用户名: 密码: 验证码:
共聚物自组装微孔膜的制备与性质研究及其在电化学传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜技术已经成为21世纪优先开发和发展的项目,尤其具有可控结构的微孔薄膜在化学、光电子、生命科学和材料科学等方面受到人们极大的关注。微孔薄膜在分离膜,光学,光电设备,微反应器,微型传感器、生物工程等方面已经有广泛的应用。膜材料总体上分为两类,一是聚合物膜材料,二是无机膜材料。其中利用共聚化合物分子自组装,是目前制备可控结构微孔薄膜的最为简单的方法之一,已经引起研究者的极大兴趣。在电化学领域中,超微电极由于具有高传质速率、低iR降、小时间常数等优良特性而得到了越来越广泛的研究和应用。但是单根超微电极受到制备难度大、响应电流极小(通常在纳安级)、仪器设备要求、电极强度低的限制。而超微组合电极既保留了微电极的优良特性,又能克服上述缺陷,使其研究逐渐成为当今电化学研究领域最活跃的前沿之一。众多相同电极,能一起执行同步实验。所以,多超微电极的阵列组合,使可能电位不稳定的单个超微电极总体电位稳定。将各种纳米电极放置在材料的不同表层,甚至定位在样品的不同部位(例如,流体中),能够测定和获取被测样品的不同部位的细微差别。本论文采用聚苯乙烯-嵌段-聚丙烯酸共聚物、聚(丙烯腈-丙烯酸)共聚物,运用自组装的方法制备了微孔薄膜,通过原位AFM、动态光散射、视频接触角测量等技术,调查了前者的可调控表面性质,并将它们运用于常规电极的表面修饰,制备出一系列超微组合电极。通过对制备电极的电化学表征、及其在实际样品中的测定方法研究,表明该微孔薄膜修饰电极具有超微电极的特征,并且具有制备成本低、方法简单、性能稳定、灵敏度高、选择性好的特点,为聚合物功能材料在电化学领域中超微电极的制备研究及其应用方面提供了重要的实践参考。论文主要包括以下四部分内容:
     一、高度有序的两亲嵌段共聚物(PS–b–PAA)自组装微孔薄膜的制备及其表面性质研究
     在一定湿度的条件下,利用溶剂的快速挥发,单分散冷凝的水滴作为模板,通过两亲嵌段共聚物(聚苯乙烯-嵌段-聚丙烯酸,PS–b–PAA)自组装制备了的高度有序的微孔薄膜。详细地、全面地调查了PS–b–PAA有序微孔薄膜的形成条件及其关键影响因素,例如,聚合物溶液的浓度、相对空气湿度、溶剂的性质、溶液滴涂量,以及支撑物的性质等,从而获得了对膜中微米级孔的尺寸大小、分散度的有效控制。高湿度条件导致较大的孔径,同时是高的聚合物浓度导致小孔径,以及微孔的分散的度增加。溶剂的种类、使用量影响溶剂的气化时间与气化速度,也是决定孔径大小的内在关键影响因素。亲水的固体支撑物对聚合物溶液的润湿性是规整微孔薄膜的形成的影响因素之一。在对微孔薄膜的表面性质研究过程中,通过视频接触角技术发现了当薄膜与水溶液相接触时,其表面结构对润湿性的影响及其表面从疏水到亲水性质的有趣变化,探讨了膜分布的多孔性以及PAA的离解程度对上述性质的影响。实验发现薄膜的微孔直径决定了起始接触角大小,而PAA的离解程度决定了润湿性的转化时间和最终接触角大小。该内容的研究,为聚合物有序微孔膜的制备方法,通过了一条有效的途径。
     二、两亲嵌段共聚物(PS–b–PAA)自组装微孔薄膜的外部可调控性质研究
     在两亲嵌段共聚物(PS–b–PAA)制备的纳米孔薄膜的基础上,使用原子力显微镜原位调查了该微孔薄膜在不同pH值水溶液中的形貌变化,发现纳米级微孔的大小变化对溶液的pH值有着可逆的刺激响应。因为聚合物孔内壁PAA是一种弱聚电解质,其pKa为4.6,羧酸基团的电离程度取决于溶液的pH值。若pH< pKa,PAA链上的COOH仅会部分电离,致使带负电荷的羧基COO-链之间由于静电斥力而产生空间,水分子进入,PAA链发生轻微伸展并且少部分分散到溶液中,当pH > pKa,因为羧酸官能团进一步电离,PAA链间静电斥力增加使得PAA链发生较大程度的伸展并且更多地分散到溶液中。其链的分散与伸展程度取决于其电离程度或者溶液的pH值。因此,一个孔径尺寸的转折性变化在pH=pKa附近被实验所观察。文中使用一个“两步法”机理讨论了膜微结构刺的激响应动力学。借助动态光散射实验(DLS)结果证实了在溶液中PAA单元随着溶液pH值的升高而更加分散。PS–b–PAA嵌段共聚物在稀溶液中的胶束化过程与缓冲溶液的pH成有关系。该内容的研究为研制具有灵敏刺激响应的功能化微孔膜材料、可pH调控的纳米微孔材料,提供有价值的实验信息与依据。
     在两亲嵌段共聚物(PS–b–PAA)制备的微米孔薄膜的基础上,使用原子力显微镜,原位调查了该微孔薄膜与水溶液中阳离子表面活性剂的固液相互作用。当将制备的PS–b–PAA微孔膜浸泡在水中,孔内壁部分的PAA的-COOH—离解成-COO—,使PAA链在水溶液的伸展。当溶液中存在阳离子表面活性剂(十六烷基三甲基溴化铵,CTAB)时,CTAB与伸展的PAA链上的-COO-形成离子对,能增加PAA的电离程度,使孔内壁的PAA链在水溶液的离解、伸展增加,从而使微孔孔径增大,PS–b–PAA微孔膜的表面结构形貌发生了不可逆的改变。通过PS–b–PAA微孔薄膜在水溶液形貌变化的动力学探讨,使用动态光散射技术(DLS)研究PS–b–PAA嵌段共聚物在稀溶液中的胶束化过程随PAA电离程度的不同现象,来进一步解释该嵌段共聚物微孔薄膜对的CTAB刺激响应的原因。这种能对CTAB溶液做出响应的PS–b–PAA微孔薄膜作为功能材料有望能够设计出新型智能传感器等工具。
     三、两亲嵌段共聚物(PS–b–PAA)自组装微孔膜制备超微电极的表征及其应用
     将不同制备条件下,自组装形成的聚苯乙烯-嵌段-聚丙烯酸(PS–b–PAA)的微孔薄膜分别修饰在常规金、银圆盘电极表面,制备出超微电极阵列电极。通过对所制备电极的电化学表征技术,表明经微孔薄膜修饰的电极有超微电极的特征。其中通过控制微孔膜的形成条件,制备了半径800 nm的金超微阵列电极。采用铁氰根离子作为氧化还原探针,验证了其循环伏安曲线由稳态伏安图“S”形到“峰形”的转换关系;通过电极在氯化钾溶液中不同扫描速度循环伏安电流的记录,计算并比较了超微电极与裸电极的电容,以此评判金属电极表面与微孔膜之间的绝缘与密封性能。对银超微阵列电极上的电化学性能研究中,与常规银电极相比,发现腺嘌呤具更好的反应可逆性和高的信噪比响应,从而能大大地提高了银电极对腺嘌呤的测定灵敏度。采用在膜微孔中控制电化学沉积金,制备了一种金纳米组合电极。通过对所制备电极的电化学表征、及其在实际样品中的测定方法研究,表明该微孔薄膜修饰电极具有超微电极的特征,并且拥有制备方法简单、性能稳定、灵敏度高、选择性好的特点。该研究为PS–b–PAA作为功能修饰材料在电化学领域中超微电极的制备与应用提供一条新的途径。
     在单纳米电极与超微组合电极的制备对照研究中,一种传统的单纳米电极的制备方法也被很好地改进。微米级铂丝经化学刻蚀后,首次使用慢速循环伏安扫描,可控电化学沉积阳极电泳漆,经加热烘烤,漆层收缩,纳米级铂丝活性尖端露出。按需要可反复控制该操作,从而制得可控直径的纳米电极。该法可以克服传统电泳漆固化易留下小针孔的缺陷。根据电极在铁氰化钾溶液中的理想的极限稳态电流曲线,确定了纳米铂电极的大小,制备的纳米铂电极半径从几百到几个纳米。
     四、聚(丙烯腈-丙烯酸)共聚物自组装膜制备纳米微孔电极及其生物样品中尿酸含量的测定
     利用实验室合成的聚(丙烯腈-丙烯酸)共聚物,在玻碳电极表面自组装成膜,制备了一种具有超微电极特征的纳米级微孔碳电极,并且建立了在中性条件下实现选择性测定生物样品中的UA的分析方法。实验结果表明,在0.10 mol/L KH2PO4和Na2HPO4混合磷酸盐缓冲溶液(pH = 6.86,PBS)中,由于UA在纳米微孔碳电极和纳米孔功能化的PAA微环境中存在弱吸附,并发生快速电化学反应,不仅使抗坏血酸(AA)的响应电流大大下降,而且还使UA和AA的氧化电位差由常规电极的73 mV拉大到330 mV,从而有效地抑制了测定体系中共存的AA的干扰。采用示差脉冲伏安法记录UA的氧化峰电流,峰电流与UA浓度在5.0×10-7 mol/L ~ 5.0×10-5 mol/L范围内呈良好的线性关系,相关系数为0.998,检出限为1.0×10-7 mol/L(S/N = 3)。根据实际样品中的UA的测定结果表明,该纳米级微孔组合碳电极的制备方法简单、性能稳定,可适合在高浓度AA存在的条件下,高选择性地测定生物样品(血清和尿液)中的UA。该研究为尿酸的生物医学分析提供了一条有效途径。
Thin film technology is a hot research and development project in the 21st century. Especially, the microporous thin films with tunable configurations have received increased interest in chemistry, optoelectronics, life and material sciences, because they have been applied as membrane separation, optical filters, photoelectric equipment, microreactors, microsensors and cell culture substrates and so on. As a whole, there were two kinds of microporous thin films in existence, include polymer microporous thin films and inorganic microporous thin films. One of the most facile approaches to fabricate microporous thin films is self-assemble using copolymers. Ultramicroelectrodes (UMEs) have evoked comprehensive interest due to their intrinsic characteristics. The low iR drop enables a two-electrode system to be used and the high resistance system to be detected. The low charged currents of the nanoelectrodes increase the ratio of signal/noise and allow a high scan rate. However, an obvious challenge to successful exploration of the above benefits of individual nanoscale electrodes is their fabrication and handling; another is that single UME generates low currents, which are hardly detectable with the conventional electrochemical technique. This instrumentation problem can be circumvented by the use of UME arrays or ensembles, whereby the individual electrodes in the array operate in parallel thus amplifying the signal while retaining the beneficial characteristics of the UMEs. Thus there has been much interest in the development of collections of UMEs. Thus the many-electrode microarray can have individual sensors poised at different potentials, coated with different layers or even located within different regions of a sample matrix (e.g. fluid stream) in order to detect and pick-up different nuances of the sample matrix being investigated.
