γ射线针孔照相系统的图像复原研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ射线针孔照相系统是用于诊断γ射线源或X射线源图像的重要手段,它主要由厚针孔、闪烁体、微通道板像增强器和CCD相机等器件组成。由于受到各器件空间分辨能力的限制和噪声的影响,系统获得的图像的质量产生了退化,难以如实地反映源区射线强度的空间分布。因此,图像复原技术的研究是提高系统图像诊断水平的重要课题。
     本文通过分析γ射线针孔照相系统各组成器件的点扩散函数和噪声特性,建立了系统的图像退化模型,根据系统的探测量子效率分析了图像退化的主要影响因素,在此基础上提出了相应的图像去噪和图像复原方法,并通过对钴源和杆箍缩二极管的针孔照相实验结果的复原处理,验证了图像复原的效果。论文主要成果如下:
     1.采用理论计算或实验测量的方法得到厚针孔、闪烁体、像增强器和CCD相机的点扩散函数,计算得到其调制传递函数,以此来评价针孔照相系统的空间分辨性能。?
     2.根据探测量子效率的级联理论和γ射线针孔照相系统的量子传递过程,计算了系统的探测量子效率。计算结果表明,厚针孔的透过效率和调制传递函数是引起系统图像退化的主要因素。
     3.通过对γ射线针孔照相系统噪声特性的分析,将图像噪声分解为伽马噪声和高斯噪声,在此基础上提出的自适应中值替换法和自适应小波滤波法取得了良好的图像去噪效果。
     4.基于Pixon图像模型的多分辨率特性和Richardson-Lucy迭代法原理,提出了一种空间移不变系统的图像复原方法,用于闪烁体、像增强器和CCD相机的图像复原。模拟结果表明,该方法具有很好的收敛性和复原效果。
     5.针对厚针孔成像过程的空间移变性,采用Richardson迭代法进行图像复原处理,取得了满意的复原效果,并提出迭代次数的确定方法。
γ-ray pinhole imaging system is a major approach to diagnose the radioactive source. It mainly comprises four parts: thick pinhole, LSO scintillator, Microchannel-plate image intensifier and CCD camera. The acquired image is degraded due to the limited spatial resolution and random noise of the constituent instruments. In order to improve the image quality and give a better understanding of the radioactive source, this dissertation aims at systematical study on the image restoration of thick pinhole imaging system. The image denoising methods and deblurring methods were respectively proposed according to the properties of point spread function(PSF) and noise. The methods were verified by the application to the pinhole imaging experiment results of 60Co source and rod-pinch-diode. The main contributions of the dissertation can be outlined as follows.
     1. The PSFs of thick pinhole, LSO scintillator, microchannel-plate image intensifier and CCD camera were obtained through simulation or experiment.
     2. The cascade model of the detective quantum efficiency was established forγ-ray pinhole imaging system. The model shows that the detective efficiency and modulation transfer function of the thick pinhole are two main factors of the image degradation.
     3. The image noise is described by gamma noise and Gaussian noise. An adaptive algorithm is proposed to substitute gamma noise with the median of the neighborhood, which achieves satisfactory noise removal. The Gaussian noise is greatly reduced with the locally-adaptive wavelet filter.
     4. Pixon-based Richardson-Lucy method is proposed to restore the image blurred by LSO scintillator, image intensifier and CCD camera. This algorithm outperforms Richardson-Lucy method on the image improvement and convergency.
     5. Richardson iterative method is adopted to restore the image degraded by thick pinhole. The stopping rule of the iteration is determined by the simulation results.
引文
[1]吕敏,王奎禄.核试验脉冲射线测量技术.北京:国防工业出版社, 2006:352-415.
    [2] Grim G P, Morgan G L, Wilke M D, Gobby P L, Christensen C R, Wilson D C. Neutron pinhole imaging for inertial-confinement-fusion experiments. Plasma Physics, 2004:59-62.
    [3] Anger H O. Scintillation camera. Rev Sci Instrum. 1958, 29:27-33.
