低气压下覆冰绝缘子(长)串闪络特性及直流放电模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高海拔、污秽、覆冰综合环境中的电气外绝缘放电特性既是国内外尚未解决的难题,也是我国“西电东送”、特高压工程建设与电网发展面临的关键技术问题。本文在国家自然科学基金和“西电东送”重大工程课题的支持下,在大型多功能人工气候室系统地开展了在低气压、污秽、覆冰综合条件下的典型瓷、玻璃和复合绝缘子长串闪络特性、放电过程及电弧特性研究,主要工作如下:
     ①通过大量的典型绝缘子长串覆冰闪络电压试验,研究了平均闪络电压法和“U形曲线法”分别获得的覆冰绝缘子串平均闪络电压和最低闪络电压的概率分布,比较了平均闪络电压法、“U形曲线法”、50%耐受电压法以及最大耐受电压法等四种方法获得的覆冰绝缘子串50%闪络电压试验结果,结果表明,平均闪络电压法与“U形曲线法”分别获得的覆冰绝缘子串平均闪络电压和最低闪络电压服从正态分布,两种试验方法得到的50%闪络电压比50%耐受电压法所得结果分别高8.0%~9.8%和3.8%~5.9%。
     ②在大型多功能人工气候室系统地开展了典型直流瓷、玻璃和复合绝缘子直流冰闪特性研究,获得了7种典型绝缘子在不同覆冰厚度、染污盐密、串长以及气压下的直流闪络电压,研究了直流绝缘子长串受覆冰厚度、染污盐密以及气压影响的闪络电压模型,提出了典型直流瓷、玻璃和复合绝缘子在高海拔、污秽、覆冰综合作用下的直流冰闪电压校正方法。
     ③通过对两种典型伞型结构的特高压复合绝缘子的试验研究,对比分析了两种特高压复合绝缘子的直流及交流覆冰闪络特性,计算得到了两种复合绝缘子在交流与直流电压下的闪络电压受染污盐密及气压影响的特征指数,得出直流电压下50%闪络电压受盐密影响程度比交流电压下小,而受气压影响程度却相反。
     ④通过大量试验,研究了XZP-210绝缘子串在I串、II串、V串、倒V串、“2+1”插花和“3+1”插花布置方式下的直流冰闪特性,得到了绝缘子串布置方式对其冰闪特性的影响规律。
     ⑤采用高速摄像机拍摄了低气压下XZP-210染污覆冰绝缘子串的直流放电过程,研究了染污盐密及气压对染污覆冰绝缘子串放电过程的影响,分析了两种因素与飘弧现象的关系,提出了染污盐密与气压影响下的直流临界闪络电流计算模型,得到了染污盐密与气压特征指数,分析了低气压下覆冰绝缘子串直流电弧发展长度、速度与放电时间的关系。
     ⑥设计了三角平板玻璃覆冰以及冰凌空气间隙试验模型,通过试验研究了低气压下染污覆冰表面直流沿面电弧和冰凌空气间隙的电弧伏安特性,研究了三角平板玻璃试验模型的剩余冰层等效表面电导率与染污盐密和覆冰水电导率的关系,建立了低气压下染污覆冰绝缘子串直流放电的多电弧发展模型,该模型由不同极性沿面电弧、空气间隙电弧及剩余冰层电阻串联,可用于计算低气压下覆冰绝缘子长串直流放电过程中存在多电弧并存发展情况下闪络电压,研究结果表明该模型计算结果与试验结果最大偏差不超过10%。
The external insulation discharge characteristic under the coexistent conditions of high altitude, pollution, and icing is an unsolved problem, and it is crucial to West-to-East Power Transmission Project, the UHV power transmission construction and the development of power grid. Supported by the National Nature Science Foundation of China and the key project of West-to-East Power Transmission, this paper systematically investigates the flashover performance, discharge process and arc characteristic of typical porcelain, glass and composite insulator long strings under the coexistent conditions of high altitude, pollution, and icing in the multi-function artificial climate chamber of Chongqing University. The study is shown as follows:
     ①Based on numerous tests on flashover voltage tests on typical iced long insulator strings, the probability distribution of average flashover voltage and minimum flashover voltage obtained respectively by the average flashover voltage method and the U-curve method is investigated, the flashover voltage values gained by the average flashover voltage method, the U-curve method, the 50% withstand method and the maximum withstand method are also compared. The results indicate that the average flashover voltage and the minimum flashover voltage obtained respectively by the average flashover voltage method and the U-curve method is investigated are in normal distribution; the 50% flashover voltage gained by the two test methods mentioned above are about 8.0%~9.8% and 3.8%~5.9% higher than that gained by the 50% withstand method respectively.