     In this paper, an amphiphilic block polymer, polystryene–b–polyacrylic (PS–b–PAA), and another copolymer, poly(acrylonitrile–co–acrylic acid), was using to fabricate microporous thin films by self-assembly, respectively. Some technique include in–situ atomic force microscopy, dynamic light scattering, and video optical contact angle measurement were carried out to investigate tunable surface Properties of the films and responses to external stimulus. These microporous thin films as modifiers were firstly used to fabricate to a series of UME arrays or ensembles. Electrochemical methods were used to characterize these electrodes with the typical characterization of UMEs. These fabrication approaches was testified facile, rapid and low cost. Some UMEs obtained in this paper were in application to determinations in real samples with high selectivity and sensitivity. These results will provide valuable technical reference for the UMEs fabrication and their applications. This paper includes four parts as follows:
     1. Fabrication of Highly Ordered Microporous Thin Film by PS–b–PAA Self-assembly and Investigation of its Tunable Surface Properties
     A facile approach was presented to fabricate high ordered microporous thin films by self-assembly via an amphiphilic block polymer (PS–b–PAA). The highly ordered microporous thin films were formed by casting PS–b–PAA tetrahydrofuran (THF) onto a glass slide under high humidity. The condensed water droplets act as sacrificed templates on the air-polymer solution interface based on thermocapillary convection. Several key influencing factors, such as the concentration of the block polymer solution, the relative humidity of the atmosphere, the properties of solvent, the spreading volume and the substrates, are investigated to control micropore size and tune film surface properties. The surface composition and wettability of the film were found to be dramatically changed in aqueous solution, and the contact angle of the film surface was interestingly reduced from nearly hydrophobic to super-hydrophilic, which was captured by optical contact angle. The influence of porosity and the ionization degree of PAA on above properties were investigated. Micropores diameters of the film determine the initial contact angle, while PAA ionization degree determine the transformation time of the wettability behavior and the last contact angle. This study is aimed at strategies for fabrication of microporous thin films with dynamically controlled micropore size and tunable surface properties. PS–b–PAA as an excellent candidate for functional materials could be promising application in fabrication of microporous thin films, smart stimuli-responsive materials, biosensors or nanofluidic devices.
     2. Study of Response to Environmentally Sensitive Stimuli and Tunable Surface Properties based on Microporous Thin Film by PS–b–PAA Self-assembly
     The PS–b–PAA microporous thin film exhibits different surface morphologies in response to external stimulus, especially to the environments with different pH values. The reversible evolution of the microstructures in aqueous solutions over a pH range of 2.4– 9.2 was firstly investigated by in–situ atomic force microscopy (AFM). The partial PAA chains stretched and dispersed in solutions as pH value increase, resulting in the enlargement of micropore diameter observed. Every micropore in the film was enclosed by PAA domain as a weak polyelectrolyte (pKa, 4.6), which has many carboxylic functional groups (– COOH). At low pH (pH < pKa), the–COOH groups along the polymer chains are few partially ionized and only some PAA chains disperse in water. At high pH (pH > pKa), the–COOH groups along the polymer chains are adequately ionized and more PAA chains stretch outwards and disperse in water. When the films were immerged in aqueous solution, the stimuli–responsive dynamics of micropore diameters was described by a two–stage mechanism. The micellization process for the PS–b–PAA block copolymer in dilute solution was studied to testify the dispersion of the stretched PAA chains in solutions by dynamic light scattering (DLS). This study is aimed at strategies for the functionalization of sensitive stimuli–responsive microporous thin films with pH reversible tunable surface morphology.
     Upon exposure the microporous thin films of PS–b–PAA in aqueous solution contained a cationic surfactant, cetyltrimethylammonium bromide (CTAB), the PAA chains in the micropores stretch outwards and lead to the sizes of the micropores increases captured by in–situ atomic force microscopy. There was the formation of“ion pairs”between the stretched PAA chains CTAB to increase the degree of the dissociation of PAA and led to the sizes of the micropores increases, resulted in the change of the morphology and structure of the PS–b–PAA microporous thin film. The interaction between PS–b–PAA block copolymer and CTAB in dilute solution was studied to testify the dispersion of the stretched PAA chains by DLS. The PS–b–PAA microporous thin films have potential applications in smart sensor materials based on CTAB–responsive behavior.