    [4] Richard Lear. Fast imaging application in the nuclear test program. IEEE T Nucl Sci, 1984, 31(1):495-503.
    [5] Yates G J, King NSP, Jaramillo S A et al. Nanosecond imaging shuttering studies at Alamos National Laboratory. IEEE T Nucl Sci, 1984, 31(2): 484-489.
    [6]向世明,倪国强.光电子成像器件原理.北京:国防工业出版社, 1999:77-95.
    [7] Boyle W S, Smith G E. Charge Coupled Semiconductor Devices. Bell Syst. Tech. J., 1970:587-593.
    [8] King NSP, Yates G J, Jaramillo S A, et al. Nanosecond gating properties of proximity-focused microchannel-plate image intensifiers. SPIE, 1981, 288: 426-433.
    [9] Yates G J, Bajnosek J J, Jaramillo S Aet al. Radiation Effect on Video Imagers. 1986, 33(1):279-282.
    [10] Berzins G J, Han K S .Pinhole Imaging of a Test Fuel Element at the Transient Rector Test Facility. Nucl Sci Eng, 1978, 65(1):28-40.
    [11] Ress D, Lerche R A, Ellis R J, et al. Neutron imaging of inertial confinement fusion targets at Nova. Rev Sci Instrum, 1988, 59(8):1694-1696.
    [12] Garconnet J P, Delage O, Schirmann D, et al. Neutron penumbral imaging of inertial confinement fusion targets. Laser and Particle Beams , 1994, 12(3): 563-571.
    [13] Morgan G L, Berggren R R, Bradley P A, et al. Development of a neutron imaging diagnostic for inertial confinement fusion experiments. Rev Sci Instrum, 2001, 72:865-868.
    [14] Christensen C R, Barnes C W, Morgan G L, et al. First results of pinhole neutron imaging for inertial confinement fusion. Rev Sci Instrum, 2003, 74: 2690-2694.
    [15]王奎禄.变像管荧光屏图像瞬态参数测量.第二届全国高速摄像与光子学会议论文选集.北京:科学出版社, 1982,103-109.
    [16] Wang K L, Lu M, Liu C F, et al. High speed imaging techniques for pulse nuclear radiation souse. SPIE, 1988, 1032:938-941.
    [17] Wang K L, Song G Z. Developments of optical fast-gated imaging systems. Proc of SPIE, 1994, 2513: 94-97.
    [18] Wang K L, Li B K. Digital High Speed PDA Camera. SPIE, 1997, 2869:418-421.
    [19] Nagel M R. Evaluation of Motion-Degraded Images. Proc.of NASA Electronics Research Center Seminar held in Cambridge, Mass.1968.
    [20]邹谋炎.反卷积和信号复原.北京:国防工业出版社, 2001: 56-90.
    [21] Starck J L, Pantin E, Murtagh F. Deconvolution in astronomy: a review. The Astronomical Society of the Pacific, 2002, 114:1051-1069.
    [22]陈书海,傅录祥.实用数字图像处理.北京:科学出版社,2005:165-178.
    [23] Sudhakar Prasad. Statistical-information-based performance criteria for Richardson-Lucy image deblurring. Journal of Optical Society of America A, 2002, 19(7): 1286-1296.
    [24] Snyder D L, Miller M I, Thomas L J, et al. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE T Med Imaging, 1987, 6: 228-238.
    [25] Snyder D L, Miller M I.The use of sieves to stabilize images produced with the EM algorithm for emission tomography. IEEE T Nucl Sci, 1985, NS-32:3864-3872.
    [26] Wood J W, Radewan C W. Kalman filtering in two dimensions. IEEE T Inform Theory, 1977, 23: 473-482.
    [27] Wood J W, Ingle V K. Kalman filtering in two dimensions-further results. IEEE T Signal Process, 1981, 29: 188-197.
    [28] Angwin D, Howard Kaufman. Image restoration using a reduced order model Kalman filter. Proc of IEEE ICASSP, 1988, 2: 1000-1003.
    [29] Kundur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering. IEEE T Signal Process, 1998, 46(2): 375-389.