     ②The icing flashover performance tests of typical DC porcelain, glass and composite insulator are systematically carried out in the multi-function artificial climate chamber, and the DC icing flashover voltages of seven typical insulators under various icing thickness, SDD, string length and atmospheric pressure are gained. The flashover voltage model accounting for the influence of icing thickness, SDD, string length and atmospheric pressure is established. Besides, the DC icing flashover voltage correction method of typical porcelain, glass and composite insulator in the coexisting condition of high altitude, contamination and icing is put forward.
     ③According to the experiments on two UHV composite insulators with typical shed profile, the DC and AC icing flashover performances of the two UHV composite insulators are analyzed. Moreover, the special exponents characterizing the influence of SDD and atmospheric pressure on flashover voltage of the two composite insulators under DC and AC voltage are calculated. And the influencing extent of SDD on the DC 50% flashover voltage is smaller than that under AC condition, while the influencing extent of the atmospheric pressure shows the contrary trend.
     ④The DC icing flashover characteristics of XZP-210 under various arrangement such as I-type, II-type, V-type, reverted V-type,“2+1”and“3+1”insulator strings connected alternately with large and small diameter sheds are investigated. The influencing rule reflecting the effects of the arrangement type on the icing flashover voltage is thus obtained.
     ⑤The DC discharge process of pre-pollutecd and iced XZP-210 insulator string under low atmospheric pressure is shot by the high-speed camera. Moreover, the influence of the SDD and atmospheric pressure on the discharge process of polluted and iced insulator is studied. The relation between the two factors above and the phenomenon that the arc derive from the surface of insulator is analyzed, the calculation model of the DC critical flashover current under the influence of SDD and air pressure is developed, the special index characterizing the influence of pre-polluting SDD and atmospheric pressure is derived. Besides, the propagation length and velocity of partial arc as a function of the time is analyzed.
     ⑥Based on the triangular plane icing model and icicle-icicle model, this paper investigates the U-I characteristic of the surface arc of polluted ice and icicle air gap arc under low atmospheric pressures as well as the relation between the equivalent conductivity of the residual ice layer and the pre-polluting SDD, freezing water conductivity. Besides, the DC discharge multi-arc development model of iced and pre-polluted insulators under low atmospheric pressure is established. The model is composed with the series of different polarity arcs, air gap arc and the residual layer resistance which is applied to the calculation of the flashover voltage of the pre-polluted and ice-covered long insulator string with the concurrence of multi-arcs under low atmospheric pressure. The values calculated by the model agree satisfactorily with those measured experimentally with the errors within the range of 10%, which validates the rationality of the model.
引文
[1]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2001.
    [2]孙才新,司马文霞,舒立春.大气环境与外绝缘[M].北京:中国电力出版社,2002.
    [3]李庆峰,范峥,吴穹,等.全国输电线路覆冰情况调研及事故分析[J].电网技术, 2008, 32(9): 33-36.
    [4]蒋兴良,马俊,王少华.输电线路冰害事故及原因分析[J].中国电力,2005,38(11): 27-30.
    [5]孙才新.重视和加强防止复杂气候环境及输变电设备故障导致电网大面积事故的安全技术研究[J].中国电力, 2004, 37(6): 1-8.
    [6]吴向东,徐天勇,艾智平. 500 kV线路高寒山区绝缘子覆冰故障[J].高电压技术, 2002, 28(7):55-57.
    [7]陈原,张章奎,刘娟.京津唐电网输电线路覆冰掉闸分析[J].华北电力技术, 2003, (4): 38-45.
    [8]朱伟江,陈刚,刘明. 2002年全国电网安全运行情况分析[J].中国电力, 2003,36(05): 11-15.
    [9]胡超凡,陈刚,朱伟江. 2005年国家电网安全运行情况分析[J].中国电力, 2005, 39(5): 1-4.