     3. Fabrication, Characterization and their applications of Ultramicroelectrodes Formed via Microporous Thin Film by Amphiphilic Block Copolymer (PS–b–PAA) Self-assembly
     A novel one-step approach to fabricate, Au and Ag ultramicroelectrodes ensembles or array has been developed using microporous thin film by an amphiphilic block copolymer (PS–b–PAA) self-assembly as a modifier. Electrochemical methods were used to characterize these electrodes with the typical characterization of ultramicroelectrodes. Under different conditions of the microporous film fabrication, Au microelectrode array with pore radius of 800 nm were obtained. According to cycle voltammograms at different scan rates, sigmoidal-peak waveform transitions were obtained by using [Fe(CN)6]3- as a redox-active ion probe, which indicated that the redox reaction of Fe(CN)63-/ Fe(CN)64- was only controlled at low scan rate by a radial diffusion. The similar capacitances obtained from the bare electrodes and the proposed electrodes indicated a good adhesion and there was no leaking from one pore to the next in the thin polymer film. Compared with a regular Ag disc electrode, there were good reversible reaction and high signal noise ratio for a response to adenine at the Ag ultramicroelectrodes array prepared, indicated that the detection sensitivity for adenine could be logically improved. After a controlled electrochemical deposition of Au in nanopores of the film, Au nanoelectrode ensembles were fabricated with the typical characterization of ultramicroelectrodes.
     A new and simple method for fabricating controllable insulated nanometer-sized platinum electrodes is presented. Electrochemical etching of platinum wire is employed, and then a repeated process of cycle voltammetric deposition of electrophoretic paint and heat curing for shrink film follows which effectively controls the size of the nanoelectrodes, which is different from previous DC electrolysis deposition. This technique allows complete insulation of the whole body of the etched platinum wire, except for the very tip with the shrink film during heat curing of the film, leaving an electrochemical active area with effective diameters of nanometers. The process overcomes the pinhole formation resulting from the electrophoretic paint deposition process. The size of the platinum electrodes and the thickness of the deposed paint for insulation can be properly controlled and reproduced. The fabricated electrodes show ideal steady-state voltammetric behaviors from which the effective areas of the nanoelectrodes are measured. The effective radius of the prepared nanoelectrodes ranges from 3.1 nm to hundreds of nanometers.
     4. Fabrication of Nanoporous electrode formed via PAN–co–PAA Self-Assembly and Selective Voltammetric Detection of Uric Acid in Biologic Samples
     A novel approach to fabricate nanoporous glassy carbon electrode with the pores of 50 ~ 200 nm in radii has been developed using a copolymer [poly(acrylonitrile–co–acrylic acid)] self-assembly. This procedure is simple and fast, and requires only conventional, inexpensive electrochemical instrumentation. Electrochemical methods were used to characterize the nanoporous glassy carbon electrode with the characterization of an ultramicroelectrode. The nanoporous glassy carbon electrode drastically suppressed the response of ascorbic acid (AA) and resolved the overlapping voltammetric response of uric acid (UA) and AA into two well-defined peaks with a large anodic peak difference (ΔEpa) of about 330 mV. There were the weak adsorption of UA on carbon-based electrodes and a fast electron transfer reaction of UA and AA take place in the different micro-environment in the presence of the carboxylic functional groups in the nanopores. The peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration in the range of 5.0×10-7 mol/L to 5.0×10-5 mol/L at neutral pH (PBS, pH = 6.86) with a correlation coefficient of 0.998, and the detection limit was 1.0×10-7 mol/L (S/N = 3). The nanoporous glassy carbon electrode has also been demonstrated to be applicable in the detection of UA in serum and urine samples with excellent sensitivity and selectivity. The nanoporous glassy carbon electrode will hopefully be of good application in further sensor development and biomedical analysis.
引文
[1] K. Lewandowski, P. Murer, F. Svec, J. M. J. Frechet, Anal. Chem., 1998, 70, 1629.
    [2] J. E. G. J. Wjinhoven, W. L. Vos, Science, 1998, 281, 802.
    [3] H. Yabu, M. Shimomura, Chem. Mater., 2005, 17, 5231.
    [4] M. Imada, S. Moda, A. Chutinan, T. Tokuda, M. Murata, G. Sasaki, Appl. Phys. Lett., 1999, 75, 316.
    [5] G. Ramsey, DNA chips, state of the art, Nature Biotechnol., 1998, 16, 40.
    [6] Y. Chen, A. Pepin. Electrophoresis, 2001, 22, 187.
    [7] O. D. Velev, T. A. Jede, R. F. Lobo, A. Lenhoff. Nature, 1997, 389, 447.
    [8] B. T. Holland, C. F. Blanford, A. Stein. Science, 1998, 281, 538.
    [9] K. M. Kulinowski, P. Jiang, H. Vaswani, V. L. Colvin. Adv. Mater., 2000, 12, 833.
    [10] P. Jiang, K. S. Hwang, D. M. Mittleman, J. F. Bertone, V. L. Colvin, J. Am. Chem. Soc. 1999, 121, 11630.
    [11] Park S H, Xia Y. Chem. Mater., 1998, 10, 1745.
    [12] M. Deutsh, Y. A. Vlasov, D. J. Norris, Adv. Mater., 2000, 12, 1176.
    [13] A. Imhof, D. J. Pine, Nature, 1997, 389, 948.
    [14] G. Widawski, B. Francüois, Nature, 1994, 369, 387.
    [15] S. A. Jenekhe, X. L. Chen. Science, 1999, 283, 372.
    [16] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Nature, 1992, 359, 710.
    [17] U. Jeong, H. C. Kim, R. L. Rodriguez, I. Y. Tsai, C. M. Stafford, J. K. Kim, C. J. Hawker, T. P. Russell, Adv. Mater., 2002, 14, 274.
    [18] C. Park, J. Y. Cheng, M. J. Fasolka, A. M. Mayes, C. A. Ross, E. L. Thomas,Appl. Phys. Lett., 2001, 79, 848.
    [19] P. Mansky, C. K. Harrison, P. M. Chaikin, Appl. Phys. Lett., 1996, 68, 2586.
    [20] X. Y. Zhao, Q. Cai, G. X. Shi, Y. Q. Shi, G. W. Chen. J. Appl. Polym. Sci., 2003, 90, 1846.
    [21] X. Y. Zhao,Q. Cai,G. X. Shi, Y, Q, Shi, G. W. Chen, Membrane Science and Technology, 2004, 24 (2), 1.
    [22] C. Y. Wang, Q. X. Liu, X. Q. Shao, G. J. Yang, H. G. Xue, X. Y. Hu, Talanta, 2007, 71, 178.
    [23] C. Y. Wang, X. Q. Shao, Q. X. Liu, Y. D. Mao, G. J. Yang, H. G. Xue, X. Y. Hu, Electrochim. Acta, 2006, 52, 704.
    [24] M. Shimomura, H. Yabu, H. Yamamoto, Y. Kaida, JP2005-023122, 2005
    [25] T. Nishikawa, J. Nishida, R. Ookura, S. Nishimura, S. Wada, T. Karino, M. Shimomura, Mater. Sci. & Eng. C, 1999, 8-9, 495.
    [26] T. Nishikawa, R. Ookura , J. Nishida, K. Arai, J. Hayashi, N. Kurono, T. Sawadaishi, M. Hara, M. Shimomura, Langmuir, 2002, 18, 734.
    [27] T. Nishikawa, J. Nishida, R. Ookura, S. Nishimura, S. Wada, T. Karino, M. Shimomura, Mater. Sci. Eng. C, 1999, 10, 141.
    [28] T. Nishikawa, M. Nonomura, K. Arai, J. Hayashi, T. Sawadaishi, Y. Nishiura, M. Hara, Shimomura M. Langmuir, 2003, 19, 6193.
    [29] L. V. Gover, I. A. Bashmakov, R. Kiebooms, V. Dyakonov, J. Parisi. Adv. Mater., 2001, 13(8), 588.
    [30] L. V. Gover, I. A. Bashmakov, F. N. Kaputski, M. Pientka, J. Parisi, Macromol. Chem. Phy., 2000, 201, 2721.
    [31] T. Nishikawa, J. Nishida, R. Ookura, S. Nishimura, V. Scheumann, M. Zizlsperger, R. Lawall, W. Knoll, M. Shimomura, Langmuir, 2000, 16, 1337.
    [32] W. Kasai, T. Kondo, Macromol. Biosci., 2004, 4, 17.
    [33] S. X. Wang, M. T. Wang, Y. Lei, L. D. Zhang, Materials Research Bulletin, 2000,35, 1625.