    [30] Zhou Y T, Chellappa R. Image restoration using a neural network. IEEE T Signal Process, 1988, 36(7):1141-1151.
    [31] Paik J K, Katsaggelos A K. Image restoration using a modified Hopfield network. IEEE T Image Process, 1992, 1(1):49-63.
    [32] R.C.Puetter. Digital Image Reconstruction: Deblurring and Denoising, Annu Rev Astron Astr, 2005, 43: 139-94.
    [33] Starck J L, Murtagh F. Image restoration with noise suppression using the wavelet transform. Astronomy and Astrophysics, 1994, 288:342-348.
    [34] Sawchuk A A. Space-variant image restoration by coordinate transformations, J Opt Soc Am A, 1974, 42(2): 138-144.
    [35] Trussell H J, Hunt B R. Image restoration of space-variant blurs by sectioned methods. IEEE T Signal Process, 1978, 26: 608-609.
    [36] Trussell H J, Hunt B R. Sectioned methods for image restoration. IEEE T Signal Process, 1978, 26: 157-164.
    [37] Costello T, Mikhael W B. Efficient restoration of space-variant blurs from physical optics by sectioning with modified Wiener filtering. Digit Signal Process, 2003, 13:1-22.
    [38]文玉梅,李平,朱俊.项式近似逆滤波函数实现场曲修正.光子学报,2003, 32(6): 745-748.
    [39]文玉梅,李平.用多项式近似的图象逆滤波及空间移变系统图象的恢复.中国图象图形学报,2003, 9 (8): 1021-1027.
    [40] Richardson W, Bayesian-Based Method of Image Restoration, J Opt Soc Am A, 1972, 62(1):55-59.
    [41] Ayers G R, Dainty J C. Iterative blind deconvolution method and its applications. Opt Lett, 1998, 13(7):547-549.
    [42] Macallum B C. Blind deconvolution by simulated annealing. Opt Commun, 1990, 75(2):101-105.
    [43] Galatsanos N P, Mesarovic V Z. Bayesian image restoration from partially known blurs. IEEE T Image Process, 2000, 9(10):1784-1797.
    [44] Stephen M. Matthews. A pinhole for producing a close-in image of an extended 14-MeV neutron source. UCRL-51860, 1975.
    [45]朱金辉.裂变区ν射线图像诊断理论研究.西安:西北核技术研究所内部档案,2003.
    [46]马继明.ν射线在LSO闪烁体中的荧光弥散效应[硕士学位论文].西安:西北核技术研究所, 2004.
    [47]谢红卫,宋顾周,李宏云. CCD对γ射线的响应特性.西安:西北核技术研究所内部档案, 2001.
    [48] Hongyun Li, Burkhard Schillinger, Elbio Calzadac, et al. An adaptive algorithm for gamma spots removal in CCD-based neutron radiography and tomography. Nucl Instrum Meth A, 2006, 564:405-413.
    [49]张伟,汪岳峰,雷鸣.像增强器三维噪声测试技术.军械工程学院学报, 2002,14 (1): 29-32.
    [50]邹异松,刘玉凤,白廷柱.光电成像原理.北京:北京理工大学出版社,1997.
    [51] Ludziejewski T, Ynski K M and Wolski D. Advantages and limitations of LSO scintillation in nuclear physics experiments. IEEE T Nucl Sci, 1995, 42(4): 328-336.
    [52] Mecher C L, Schiweitzer J S. Cerium doped lutetium oxyorthosilicate: a fast, efficient new scintillator, IEEE T Nucl Sci, 1992, 39(4):502-505.
    [53] Naud J D, Tombrello T A. The role of Cerium sites in the scintillation mechanism of LSO. IEEE T Nucl Sci, 1996, 43(3) : 1324-1328.
    [54] Mecher C L, Schiweitzer J S. A promising new scintillator: cerium doped lutetium oxyorthosilicate. Nucl Instrum Meth A, 1992, 314: 212-214.
    [55] Liu B, Shi C S, Yin M, et al. Luminescence and energy transfer processes in Lu2SiO5:Ce3+ scintillator. J Lumin, 2006, 117:129-134.
