciani, C. Riva. Evaluation of the feasibility of satellite systems design inthe10–100GHZ frequency range. International Journal of SatelliteCommunications.1998,16(5):237-247.
    [118]L. Weiwen, D.G. Michelson. Fade Slope Analysis of Ka-Band Earth-LEO SatelliteLinks Using a Synthetic Rain Field Model. Vehicular Technology, IEEETransactions on.2009,58(8):4013-4022.
    [119]C. Loo. Impairment of digital transmission through a Ka band satellite channeldue to weather conditions. International Journal of Satellite Communications.1998,16(3):137-145.
    [120]E. Kubista, F.P. Fontan, M.A.V. Castro, et al. Ka-band propagation measurementsand statistics for land mobile satellite applications. Vehicular Technology, IEEETransactions on.2000,49(3):973-983.
    [121]F. Valdoni, M. Ruggieri, F. Vatalaro, et al. A new millimetre wave satellite systemfor land mobile communications. European Transactions on Telecommunications.1990,1(5):533-544.
    [122]E. Matricciani, S. Moretti. Rain attenuation statistics useful for the design ofmobile satellite communication systems. Vehicular Technology, IEEETransactions on.1998,47(2):637-648.
    [123]E. Matricciani. Transformation of rain attenuation statistics from fixed to mobilesatellite communication systems. Vehicular Technology, IEEE Transactions on.1995,44(3):565-569.
    [124]王爱华,罗伟雄. Ka频段卫星通信信道建模及系统性能仿真.通信学报.2001,22(9):61-69.
    [125]L. Chun, J.S. Butterworth. Land mobile satellite channel measurements andmodeling. Proceedings of the IEEE.1998,86(7):1442-1463.
    [126]L. Wenzhen, L. Choi Look, V.K. Dubey, et al. Ka-band land mobile satellitechannel model incorporating weather effects. Communications Letters, IEEE.2001,5(5):194-196.
    [127]张栓晓.降雨环境中Ka频段数字卫星通信系统性能研究.西安电子科技大学硕士学位论文.西安,2010.
    [128]刘涛. Ka波段卫星通信雨衰与抗雨衰问题的研究.东北大学硕士论文.长春,2008.
    [129]杨峰,谢德芳,翁木云.自适应TDMA抗雨衰对策在Ka波段卫星通信中的应用.电讯技术.2002,42(3):91-95.
    [130]郑进宝.我国Ka频段卫星通信雨衰分析及抗雨衰技术.国防科技大学硕士学位论文,长沙,2007.
    [131]L. Shi, B. Guo, L. Zhao. Block-type pilot channel estimation for OFDM systemsunder frequency selective fading channels. IET International CommunicationConference on Wireless Mobile and Computing, CCWMC2009, December7,2009-December9,2009, Institution of Engineering and Technology, Shanghai,China,2009, pp.21-24.
    [132]石磊,郭宝龙,刘彦明等.一种低复杂度LMMSE信道估计算法.西安电子科技大学学报(自然科学版).2012,38(2):24-28.
    [133]张继东,郑宝玉.基于导频的OFDM信道估计及其研究进展.通信学报.2002,24(11):116-124.
    [134]H.A. Mehmet Kemal Ozdemir. Channel estimation for wireless OFDM SystemsIEEE Communications Surveys&Tutorials.2007,9(2):24-31.
    [135]O. Edfors, M. Sandell, J.-J.v.d. Beek, et al. OFDM Channel Estimation bySingular Value Decomposition. IEEE Transactions on Communications.1998,46(7):931-939.
    [136]W. Zhou, W.H. Lam. A Fast LMMSE Channel EstimationMethod for OFDMSystems. EURASIP Journal onWireless Communications and Networking.2009,2009:1-13.
    [137]程履帮. OFDMA系统中基于LMMSE信道估计算法的改进及其性能分析.电子学报.2008,36(9):1782-1785.
    [138]居敏,许宗泽. OFDM系统的自适应低秩信道估计.北京航空航天大学学报.2006,32(3):328-332.
    [139]M.K. zdemir, H.Arslan, E.Arvas.Towards. Real-Time Adaptive Low-RankLMMSE Channel Estimation of MIMO-OFDM Systems IEEE Trans. WirelessCommunication.2006,5(10):2675-2678.
    [140]李丹,冯穗力,叶悟.快变信道环境下OFDMA系统的信道估计算法.西安电子科技大学学报(自然科学版).2010,37(4):758-763.
    [141]S. ABETA. Physical Layer Aspects for Evolved Universal Terrestrial RadioAccess(UTRA)(Release7). Valbonne-FRANCE:3GPP,2006.
    [142]T.S. Rappaport. Wireless communication: principles and practice. Wirelesscommunication: principles and practice, NY:Prentice Hall,1996.
    [143]S.W. Ellingson. Detection of Tones and Pulses Using a Large, Uncalibrated Array.Antennas and Propagation Society International Symposium, IEEE, Columbus,OH,USA,2003, pp.196-199.
    [144]吕爱龙,许家栋.非均匀磁化等离子体中电磁波的反射.电波科学学报.2005,20(4):531-534.
    [145]杨华,时家明,凌永顺等.斜入射到非均匀等离子体上的电磁波反射系数计算.微波学报.2001,17(2):67-71.
    [146]S. Liu, J. Mo, N. Yuan. FDTD Simulation of Electromagnetic Reflection ofCounductive Plane Covered with Imhomogeneous Time-Varying Plasma.International Journal of Infrares and Millimeter Waves.2002,23(8):1179-1191.