    [34] M. T. Wang, X. G. Zhu, S. X. Wang, L. D. Zhang, Polymer, 1999, 40, 7387.
    [35] K. I. Hiwatari, T. Serizawa, T. Seto, A. Kishida, Y. Muraoka, M. Akashi, Polymer J., 2001, 33, 669.
    [36] L. Cui, Y. Ding, X. Li, Y. C. Han. Thin Solid Flims, 2006, 515 (4), 2038.
    [37] M. Srinivasarao, D. Ollings, A. Philips, S. Patel, Science, 2001, 292, 79.
    [38] M. H. Stenzel, J. Aust, Chem., 2002, 55, 239.
    [39] N. Maruyama, T. Koito, T. Sawadaishi, M. Shimomura, T. Koito, S. Nishimura, T. Sawadaishi, N. Nishi, S. Tokura, Supramol. Sci., 1998, 5, 331.
    [40] Y. Y. Xu, Z. K. Xu, Macromolecule Membrane Material. Beijing, Chemical Industry Press, 2005
    [41] O. Pitois, B. Francüois, Eur. Phys. J., 1999, B8, 225.
    [42] M. Hernández-Guerrero, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel, European Polymer Journal, 41, 2264.
    [43] G. W. Chen, Y. M. Zeng, Membrane Science and Technology (Chinese), 2003,23(4), 116.
    [44] X. A. Zhang, Y. F. Long, K. Xie, L. Y. An, Cai Liao Dao Bao (Chinese), 2003,17(9), 71.
    [45] O. Pitois, B. Franc?is, Colloid Polym. Sci., 1999, 277, 574.
    [46] M. H. Stenzel-Rosenbaum, T. P. Davis, A. G. Fane, Macromol., 2001, 34, 5433.
    [47] B. Franc?is, O. Pitois, J. Franc?is, Adv. Mater., 1995, 7, 1041.
    [48] J. Peng, Y. C. Han, Y. M. Yang, B. Y. Li, Polymer, 2004, 45, 447.
    [49] C. L. Yu, J. Zhai, X. F. Gao, M. X. Wan, L. Jiang, T. Li J, Z. S. Li, J. Phys. Chem. B, 2004, 108, 4586.
    [50] J. Peng, Y. C. Han, J. Fu, Y. M. Yang, B. Y. Li, Macromol. Chem. Phys., 2003, 204, 125.
    [51] O. Karthaus, X. Cieren, N. Maruyama, Shimomura, M. Mater. Sci. Eng. C, 1999,10, 103.
    [52] H. Yabu, M. Tanaka, K. Ijiro, M. Shimomura, Langmuir, 2003, 19, 6297.
    [53] O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, T. Hashimoto, Langmuir, 2000, 16, 6071.
    [54] Nishikawa T, Arai K, Hayashi J, Hara M, Shimomura, M. Honeycomb films of biodegradable polymers for tissue engineering. Materials Research Society Symposium - Proceedings, 2002, 724: 229.
    [55] N. Maruyama, T. Koito, J. Nishida, T. Sawadaishi, X. Cieren, K. Ijiro, O. Karthaus, Shimomura M. Thin Solid Films,1998, 327-329, 854.
    [56] J. J. Gray, D. H. Klein, B. A. Korgel, R. T. Bonnecaze, Langmuir, 2001, 17, 2317.
    [57] L. Cui, J. Peng, Y. Ding, X. Li, Y. C. Han, Polymer, 2005, 46, 5334.
    [58] C. X. Cheng, Y. Tian, Y. Q. Shi, R. P. Tang, F. Xi, Langmuir, 2005, 21, 6576.
    [59] D. Beysens, A. Steyer, P. Guenoun, D. Fritter, C. M. Knobler, Phase Transitions, 1991, 31, 219.
    [60] B. Bruno, J. S. Adam, L. Albert, Phys. Rev. A, 1990, 41, 6893.
    [61] Y. Tian, Y. Q. Shi, H. Y. Ding, Z. Y. M eng, Q. Z. Jiao, X. L. Wang, Journal of Functional Polymers (Chinese), 2005,18(3), 414.
    [62] J. Li, J. Peng, W. H. Huang, Y. Wu, J. Fu, Y. Cong, L. J. Xue, Y. C. Han. Langmuir, 2005, 21, 2017.
    [63] Y. Tian, Y. Q. Shi, Y. M. Zeng, Q. Z. Jiao, X. Y. Wang, Membrane Science and Technology (Chinese), 2005, 25(5), 78.
    [64] D. Y. C. Chan, J. D. Henry, J. R. L. R. White, J. Colloid Interface Sci., 1981, 79, 410.
    [65] E. L. Thomas, D. J. Kinning, D. B. Alward, C. S. Henkee. Macromol., 1987, 20, 2934.
    [66]古宁宇,董绍俊.大学化学, 2001, 16(1), 26.
    [67]黄钦文,李斌,黄美浅,刘仲明,刘芳,传感器技术, 2004, 23(2), 1.
    [68]贺敏娟,崔华莉,现代生物医学进展, 2006, 6(8), 66.
    [69]赵燕,张亚利,焦奎,大学化学, 2004, (19)5,2.
    [70] C. G. Zoski, Electroanalysis, 2002, 14, 1041.
    [71] R. Feeney, S. P. Kounaves, Electroanalysis, 2000, 12, 677.
    [72] E. Bakker, Anal. Chem., 2004, 76, 3285.
    [73] Stephen G. Weber, Anal. Chem. 1989, 61, 295.
    [74]郑金,印仁和,钟庆东,周国定,腐蚀与保护,2003,24(8),327.
    [75] T. Hepel, J. Osteryoung, J. Electrochem. Soc.: electrochemical science and technology, 1986, 133, 752.
    [76] E. Finot, E. Bourillot, R. Meunier-Prest, Y. Lacroute, G. Legay, M. Cherkaoui-Malki, N. Latruffe, O. Siri, P. Braunstein, A. Dereux, Ultramicroscopy, 2003, 97, 441.
    [77] P. Ugo, L. M. Moretto, F. Vezza., Chemphyschem., 2002, 3, 917.
    [78]梁汉璞,赵燕,张亚利,焦奎,青岛大学学报,2003,16,67
    [79] R. M. Penner, C. R. Martin, Anal. Chem., 1987, 59, 2625.
    [80] V. P. Menon, C. R. Martin, Anal. Chem., 1995, 67, 1920.
    [81] B. Brunetti, P. Ugo, L. M. Moretto, C. R. Martin, J. Electroanal. Chem., 2000, 491, 166.
    [82] V. Walter, D. S. Livia, M. Amedeo, M. Jan, D. L. Manuela, M. L. Maria, P. Roberto, Inter. J. Environ. Anal. Chem., 2007, 87, 701.
    [83] U. Evans, P. E. Colavita, M. S. Doescher, M. Schiza and M. L. Myricks, Nano Lett., 2002, 2, 641.
    [84] K. Stulik, C. Amatore, K. Holub, V. Maracek and W. Kutner, Pure Appl. Chem., 2000, 72, 1483.
    [85] K. Uosaki, K. Okazaki, H. Kita, H. Takahashi, Anal. Chem., 1990, 62, 652.
    [86]孔景临,薛宽宏,何春建,邵颖等,应用化学, 2001, 18, 462.
    [87]孔景临,薛宽宏,何春建,邵颖等,应用化学, 2002, 19, 313.
    [88] C. J. Miller, M. Majda, J. Electroanal. Chem., 1986, 207, 49.
    [89] W. E. Morf, N. F. de Rooij, Sens. Actuators, B 1997, 44: 538.
    [90]杨海朋,清华大学博士后出站报告,2005, 63.
    [91] W. L. Cheng, S. J. Dong, E. K. Wang, Anal. Chem., 2002, 74, 3599.
    [92] W. S. Baker, R. M. Crooks, J. Phys. Chem., 1998, 102, 10041.
    [93] S. E. Creager, P. T. Radford, J. Electroanal. Chem., 2001, 500, 21.