    [56] Kapusta M, Szupryczynski P, Melcher, C L, et al. Non-Proportionality and Thermoluminescence of LSO:Ce. IEEE T Nucl Sci, 2005, 52(4):1098-1104.
    [57]宋顾周.双近贴微通道板像增强器纳秒快门研究[硕士学位论文].西安:西北核技术研究所,1993.
    [58]李宏云.分幅式毫微秒照相技术研究[硕士学位论文].西安:西北核技术研究所,1997.
    [59]徐大伦.变像管高速摄影.北京:科学出版社,1990.
    [60] Eberhardt E H. Gain model for microchannel plates. Appl Optics, 1979, 18(9): 1418-1423.
    [61]张伟,汪岳峰,董伟.用光电倍增管测量微光像增强器噪声.应用光学,2002, 23(3):26-27
    [62]陈榕庭.CCD/CMOS图像传感器基础与应用.北京:科学出版社, 2006.
    [63]谢小权,霍剑青.低照度CCD图像采集及噪声预处理.电子技术应用, 2000, 8:11-12.
    [64] Liu Y, Liu W L, Zhang B M, et al. Measurement and comparison of modulation transfer function and signal transfer function of image intensifiers. Proc of SPIE, 2000, 4221: 252-256.
    [65] Dainty J C, Shaw R. Image science. Academic Press, New York, 1974: 214, 152-161.
    [66] Thomas M C, Zagarino P and Yates G J. Dynamic modulation transfer function measurement in gated microchannel-plate image intensifiers. Proc of SPIE, 1992, 1757: 32-39.
    [67] Naud I D, Tombrello T A. The role of Cerium sites in the scintillation mechanism of LSO. IEEE T Nucl Sci, 1996, 43(3):1324-1328.
    [68]谢红卫,宋顾周,李宏云. LSO晶体的射线图像转换屏性能.试验与研究, 2000.
    [69] Kriplani A, Stoll S P, Schlyer D J, et al. Light output measurements of LSO single crystals and 4x8 arrays: comparison of experiment with Monte Carlo simulations. Nuclear Science Symposium Conference Record, IEEE, 2004: 3036-3040.
    [70] Rothfuss H, Casey M, Conti M, et al. Monte carlo simulation study of LSO crystals. IEEE T, 2004: 2789-2793.
    [71] Watson S, Kauppila T, Morrison L, Vecere C. The pulsed high-energy radiographic machine emitting X-rays (PHERMEX) flash radiographic camera. Proc of SPIE, 1997, 2869: 920-927.
    [72]周立伟,艾克聪,方二伦.成像系统的电子光学调制传递函数与均方根半径的研究.北京工业学院学报. 1982,3:36-50.
    [73]皇甫俊,贾欣志,李集田.一种利用CCD测量像增强器MTF的方法研究.光学与精密工程.1995,3(4):102-107.
    [74]朱宏权,王奎禄,向世明,宋顾周.微通道板像增强器的调制传递函数的测量与研究.光子学报, 2007, 36(11): 1983-1987.
    [75] Xiang Shiming, Zhu Hongquan, Wang Kuilu. Temporal-spatial MTF Performance Analysis of a Proximity- focused-Image Intensifier as a Camera Electronic Shutter, SPIE, 2007, 6279: pp62790X.
    [76] Roger M E, Timothy J S, Stan W T. Measurement of modulation transfer function for four types of imaging elements used in fast cameras. Proc of SPIE, 1991,1539: 145-151.
    [77]李升才,金伟其,许正光等.微光增强型电荷耦合装置成像系统调制传递函数测量方法研究.兵工学报. 2005, 26 (3): 343-347.
    [78] Johnson C B. Point-spread functions, line-spread functions, and edge-response functions associated with MTFs of the form exp[-()]. Appl Opt, 1972, 12(5): 1031-1033.
    [79]郭悦,刘晓鹏,杨桦. CCD的调制传递函数(MTF)分析.航天返回与遥感, 2004, 25(3): 25-28.
