广州市白云区地面塌陷危险性预测评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白云区位于广州市北部,区内存在大量未处理的采空区,且有大面积的覆盖型岩溶区,随着白云区内城市建设项目,尤其是地下建设工程的不断增多,严重扰动了原来相对稳定的地质环境,地面塌陷也逐渐成为该地区的主要地质灾害之一。因此,对白云区进行地面塌陷危险性预测评价有着及其重要的意义。本文主要从岩溶塌陷和采空塌陷两方面进行研究:
     一、采空塌陷的预测评价
     调查发现,白云区主要分布有嘉禾煤矿和大朗煤矿,煤矿采空后,留下采空区、小煤窑未经处理,且巷道大部分采用全面冒落法管理,因此,在自重的作用下,其顶板很容易发生弯曲、张裂、冒落,从而在地表形成塌陷坑。
     本文主要从洞室稳定性角度,通过力学分析,分别选用了洞顶坍塌堵塞法、普氏平衡拱法对采空区、巷道、小煤窑的稳定性进行了评价。结果表明,矿区整体稳定性较好,顶板埋藏越深,稳定性越好;位于-150m至地表间的则明显不稳定,易于出现地面塌陷,这与实际野外调查结果比较符合。
     此外,矿坑涌水也是地下工程建设施工中常遇到的一类重大地质灾害,本文根据矿坑和小煤窑的涌水量、地势、蓄水条件、断层裂隙分布等信息,借助ArcGIS软件的空间分析功能,对其涌水危险性进行了分析,并得出了涌水危险性较大的区域分布。
     二、岩溶塌陷的预测评价
     白云区内分布的石炭系、二叠系均有可溶性碳酸盐岩,其中以壶天群岩溶最为发育。随着人类活动的加剧,地下水位大幅下降,从而导致岩溶塌陷的发生。通过对影响岩溶塌陷的各因子进行分析研究,选用了层次分析法对多因子赋权值,建立岩溶塌陷地质模式,借助GIS软件的空间分析功能对白云区岩溶塌陷危险性进行了预测评价。结果显示,夏茅村存在塌陷地可能性较大,这与实际情况比较符合,说明评价结果具有一定的参考价值。
     最后,对评价结果进行综合,得到白云区地面塌陷危险性高的区域面积为6.8km~2,约占整个评估区的13.7%,中等危险区占43.5%。其中市医药公司、大冈村、夏茅村、潭村、同德围、南约、夏茅煤矿、市矿务局第一煤矿、第二煤矿地面塌陷发生危险性较高;下村、北约、体育中心发生地面塌陷危险性相对较低;棠下村、萧岗村、南航新村、石岗新村、鹤边、尹边、罗岗相对稳定。建议在工程设计时,尽可能绕避最危险的地方;对不能绕避的采空区、塌陷区可以根据实际情况采取灌浆等工程措施;对已塌陷地区进行填堵、夯实,或者直接跨越;对于工程的设计应加强对建筑物的整体性及缩短变形缝等措施的处理。
Baiyun District, Guangzhou, exists a large number of abandoned coal districts and covered karst areas. With the rapid development of urban construction, especially the underground construction, the original geological environment was seriously disturbed, and the surface collapse has become one major geological hazard, so it's important to evaluate and predict the risk of collapse .The author has researched from two parts in the dissertation:
     1. The prediction and evaluation about the Mining collapse
     There are two coal districts including four coal mines, Jiahe no2, no3, no4 Mine and Dalang Mine. All of the abandoned mines had been closed before 1997, and suffered the mining collapse hazard.
     The paper has analyzed the cavern stability by the collapse balance method and the M.M. Promojiyfakonkv arch Theory. The result showed the abandoned coal districts were only instability above -150m.
     Besides, the mine discharge was another disaster in the mine-out area. The paper zoned the risk by analysis the discharge environment elements.