    [94] E. Jeoung, T. H. Galow, J. Schotter, M. Bal, A. Ursache, M. T. Tuominen, C. M. Stafford, T. P. Russell, V. M. Rotello, Langmuir, 2001, 17, 6396.
    [95] K. Hirota, K. Tajima, K. Hashimoto, Langmuir, 2005, 21, 11592.
    [96] L. Kavan, J. Rathousky, M. Gratzel, Microporous & Mesoporous Mater., 2001, 44-45, 653.
    [97] S. J. Xia, G. Liu, V. I. Birss, Electrochim. Acta., 2000, 46, 475.
    [98] C. Y. Wang, Q. X. Liu, X. Q. Shao, G. J. Yang, H. G. Xue, X. Y. Hu, Talanta, 2006, 2007, 71, 178.
    [99] C. Y. Wang, X. Q. Shao, Q. X. Liu, Y. D. Mao, G. J. Yang, H. G. Xue, X. Y. Hu, Electrochim. Acta, 2006, 52, 704.
    [100] M. Musameh, J. Wang, A. Merkoci and L. H. Lin, Electrochem. Commun., 2002, 4, 743.
    [101] S. Sotiropoulou and N. A. Chaniotakis, Anal. Bioanal. Chem., 2003, 375, 103.
    [102] X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J. F. Rusling, Electrochem. Commun., 2003, 5, 408.
    [103] J. Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T. Ng, J. Han, M. Meyyappan, J. Mater. Chem., 2004, 14, 676.
    [104] S. Hrapovic, J. H. T. Luong, Anal. Chem., 2003, 75, 3308.
    [105] B. Alfonso, Y. H.Lanyon, B. Valerio; H. Gregoire, Y. E. Rodgers, K. Watson, F. Stam, J. Alderman, D. W. M. Arrigan, Talanta, 2007, 71, 1022.
    [106] P. Sun, M. V. Mirkin, Anal. Chem., 2006, 78, 6526.
    [107] C. G. Zoski, N. J. Yang, He, P. X. L. Berdondini, K. H. Milena, Anal. Chem., 2007, 79, 1474.
    [108] E. Sabatani, I. Rubinstein, J. Phys. Chem., 1987, 91, 6663.
    [109] D. H. Yang, M. X. Zi, B. S. Chen, Z. Q. Gao, J. Electroanal. Chem., 1999, 470, 114.
    [110] R. J. Gilliam, D. W. Kirk, S. J. Thorpe, Electrochem. Comm., 2007, 9, 2276.
    [111] J.Hubalek, J. Hradecky, V. Adam, O. Krystofova, D. Huska, M. Masarik, L. Trnkova, A. Horna, K. Klosova, M. Adamek, J. Zehnalek, R. Kizek, Sensors, 2007, 7, 1238.
    [112] Y. Z. Xian, Y. Hu, F. Liu, Y. Xian, L. J. Feng, L. T. Jin, Biosen. Bioelectron., 2007, 22, 2827.
    [113] Y. Z. Xian, F. Liu, Y. Xian, L. J. Feng, F. H. Wu, L. W. Wang, L. T. Jin, Electrochem. Comm., 2007, 9, 773.
    [114] E. Finot, E. Bourillot, P. R. Meunier, Y. Lacroute, G. Leegay, Ultramicroscopy, 2003, 97, 441.
    [115] Y. H. Lin, F. Lu, Y. Tu, Z. F. Ren, Nano Lett., 2004, 4, 191.
    [116] P. Ugo, N. Pepe, L. M. Moretto, M. Battagliarin, J. Electroanal. Chem., 2003, 560, 51.
    [117] L. M. Moretto, N. Pepe, P. Ugo, Talanta, 2004, 62, 1055.
    [118] Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, Z. F. Ren, Appl. Phys. Lett., 2002, 80, 4018.
    [119] Y. Lin, F. Lu, Y. Tu, Z. F. Ren, Nano Lett., 2004, 4, 191.
    [120] K. T. Liao, C. M. Chen, H. J. Huang, C. H. Lin, J. Chromatogr. A, 2007, 1165, 213.
    [121] M. H. Yang, F. L. Qu, Y. H. Lu, Y. He, G. L. Shen, R. Q. Yu, Biomater., 2006, 27, 5944.
    [122] S. X. Huang, E. Schopf, Y. Chen, Nano Letts., 2007, 7, 3116.
    [123] J. Wang Anal. Chim. Acta, 2003, 500: 247.
    [124] P. Liepold, H. Wieder, H. Hillebrandt, A. Friebel, G. Hartwich. Bioelectrochem., 2005, 67, 143.
    [125] W. He, Q. J. Yang, Z. H. Liu, X. B. Yu, Anal. Lett., 2005, 38, 2567.
    [1] S. Gupta, G. Tuttle, M. Sigalas, K. M. Ho, Appl. Phys. Lett., 1997, 71, 2412.
    [2] T. Nishikawa,; J. Nishida, R. Ookura, S. I. Nishimura, S. Wada, T. Karino, M. Shimomura, Mater. Sci. Eng. C, 1999, 8-9, 495.
    [3] H. Yabu, M. Shimomura, Chem. Mater., 2005, 17, 5231.
    [4] C. L.Yu, J. Zhai, X. F. Gao, M. X. Wan, L. Jiang, T. J. Li, Z. S. Li, J. Phys. Chem. B, 2004, 108, 4586.
    [5] A. Manz, H. Becker, Microsystem Technology in Chemistry and Life Science; Springer-Verlag: Berlin, 1998.
    [6] T. Hepel, J. Osteryoung, J. Electrochem. Soc.: Electrochem. Sci. Technol., 1986, 133, 752.
    [7] L. V. Govor, I. A. Bashmakov, R. Kiebooms, V. Dyakonov, J. Parisi, Adv. Mater., 2001, 13, 588.
    [8] A. D. Yoffe, Adv. Phys., 1993, 42, 173.
    [9] T. Nishikawa, R. Ookura, J. Nishida, T. Sawadaishi, M. Shimomura, RIKEN Rev. 2001, 37, 43.
    [10] M. C. Cross, P. C. Hohenberg, Rev. Mod. Phys., 1993, 65, 85.
    [11] G. Widawski, B. Rawiso, B. Francois, Nature, 1994, 369, 387.
    [12] S. A. Jenekhe, X. L. Chen, Science, 1999, 283, 372.
    [13] O. Pitois, B. Francois, The Eur. Phys. J., 1999, B 8, 225.
    [14] T. Nishikawa, R. Ookura, J. Nishida, K. Arai, J. Hayashi, N. Kurono, T. Sawadaishi, M. Hara, M. Shimomura, Langmuir, 2002, 18, 5734.
    [15] M. Srinivasarao, D. Collings, A. Philips, S. Patel, Science, 2001, 292, 79.
    [16] B. Franc?is, O. Pitois, J. Franc?is, J. Adv. Mater., 1995, 7, 1041.
    [17] O. Pitois, B. Francois, Colloid Polym. Sci., 1999, 277, 574.
    [18] M. H. Stenzel, Aust. J. Chem., 2002, 55, 239.
    [19] S. Ludwigs, K. Schmidt, G. Krausch, Macromolecules, 2005, 38, 2376.
    [20] S. Minko, M. Muller, D. Usov, A. Scholl, C. Froeck, M. Stamm, Phys. Rev. Lett., 2002, 88, 035502/1
    [21] N. Nath, A. Chilkoti, Adv. Mater. 2002, 14, 1243.
    [22] T. P. Russell, Science, 2002, 297, 964.
    [23] C. Xu, X. F. Fu, M. Fryd, S. Xu, B. B. Wayland, K. I. Winey, R. J. Composto, Nano. Lett., 2006, 6, 282.
    [24]刘盈,鲁在君,高分子通报, 2006 (4), 25.
    [25] S. E. Burke, A. Eisenberg, Langmuir, 2001, 17, 6705.
    [26] M. Biesalski, D. Johannsmann, J. Rühe, J. Chem. Phys., 2002, 117, 4988.
    [27] X. Guo, A. Weiss, M. Ballauff, Macromolecules, 1999, 32, 6043.