    [80] Paul H, Karlheinz F. Sub-nanosecond optical gating and irising properties of different types of microchannel plate image intensifiers (MCPII). Proc of SPIE, 1999, 3783: 194-200.
    [81]王义,王经瑾,王奎禄.射线成像系统量子效率及噪声传播特性分析.核电子学与探测技术, 1998, 18(6):407-413.
    [82] Cunningham I A, Yao J, Subotic V. Cascaded models and the DQE of flat-panel imagers: noise aliasing, secondary quantum noise and reabsorption. Proc of SPIE, 2002, 4682:61-72.
    [83] Rabbani M, Shaw R, Metter R V. Detective quantum efficiency of imaging system with amplifying and scattering mechanisms. J Opt Soc Am A, 1987, 4 (5):895-901.
    [84] Siewerdsen J H, Amtonuk L E. DQE and system optimization for indirect-detection flat-panel imagers in diagnostic raiology. Proc of SPIE, 1998, 3336:546-555.
    [85] Swank R K. Absorption and noise in x-ray phosphors. J Appl Phys, 1973, 44: 4199-4203.
    [86] Moran S E, Ulich B L, Elkins W P, et al. Intensified CCD (ICCD) dynamic range and noise performance, Proc of SPIE, 1997, 3173: 430-457.
    [87] Puetter R C. Pixons and Bayesian image reconstruction. Proc of SPIE, 1994, 2302: 112-131.
    [88] Eke V. A speedy pixon image reconstruction algorithm. 2004, Mon Not Roy Astron Soc, 2001, 324:108-118.
    [89] White R L. Image restoration using the damped Richardson-Lucy method.Proc of SPIE, 1994, 2198: 1342-1348.
    [90] Mihcak M K, Kozintsev I, Ramchandran K, et al. Low-complexity image denising based on statistical modeling of wavelet coefficients. IEEE T Signal Process, 1999, 6(12): 300-303.
    [91]谢杰成.小波图像去噪的理论和方法研究[博士学位论文].北京:清华大学自动化系, 2003, 18-70.
    [92] Costello T, Mikhael W B. One-Dimensional Comparison of Wiener Filtering and Richardson–Lucy Methods for Sectioned Restoration of Space-Variant Digital Images. IEEE T Circuits-I, 2002, 49(4):518-522.
    [93]陈林,谢卫平,邓建军. X射线闪光照相杆箍缩二极管技术最新进展.强激光与粒子束, 2006, 18(4): 643-647
    [94] Machaffey R A, Golden J, Goldstein S A, et al. Intense electron beam pinch information and propagation in rod-pinch diodes. Appl Phys Lett, 1978, 33(9):795-797.
    [95] Cooperstein G, Boller J R, Commisso R J, et al. Rod-pinch diode development for short-pulse radiography using extended-length cathodes. IEEE International Conference on Pulsed Power Plasma Science, 2001, 1: 438-441.
    [96] Coopertein G, Commisso R J, Hinshelwood D D, et al. Progress in rod-pinch electron beam diodes as intense X-ray radiography sources. 13th International Conference on High-Power Particle Beams, 2000:162-167.
    [97] Young F C, Commisso R J, Allen R J, et al. Rod-pinch diode operation at 2 to 4 MV for high resolution pulsed radiography. Phys Plasmas, 2002, 9(11):4815-4818.
    [98] Commisso R J, Cooperstein G, Hinshelwood D D, et al. Experimental evaluation of a megavolt rod- pinch diode as a radiography source. IEEE T Plasma Sci, 2002, 30(1): 338-351.
    [99] Menge P R, Johnson D L, Maenchen J E, et al. Rod pinch radiography source optimization at 2.3MV. Proceedings of the 13th International Pulsed Power Conference.2001: 454-457.
    [100] Richardson R A, Houck T L. Roll bar X-ray spot size measurement technique. Proceedings of the 19th International Linear Accelerator Conference, 1998: 908-910.
    [101]李勤,石金水,禹海军等.狭缝法测量X射线斑点大小.强激光与粒子束,2006,18(10):1691-1694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700