     2. The prediction and evaluation about the karst collapse
     Baiyun district distributed of Carboniferous and Permian carbonate, and the human activity is another main element of karst collapse. By learning from the main elements of the karst collapse, it's evaluated by Analytic Hierarchy Process.
     In summary, the high risk area are 6.8 km~2, accounting for about 13.7percent, for example, Dagang, Xiaomao and so on; the medium risk area are 43.5 percent. It's should be avoided the high risk area as far as possible or taken some engineering measures, such as grouting. For projects designed should enhance the integrity of buildings and shorten the processing slot.
引文
[1]彭珂珊.中国城市化与地质灾害之分析.贵州煤炭信息网[J/OL].http://www.gzcoal.gov.cn/Pages/Page_Info.aspx?News_Id= 11456,2006-07-04.
    [2]Palmquist RC.Distribution and density of dolines in areas of mantled karst.In:Dilamarter RR,Csallany SC(eds) Hydrologic problems in karst regions:International symposium on hydrologic problems in karst regions.Bowling Green,Ky,1997,117-129.
    [3]Goodings D J,Abdulla WA.Stability charts for predicting sinkholes in weakly cemengted sand over karst limestone[J],Engineering Geology,2002,65:179-184.
    [4]Kaufmann O,Quinif Y.Geohazard map of cover-collapse sinkholes in the "Torunaisis" area,southern Belgium[J],Engineering Geology,2002,65:117-124.
    [5]Mario MEJIA-NAVARRo.1996.Natural hazard and risk assessment using decision support systems,application:glenwood springs,Colorado[J],Environmental & Engineering Geoscience,11(3):299-324.
    [6]Perotto-Baldiviezo H L,Thurow T L,Smith C T,et a.l GIS-based spatial analysis and modeling for landslide hazard assessment in Steeplands,southern Honduras[J].Agriculture,Ecosystems and Environment,2004,103(1):165-176.
    [7]Gao Y,Alexander EC Jr,Tipping RG.Application of GIS technology to study karst features of southeastern Minnesota.In:Beck BF,Herring JG(eds) Geotechnical and environmental applications of karst geology and hydrology.Proceedings of the eighth multidisciplinary conference on sinkholes and the engineering and environmental impacts of karsts.Louisville,KY,1-4,April,A.A.Balkema,Lisse,2001,83-88.
    [8]Gao Y,Alexander EC Jr,Tipping RG.The Development of a karst feature database for southeastern Minnesota.J Cave Karst Stud.2002,64(1):51-57.
    [9]Gao Y,Alexander EC Jr.A mathematical model for a sinkhole probability map in Fillmore County,Minnesota.In:Beck BF(eds) Sinkholes and the engineering and environmental impacts of karsts.Proceedings of the ninth multidisciplinary conference.Huntsville,Alabama,September 6-10,ASCE Geotechnicai Special Publication,2003,122:439-449.
    [10]Gao Y,Alexander EC Jr,Barnes RJ.Karst database implementation in Minnesota:analysis of sinkhole distribution[J].Environ Geol,2005,47(8):1083-1098.
    [11]Yongli Gao E.Calvin Alexander Jr.Environ Geol Sinkhole hazard assessment in Minnesota using a decision tree model[J].Environ Geol,2008,54:945-956.
    [12]DEBASIS DEB and SUNG O.CHOI,Analysis of sinkhole occurrences over abandoned mines using fuzzy reasoning:a case study[J],Geotechnical and Geological Engineering,2006,24:1243-1258.
    [13]Ki-Dong Kim,Saro Lee,Hyun-Joo Oh,Jong-Kuk Choi,Joong-Sun Won,2006,Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS[J].Environ Geol,50:1183-1191.
    [14]童立元,刘松玉,邱钰等.高速公路下伏采空区问题国内外研究现状及进展[J].岩石力学与工程学报.2004,23(7).
    [15]任高峰,王官玉,石栓虎.特大地下采空区稳定性评价及处理措施[J].矿山压力及顶板管理.2005, 22(4)。
    [16]尚永升,张海峰.滑坡灾害危险性评价方法研究综述[J].山西建筑.2006,32(24).