    [28] X. Guo, M. Ballauff, Phys. Rev. E, 2001, 64, 051406.
    [29] O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, T. Hashimoto, Langmuir, 2000, 16, 6071.
    [30] M.Shimomura, T. Sawadaishi, Curr. Opin. Colloid Interface Sci. 2001, 6, 11.
    [31] J. Peng, Y. C. Han, Y. M. Yang, B. Y. Li, Polymer, 2004, 45, 447.
    [32] C. X. Cheng, Y. Tian, Y. Q. Shi, R. P. Tang, F. Xi, Langmuir, 2005, 21, 6576.
    [33] L. Cui, J. Peng, Y. Ding, X. Li, Y. C. Han, Polymer, 2005, 46, 5334.
    [34] M. S. Park, J. K. Kim, Langmuir, 2005, 21, 11404.
    [35] P. D. Aversana, G. P. Neitzel, Phys. Today, 1998, 51, 38.
    [36] M. S. Park, J. K. Kim, Langmuir, 2004, 20, 5347.
    [37] B. H. Zhao, C. X. Lia, Y. Lu, X. D. Wang, Z. L. Liu, J. Zhang, Polymer, 2005, 46, 9508.
    [38] L. Cui, Y. Xuan, X. Li, Y. Ding, B. Y. Li, Y.C. Han, Langmuir, 2005, 21, 11696.
    [39] A. Laforgue, C. G. Bazuin, R. E. Prudhomme, Macromolecules, 2006, 39, 6473.
    [40] C. Xu, B. B. Wayland, M. Fryd, K. I. Winey, R. J. Composto, Macromolecules, 2006, 39, 6063.
    [1] L. Ionov, S. Minko, M. Stamm, J. F. Gohy, R. Jerome, A. Scholl, J. Am. Chem. Soc., 2003, 125, 8302.
    [2] I. Tokareva, S. Minko, J. H. Fendler, E. Hutter, J. Am. Chem. Soc., 2004, 126, 15950.
    [3] D. Julthongpiput, Y. H. Lin, J. Teng, E. R. Zubarev, V. V. Tsukruk, Langmuir, 2003, 19, 7832.
    [4] R. Lupitskyy, Y. Roiter, C. Tsitsilianis, S. Minko, Langmuir, 2005, 21, 8591.
    [5] S. Minko, M. Muller, M Motornov, M. Nitschke, K. Grundke, M. Stamm, J. Am. Chem. Soc., 2003, 125, 3896.
    [6] C. Xu, X. F. Fu, M. Fryd, S. Xu, B. B. Wayland, K. I. Winey, R. J. Composto, Nano Lett., 2006, 6, 282.
    [7] S. Minko, M. Muller, D. Usov, A. Scholl, C. Froeck, M. Stamm, Phys. Rev. Lett., 2002, 88, 035502–1.
    [8] D. L. Huber, R. P. Manginell, M. A. Samara, B. I. Kim, B. C. Bunker, Science, 2003, 301, 352.
    [9] Y. Ito, Y. Ochiai, Y. S. Park, Y. Imanishi, J. Am. Chem. Soc., 1997, 119, 1619.
    [10] S. Ludwigs, K. Schmidt, G. Krausch, Macromolecules, 2005, 38, 2376.
    [11] M. Orlov, I. Tokarev, A. Scholl, A. Doran, S. Minko, Macromolecules, 2007, 40, 2086.
    [12] Y. W. Zhang, M. Jiang, J. X. Zhao, Z. X. Wang, H. J. Dou, D. Y. Chen, Langmuir, 2005, 21, 1531.
    [13] J. Cleary, L. E. Bromberg, E. Magner, Langmuir, 2003, 19, 9162.
    [14] W. F. Lee, Y. H. J. Lin, Appl. Polym, Sci., 2001, 81, 1360.
    [15] M. K. Yoo, Y. K. Sung, Y. M. Lee, C. S. Cho, Polymer, 2000, 41, 5713.
    [16] M. T. A. Ende, N. A. Peppas, J. Controlled Release, 1997, 48, 47.
    [17] G. Widawski, B. Rawiso, B. Francois, Nature, 1994, 369, 387.
    [18] C. Y. Wang, X. Q. Shao, Q. X. Liu, Y. D. Mao, G. J. Yang, H. G Xue, X. Y. Hu, Electrochim. Acta, 2007, 52, 704.
    [19] C. Y. Wang, Q. X. Liu, X. Q. Shao, G. J. Yang, H. G. Xue, X. Y. Hu, Talanta, 2007, 71, 178.
    [20] C. Kowalski, L. Burrows, C. Fitzgerald. SPM Training Notebook, Veeco Instruments Inc., 2003, 7.
    [21] M. Srinivasarao, D. Collings, A. Philips, S. Patel, Science, 2001, 292, 79.
    [22] L. F. Zhang, A. Eisenberg, Macromolecules, 1996, 29, 8805.
    [23] A. Laforgue, C. G. Bazuin, R. E. Prudhomme, Macromolecules, 2006, 39, 6473.
    [24] C. Xu, B. B. Wayland, M. Fryd, K. I. Winey, R. J. Composto, Macromolecules, 2006, 39, 6063.
    [25] Dautzenberg, H.; Jaeger, W.; Kotz, J.; Philipp, B.; Seidel, Ch.; Stscherbina, D. Polyelectrolytes: Formation, Characterization and Application; Hanser: New York, 1994.
    [26] V. Kozlovskaya, E. Kharlampieva, M. L. Mansfield, S. A. Sukhishvili, Chem. Mater., 2006, 18, 328.
    [27] O. M. Tanchak, C. J. Barrett, Chem. Mater., 2004, 16, 2734.
    [1] C. Xu, X. F. Fu, M. Fryd, S. Xu, B. B. Wayland, K. I. Winey, R. J. Composto, Nano Lett., 2006, 6, 282.
    [2] B. H. Tan, K. C. Tam, Y. C. Lam, C. B. Tan, Langmuir, 2004, 20, 11380.
    [3] K. R. Oda, T. Labrot, P. Perrin, C. Tribet, Langmuir, 2007, 23, 94.
    [4] R. Cruz-Silva, Langmuir, 2007, 23, 8.
    [5] C. Geismann, A. Yaroshchuk, M. Ulbricht, Langmuir, 2007, 23, 76.
    [6] C. A. Advincula, W. J. Brittain, K. C. Cast, J. Ruhe, Eds. Polymer Brushes, Wiley-VCH: Weinheim, Germany, 2004
    [7] E. P. K. Currie, A. B. Sieval, G. J. Fleer, M. A. C. Stuart, Langmuir, 2000, 16, 8324.
    [8] H. Dautzenberg, W. Jaeger, J. Ko¨tz, B. Philipp, C. Seidel, D. Stscherbina, Polyelectrolytes, Hanser: Munich, 1994.
    [9] N. Jain, S. Trabelsi, S. Guillot, D. McLoughlin, D. Langevin, P. Letellier, M. Turmine, Langmuir, 2004, 20, 8496.
    [10] J. Fundin, P. Hansson, W. Brown, Macromolecules, 1997, 30, 1118.
    [11] P. F. C. Lim, L. Y. Chee, S. B. Chen, J. Phys. Chem. B, 2003, 107, 6491.
    [12] F. P. Cavasino, H. Hoffmann, C. Sbriziolo, M. L. Turco Liveri, Colloids Surf. A, 2001, 183, 689.
    [13] C. L. Ed. McCormick, Stimuli-Responsive Water Soluble and Amphiphilic Polymers, ACS Symposium Series 780, The American Chemical Society: Washington, DC, 2001
    [14] E. S. Gil, S. M. Hudson, Prog. Polym. Sci., 2004, 29, 1173.
    [15] G. Zhang, N. Fu, H. Zhang, J. Wang, X. Hou, B. Yang, J. Shen, Y. Li, L. Jiang, Langmuir, 2003, 19, 2434.
    [16] C. Tsitsilianis, In Responsive Polymer Materials: Design and Applications, Minko, S., Ed. Blackwell Publishing: Ames, IA, 2006,27.