    [147]L. Shaobin, M. Jinjun, Y. Naichang. Piecewise linear current density recursiveconvolution FDTD implementation for anisotropic magnetized plasmas.Microwave and Wireless Components Letters, IEEE.2004,14(5):222-224.
    [148]C.T. Swift, F.B. Beck, J. Thomson, et al. RAM C-III S-Band DiagnosticExperiment in Proceedings, The Entry Plasma Sheath and its Effects on SpaceVehicle Electromagnetic Systems,Vol. I, NASA SP-252, NASA Langley ResearchCenter,1970, pp.137-155.
    [149]S.W. Kang, M.G. Dunn, W.L. Jones, Theoretical and Measured Electron-DensityDistributions for the Ram Vehicle at High Altitudes.5th AIAA Fluid and PlasmaDynamics Conference, Boston, MA.,1972.
    [150]符斯列,陈俊芳,吴先球等.等离子体参数诊断及其特性研究.华南师范大学学报(自然科学版).2004,(2):77-83.
    [151]I.D. Boyd. Modeling of Plasma Formation in Rarefied Hypersonic Entry Flows.45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2007.
    [152]K.M. Lemmer, A.D. Gallimore, T.B. Smith, et al. Simulating HypersonicAtmospheric Conditions in a Laboratory Setting using a6-in-Diameter HeliconSource. Plasma Science,2007. ICOPS2007. IEEE34th InternationalConference on,2007, pp.223-223.
    [153]L.C. Scalabrin. Numerical Simulation of Weakly Ionized Hypersonic Flow OverRe-entry Capsules. University of Michigan Thesis, Michigan,2007.
    [154]牛田野.特殊等离子体环境物理信息获取与处理的研究.中国科学技术大学博士学位论文,合肥,2008.
    [155]黄勇,时家明,袁忠才等.等离子体鞘层及粒子碰撞对微波共振探针诊断的影响.核聚变与等离子体物理.2010,30(1):87-91.
    [156]D.M. DI. Typical Values of Plasma Parameters Around a Conical Re-Entry Vehicle.AD295429.COMMANDER SPACE SYSTEMS DIVISION UNITED STATESAIR FORCE, Inglewood, California,1962, pp.1-25.
    [157]M.G. Dunn, S.-W. Kang. Theoretical and Experimental Studies of ReentryPlasmas, NASA CR2232.Cornell Aeronautical Laboratory Inc., Buffalo,NewYork,1973, pp.1-115.
    [158]J.-t. LI, L.-x. GUO, Q.-j. FANG, et al. Electromagnetic wave propagation inplasma sheath of hypersonic vehicles. Systems Engineering and Electronics.2011,33(5):969-973.
    [159]J.-t. Li, L.-x. Guo, Y.-m. Liu, et al. Influence of the plasma sheath on the radiationcharacteristics of an antenna. Antennas Propagation and EM Theory (ISAPE),20109th International Symposium on,2010, pp.753-756.
    [160]P.W. Huber, T.E. Sims. The re-entry communications problem. Astronautics andAeronautics.1964,2(30).
    [161]M.A. Heald, C.B. Wharton. Plasma Diagnostics with Microwaves. PlasmaDiagnostics with Microwaves, New York: Wiley,1965.
    [162]刘少斌,刘崧,洪伟.色散介质时域有限差分方法.色散介质时域有限差分方法,北京:科学出版社,2010.
    [163]Y. Kane. Numerical solution of initial boundary value problems involvingmaxwell's equations in isotropic media. Antennas and Propagation, IEEETransactions on.1966,14(3):302-307.
    [164]R. Luebbers, F.P. Hunsberger, K.S. Kunz, et al. A frequency-dependentfinite-difference time-domain formulation for dispersive materials.Electromagnetic Compatibility, IEEE Transactions on.1990,32(3):222-227.
    [165]R.J. Luebbers, F. Hunsberger, K.S. Kunz. A frequency-dependent finite-differencetime-domain formulation for transient propagation in plasma. Antennas andPropagation, IEEE Transactions on.1991,39(1):29-34.
    [166]D.F. Kelley, R.J. Luebbers. Piecewise linear recursive convolution for dispersivemedia using FDTD. Antennas and Propagation, IEEE Transactions on.1996,44(6):792-797.
    [167]Q. Chen, M. Katsurai, P.H. Aoyagi. An FDTD formulation for dispersive mediausing a current density. Antennas and Propagation, IEEE Transactions on.1998,46(11):1739-1746.
    [168]刘少斌,莫锦军,袁乃昌.等离子体的分段线性电流密度递推卷积FDTD算法.物理学报.2004,53(3):778-782.
    [169]M. A.Heald, C.B.Waharton. Plasma diagnostics with microwaves. Plasmadiagnostics with microwaves. NewYork: John Wiley&Sons Inc.,1978.
    [170]胡连欢,宁百齐,李国主.海南地区电离层闪烁观测与GISM模式预测的比较分析.空间科学学报.2007,27(5):7.
    [171]朱太平,王椿年,孙环凤等.4GHz卫星电视信号低纬电离层闪烁特性.电波科学学报.1994,9(1):83-86.
    [172]许正文.电离层对卫星信号传播及其性能影响的研究.西安电子科技大学博士学位论文,西安,2005.
    [173]涂师聪.电离层闪烁对卫星通信的影响.无线电通信技术.1990,(2):23-28.
    [174]S. Skone, K. Knudsen, M. de Jong. Limitations in GPS receiver trackingperformance under ionospheric scintillation conditions. Physics and Chemistry ofthe Earth, Part A: Solid Earth and Geodesy.2001,26(6):613-621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700