    [17]黄润秋,向喜琼,聚能攀.我国区域地质灾害评价的现状及问题[J].地质通报.2000,23(11).
    [18]雷明堂,蒋小珍,李瑜.地理信息系统(GIS)在岩溶塌陷评价中的运用[J].中国岩溶.1994,13.
    [19]蒋小珍.基于G1S技术的全国地面塌陷灾害危险性评价[J].地球学报.2003,24(5).
    [20]刘江龙,刘会平,刘文剑.广州市主城区地面塌陷灾害危险性评价研究[J].防灾减灾工程学报.2007,27(4).
    [21]岩小明.地下开采岩稳定性的模糊灰元评价[J].2005,25(6).
    [22]王新民,段瑜,彭欣.采空区灾害危险度的模糊综合评价[J].矿业研究与开发.2005,(02).
    [23]王新民.事故树方法在地下采空区灾害分析中的应用[J].金属矿山.2006,(10).
    [24]王新民,丁德强,段瑜.灰色关联分析在地下采空区危险度评价中的应用[J].中国安全生产科学技术,2006,(04).
    [25]陈学军,罗元华.GIS支持下的岩溶塌陷危险性评价[J].水文地质工程地质.2001(04).
    [26]张长敏.采空区地面塌陷危险性两级模糊综合评判[J].地球与环境.2005,33(S).
    [27]何政伟,黄润秋,许强,姜琪文等.基于ARCGIS的地质灾害防治信息与决策支持系统的研制[J].吉林大学学报.2004,34(04).
    [28]广州市白云区沉陷地质灾害调查报告[R].2007.03.30.
    [29]康彦仁,项式均等,中国南方岩溶[M].广西:广西科学技术出版社,1990:2-4.
    [30]彭卫平,容穗红.广州市水文地质特征分析.城市勘测[J].2006,(03).
    [31]铁道部第一勘测设计院.铁路工程地质手册[M].中国铁道出版社,1999.
    [32]《岩土工程手册》编写委员会.岩土工程手册[M].北京:中国建筑工业出版社,1994.
    [33]欧树召,郑建生,陈立根.广州地铁地质灾害危险性预测评估[J].中国地质灾害与防治学报.2008,19(01).
    [34]广州市第二煤矿矿井报废地质、采矿工作总结报告[R].1997,08.
    [35]广州市第四煤矿矿井报废地质、采矿工作总结报告[R].1996,05.
    [36]重庆建筑工程学院,同济大学.岩体力学[M].北京:中国建筑工业出版社,1981.
    [37]刘国林,段绪华.老空、老窑水的充水特征及防治对策[J].中国煤炭.2004,30(03).
    [38]郭彦华.老空水水害事故原因分析及防治措施研究[J].中国安全科学学报.2006,16(10).
    [39]林柏泉,常建华,翟成.我国煤矿安全现状及应当采取的对策分析[J].中国安全科学学报,2006,16(5):42-46.
    [40]王培盛,阎志义,聂秀英.大同矿区采空区积水的预测与防治[J].煤矿安全.2003,34(07).
    [41]陈文林,俞解星.老窑水突发性强排疏干诱发地面塌陷地案例分析[J].西部探矿工程.2005(08).
    [42]张本臣,刘喜信,孙传斌.矿坑涌水量预测的影响因素分析[J].吉林地质.2006,25(01).
    [43]夏茅井田最终勘探地质报告(152队)[R].1970.9.
    [44]广州嘉禾矿区夏茅井田最终勘探地质报告说明书[R].1970.9.
    [45]广州市嘉禾矿区东大岭井田详查勘探地质报告说明书[R].1974.8
    [46]广州市第二煤矿矿井闭坑地质总结报告[R].1996.1.
    [47]王靖.综合评价中确定权重向量的几种方法[J].河北工业大学学报.2001,(04).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700