    [17] V. Sfika, C. Tsitsilianis, Macromolecules, 2004, 37, 9551.
    [18] Y. Liu, V. Klep, B. Zdyrko, I. Luzinov, Langmuir, 2005, 21, 11806.
    [19] Y. Kim, J. Pyun, J. M. J. Frechet, C. J. Hawker, C. Frank, Langmuir, 2005, 21, 10444.
    [20] F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem., 1990, 41, 525.
    [21] C. Park, J. Yoon, E. L. Thomas, Polymer, 2003, 44, 6725.
    [22] S. Ludwigs, K. Schmidt, G. Krausch, Macromolecules, 2005, 38, 2376.
    [23] D. H. Kim, S. H. Kim, K. Lavery, T. P. Russell, Nano Lett., 2004, 4, 1841.
    [24] P. A. Hansson, Langmuir, 2001, 17, 4161.
    [25] S. E. Burke, A. Eisenberg, Langmuir, 2001, 17, 6705.
    [26] C. Xu, B. B. Wayland, M. Fryd, K. I. Winey, R. J. Composto, Macromolecules, 2006, 39, 6063.
    [27] O. M. Tanchak, C. J. Barrett, Chem. Mater., 2004, 16, 2734.
    [1]古宁宇,董绍俊.大学化学,2001,16(1), 26
    [2] C. G. Zoski, Electroanalysis, 2002, 14, 1041.
    [3] E. Bakker, Anal. Chem., 2004, 76, 3285.
    [4] J. Li, J. E. Koehne, A. M. Cassel, H. Chen, H. T. Ng, Q. Ye, W. Fan, J. Han, M. Meyyappan, Electroanalysis, 2005, 17, 15.
    [5] D. W. M. Arrigan, Analyst, 2004, 129, 1157.
    [6] A. A. Karyakin, E. A. Puganova, I. A. Budashov, I. N. Kurochkin, E. E. Karyakina, V. A. Levchenko, V. N. Matveyenko, S. D. Varfolomeyev, Anal. Chem., 2004, 76, 474.
    [7] T. Hepel, J. Osteryoung, J. Electrochem. Soc.: electrochemical science and technology, 1986, 133, 752.
    [8] R. M. Penner, C. R. Martin, Anal. Chem., 1987, 59, 2625.
    [9] V. P. Menon, C. R. Martin, Anal. Chem., 1995, 67, 1920.
    [10] W. Cheng, S. Dong, E. Wang, Anal. Chem., 2002, 74, 3599.
    [11] W. S. Baker, R. M. Crooks, J. Phys. Chem., 1998, 102, 10041.
    [12] S. E. Creager, P. T. Radford, J. Electroanal. Chem., 2001, 500, 21.
    [13] U. Evans, P. E. Colavita, M. S. Doescher, M. Schiza, M. L. Myricks, Nano. Lett., 2002, 2, 641.
    [14] Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T. Ng, J. Han, M. Meyyappan, J. Mater. Chem., 2004, 14, 676.
    [15] E. Jeonng, T. H. Galow, J. Schotter, M. Bal, A. Ursache, M. T. Tuominen, C. M. Stafford, T. P. Russel, V. M. Rotello, Langmuir, 2001 17, 6396.
    [16] B. J. Scharifker, J. Electroanal Chem., 1988, 240, 61.
    [17] J. Cassidy, J. Ghoroghchian, F. Sarfarazi, J. J. Smith, S. Pons, Electrochim. Acta., 1986, 31, 629.
    [18] Y. Shao, M. V. Mirkin, Anal. Chem., 1997, 69, 1627.
    [19] J. J. Watkins, H. S. White, Langmuir, 2004, 20, 5474.
    [20] S. Hrapovic, J. H. T. Luong, Anal. Chem., 2003,75, 2976.
    [21] J. Chen, K. Aoki, Electrochem. Commun., 2002, 4, 24.
    [22] C. Lee, C. J. Miller, A. J. Bard, Anal. Chem., 1991, 63, 78.
    [23] R. B. Morris, D. J. Franta, H. S. White, J. Phys. Chem., 1987, 91, 3559.
    [24] C. J. Slevin, N. J. Gray, J. V. Macpherson, M. A. Webb, P.R. Unwin, Electrochem. Commun. 1999, 1, 282.
    [25] J. J. Watkins, J. Y. Chen, H. S. White, Anal. Chem., 2003, 75, 3962.
    [26] P. Sun, Z. Zhang, J. Guo, Y. Shao, Anal. Chem., 2001, 73, 5346.
    [27] J. L. Conyers, H. S. White, Anal. Chem., 2000, 72, 4441.
    [28] D. W. M. Arrigan. Analyst, 2004, 129, 1157.
    [29] S. L Chen, A. Kucernak, Electrochem. Commun., 2002, 4, 80.
    [30] C. E. Bach, R. J. Nichols, W. Beckmann, H. Meyer, A. Schulte, O. Besenhard, P. D. Jannakoudakis, J. Electrochem. Soc., 1993, 140, 1281.
    [31] C. J. Slevin, N. J. Gray, J. V. Macpherson, M. A. Webb, P. R. Unwin, Electrochem. Commun., 1999, 1, 282.
    [32] C. G. Zoski, Electroanalysis, 2002, 14, 1041.
    [33] N. J. Gray, P. R. Unwin, Analyst, 2000, 125, 889.
    [34] J. J. Watkins, J. Y. Chen, H. S. White, H. D. Abruna, E. Maisonhaute, C. Amatore, Anal. Chem., 2003, 75, 3962.
    [35] C. P. Smith, H. S. White, Anal. Chem., 1993, 65, 3343.
    [36] M. I. Montenegro, M. A.Queiros, J. L. Daschbach, Microelectrodes: Theory and Applications. Dordrecht, Kluwer Academic Press, 1991, p259.
    [37] K. T. Kawagoe, J. A. Jankowski, R. M. Wightman, Anal. Chem., 1991, 63, 1589.
    [38] S. L. Chen, A. Kucernak, J. Phys. Chem., B 2002, 106, 9396.
    [39] A. S. Baranski, J. Electroanal. Chem., 1991, 307, 287.
    [40] K. B. Oldham, Anal. Chem., 1992, 64, 646.
    [41] D. Shoup, A. Szabo, J. Electroanal. Chem., 1984, 160, 27.
    [42] Y. Fang, J. Leddy, Anal. Chem., 1995, 67, 1259.
    [43] J.C. Myland, K.B. Oldham, J. Electroanal. Chem., 1990, 288, 1.
    [44] C. G. Zoski, M.V. Mirkin, Anal. Chem., 2002, 74, 1986.
    [45] D. H. Woo, H. Kang, S. M. Park, Anal. Chem., 2003, 75, 6732.
    [46] A. J. Bard, L. R. Faulkner, Electrochemical methods fundamentals and applications, John Wiley, New York, 2001, p202.
    [47] M. M. Mirkin, A. J. Bard, Anal. Chem., 1992, 64, 2293.
    [48] C. Y. Wang, Q. X. Liu, X. Q. Shao, G. J. Yang, H. G. Xue, X. Y. Hu, Talanta, 2006, 2007, 71, 178.
    [49] C. Y. Wang, X. Q. Shao, Q. X. Liu, Y. D. Mao, G. J. Yang, H. G. Xue, X. Y. Hu, Electrochim. Acta, 2006, 52, 704.
    [50] I. F. Cheng, C. R. Martin, Anal. Chem., 1988, 60, 2163.
    [51] K. Tokuda, K. I. Morita, Y. Shomizn, Anal. Chem., 1989, 61, 1763.
    [52] A. M. Bond, D. Luscombe, K. B. Oldham, C. G. Zoski, J. Electroanal. Chem., 1988, 249, 1.
    [53] H. Kouske, T. Keisuke, H. Kazuhito, Langmuir, 2005, 21, 11592.
    [54] I. F. Cheng, L. D. Whiteley, C. R. Martin, Anal. Chem., 1989, 61, 762.
    [55] A. J. Bard, L. R. Faulkner., Electrochemical methods: John Wiley and Sons Inc: New York, 1980, 224.
    [56] W. J. Bowyer, D. M. Odell, Anal. Chem., 1990, 62, 1619.
    [57] K. R. Wehmeyer, R. M. Wightman, J. Electroanal. Chem., 1985, 196, 417.
    [58] P. Ugo, L. M. Moretto, and F. Vezza, Chemphyschem., 2002, 3, 917.
    [59] C. S. Henry, I. Fritsch, Anal. Chem., 1999, 71, 550.
    [60]赵发琼,曾百肇,分析科学学报, 2001, 17 (5), 419.
    [61] G. Li, X. Liao, H. Fang, H. Chen, J. Electroanal. Chem., 1994, 369, 267.
    [62]冶保献,武汉大学化学系九七届博士生毕业论文,1997.
    [63] B. Z. Zeng, F. Y. Ma, W. C. Purdy. Electroanalysis 1998, 10(10), 677 .
    [64] B. Z. Zeng, W. C. Purdy, Electroanal. 1998, 10, 236.
    [65] B. Z. Zeng, W. C. Purdy, Electroanal. 1999, 11, 879.
    [66]张礼知,田诚,陆晓华,华中理工大学学报, 1998, 26 (S2), 71.
    [67] E. chargaff, J. N. Davidson, (黄德民译),核酸,北京:科学出版社, 1963,p93
    [68]周端赐,谢以恒,化学学报, 1986, 7 (12), 1118
    [69] O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, T. Hashimoto, Langmuir, 2000, 16, 6071 .
    [70]赵广超,王雪梅,陈洪渊,无机化学学报, 1997, 6 (2), 164 .
    [71] E. Laviron, J. Electroanal. Chem., 1979, 101, 19.
    [72] G. E. Possin. Rev. Sci. Instrum, 1970, 41,772.
    [73] W. D.Williams, N.Giordano, Rev. Sci. Instrum., 1984, 55410.
    [74] Y. Kobayash, C. R. Martin, Anal. Chem., 1999, 71, 3665.
    [75] U. Evans, P. E. Colavita, M. S. Doescher, Nano.Lett., 2002, 2, 641.
    [76] D. Yang, M. Zim, B. Chen, J. Electroanal. Chem., 1999, 470, 114.
    [77] S. Szunerits, D. R. Walt, Anal. Chem., 2002, 74, 1718.
    [78] E. Finot, E. Bourillot, P. R. Meunier, Ultramicroscopy., 2003, 97, 441.
    [79] C. J. Brumlik, C. R. Martin, K.Tokuda, Anal. Chem., 1992, 64, 1201.
    [80] A. N. Shipway, M. Lahav, I. Willner., Adv. Mater., 2000, 12, 993.
    [81] J. D. Zhang, M. Kambayashi, M. Oyama, Electroanalysis, 2005, 17, 408.
    [82] T. Zhu, X. Zhang, J. Wang, Thin Sollid Films, 1998, 327-329, 595.
    1. T. Nakaminami, S. Ito, S. Kuwabata, H. Yoneyama, Anal. Chem., 1999, 71, 4278.
    2. T. Hoshi, H. Saiki, J. Anzai, Talanta, 2003, 61, 363.
    3. M. Cano, B. Palenzuela, J. L.ávila, R. Rodríguez-Amaro, Electroanalysis, 2007, 19, 973.
    4. J. M. Zen, J. J. Jou, G. Ilangovan, Analyst, 1998, 123, 1345.
    5. P. Wang, Y. Li, X. Huang, L. Wang, Talanta, 2007, 73, 431.
    6. C. R. Raj, T. Ohsaka, J. Electroanal. Chem., 2003, 540, 69.
    7. P. Ramesh, S. Sampath, Electroanalysis 2004, 16, 866.
    8. C. G. Zoski, Electroanalysis, 2002, 14, 1041.
    9. C. Y. Wang, X. Y. Hu, Talanta, 2006, 68, 1322.
    10. E. Bakker, Anal. Chem., 2004, 76, 3285.
    11. C. R. Yonzon, D. A. Stuart, X. Y. Zhang, A. D. McFarl, C. L. Haynes, R. P. Van Duyne, Talanta, 2005, 67, 438.
    12. D. W. M. Arrigan, Analyst, 2004, 129, 1157.
    13. A. A. Karyakin, E. A. Puganova, I. A. Budashov, I. N. Kurochkin, E. E. Karyakina, V. A. Levchenko, V. N. Matveyenko , S. D. Varfolomeyev, Anal. Chem., 2004, 76, 474.
    14. R. M. Penner, C. R. Martin, Anal. Chem., 1987, 59, 2625.
    15. V. P. Menon, C. R. Martin, Anal. Chem., 1995, 67, 1920.
    16. M. Ohtani, S. Kuwabata, H. Yoneyama. J. Electroanal. Chem., 1997, 422, 45.
    17. M. Ohtani, T. Sunagawa,; S. Kuwabata, H.Yoneyama, J. Electroanal. Chem., 1995, 396, 97
    18. W. L. Cheng, S. J. Dong, E. K. Wang, Anal. Chem., 2002, 74, 3599.
    19. E. Jeonng, T. H. Galow, J. Schotter, M. Bal, A. Ursache, M. T. Tuominen, C. M. Stafford, T. P. Russel, V. M. Rotello, Langmuir, 2001, 17, 6396.
    20. Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T. Ng, J. Han, M. Meyyappan, J. Mater. Chem., 2004, 14, 676.
    21. Y. H. Lin, F. Lu, Y. Tu, Z. F. Ren, Nano Lett., 2004, 4, 191.
    22. J. Li, J. E. Koehne, A. M. Cassell, H. Chen, H. T. Ng, Q. Ye, W. Fan, J. Han, M. Meyyappan, Electroanalysis, 2005, 17, 15.
    23. D. Shan, Y. Y. He, S. X. Wang, H. G. Xue, H. Zheng, Anal. Biochem., 356 (2006) 215.
    24. R. E. Kesting, Synthetic Polymeric Membranes, Second ed., John Wiley, New York, 1985.
    25. K. Hirota, K. Tajima, K. Hashimoto, Langmuir, 2005, 21, 11592.
    26. X. Cai, K. Kalcher, C. Neuhold, B. Ogorevc, Talanta, 1994, 41, 407.
    27. E. Gonzalez, F. Pariente, E. Lorenzo, L. Hernandez, Anal. Chim. Acta, 1991,242, 267.
    28. Z. Q. Gao, H. Huang, Chem. Commun., 1998, 19, 2107.
    29. R. Bravo, C. C. Hsueh, A. Jaramillo, A. Brajter-Toth, Analyst, 1998,123, 1625.
    30. A. Brajter-Toth, K. A. EI-Nour, E. T. Cavalheiro, R. Bravo, Anal. Chem., 2000, 72, 1576.
    31. C. C. Hsueh, A. Brajter-Toth, Anal. Chem., 1993, 65, 1570.
    32. Dautzenberg, H.; Jaeger, W.; Kotz, J.; Philipp, B.; Seidel, Ch.; Stscherbina, D. Polyelectrolytes: Formation, Characterization and Application; Hanser: New York, 1994.
    33. N. W. Tietz. Clinical guide to laboratory tests, 2nd ed. Saunders Co, 1991.
    34. G. Milczarek, A. Ciszewski, Electroanalysis, 2004, 16, 1977.
    35. A. Ciszewski, G. Milczarek, Anal. Chem., 1999, 71, 1055.
    36. P. Trinder, Ann. Clin. Biochem., 1969, 6, 24.
    37. D. S. Young. Effects of drugs on clinical laboratory tests, 4th ed. AACC Press, 1995.
    38. P. Fossati, L. Prencipe, G. Berti, Clin. Chem., 1980, 26, 227.
    39. G. T. B. Sanders, A. J. Pasman, F. J. Hoek, Clin. Chim. Acta, 1980, 101, 299.
    40. J. M. Zen, Y. J. Chen, C. T. Hsu, Y. S. Ting, Electroanalysis., 1997, 9, 1009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700