    [10]张文亮,于永清,宿志一,等.湖南电网2008年冰雪灾害调研分析[J].电网技术, 2008, 32(8): 1-5.
    [11]童军心,陈智.冰雪天气对江西电网造成的灾害分析及防治对策[J].江西电力, 2008, 32(增刊): 18-20.
    [12]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术, 2008, 34(2): 215-219.
    [13]蒋兴良.贵州电网冰灾事故分析及预防措施[J].电力建设, 2008, 29(4): 1-4.
    [14]陆佳政,蒋正龙,雷红才,等.湖南电网2008年冰灾事故分析[J].电力系统自动化, 2008, 32(11): 16-19.
    [15] M. Farzaneh, O. T. Melo. Flashover Performance of Insulators in the Presence of Short Icicles[J]. International Journal of Offshore and Polar Engineering, 1994, 4(2): 112-118.
    [16] M. Farzaneh, J. Kiernicki. Flashover Problems Caused by Ice Build-up on Insulators[J]. IEEE Electrical Insulation Magazine, 1995, 11(2): 5-17.
    [17] W. A. Chisholm, et al. The Cold-Fog Test[J]. IEEE Trans. On Power Delivery, 1996, 11(4): 1874-1880.
    [18] E. A. Cherney. Flashover Performance of Artificially Contaminated and Iced Long-Rod Transmission Line Insulators[J]. IEEE Trans. Power Apparatus & Systems, 1980, PAS-999(1):46-52.
    [19] J. F. Drapeau, M. Farzaneh. Ice Accumulation Characteristics on Hydro-Quebec HV Insulators[C]. The proceedings of the 6th International Workshop on Atmospheric Icing of Structures, Budapest, Hungary, 1993: 225-230.
    [20] M.Farzaneh, J.F.Drapeau. AC flashover performance of insulators covered with artificial ice[J]. IEEE Transaction on Power Delivery, 1995, 10(2): 1038-1051.
    [21] V. Sklenicka, J. Vokalek. Insulators in Icing Conditions: Selection and Measures for Reliability Increasing[C]. Proceedings of the 7th International Workshop on Atmospheric Icing of Structures, Chicoutimi, Canada, 1996: 72-76.
    [22] K. Kannus, K. Lahti. Electrical Behaviour of High Voltage Insulator Strings under Rime Ice[C]. Proceedings of the 9th International Workshop on Atmospheric Icing of Structures, Chester, United Kingdom, 2000, 8p.
    [23] H. Matsuda, H. Komuro, K. Takasu Withstand Voltage Characteristics of Insulator Strings Covered with Snow or Ice[J]. IEEE Trans. on Power Delivery, 1991, 6(6): 1243-1250.
    [24] T. Fujimura, K. Natio, Y. Hasegawa, et al. Performance of Insulators Covered with Snow or Ice[J]. IEEE Trans. on Power Apparatus & Systems, 1979, PAS-98(5): 1621-1631.
    [25] R. Matsuoka, S. Ito, K. Sakanishi, et al. Flashover on Contaminated Insulators with different Diameters[J]. IEEE Trans. on Electrical Insulation, 1991, 26(6): 1140-1146.
    [26] M. Yasui, K. Natio, Y. Hasegawa. AC Withstand Voltage Characteristics of Insulator String Covered with Snow[J]. IEEE Trans. on Power Delivery, 1988, 3(2): 828-838.
    [27] S. M. Fikke, J. E. Hanssen, L. Rolfseng. Long Range Transported Pollution and Conductivity on Atmospheric Ice on Insulators[J]. IEEE Trans. on Power Delivery, 1993, 8(3): 1311-1321.
    [28] A. Meier, W. M. Niggli. The Influence of Snow and Ice Deposits on Supertension Transmission Line Insulator Strings with Special Reference to High Altitude Operations[C]. IEEE Conference Publ.44, London, England, 1968: 386-395.
    [29] D. Wu, K. A. Halsan, S. M. Fikke. Artificial Ice Tests for Long Insulators Strings[C]. Proceedings of the 7th International Workshop on Atmospheric Icing of Structures, Chicoutimi, Canada, 1996: 67-71.
    [30] M. Kawai. AC Flashover Tests at Project UHV on Iced-Coated Insulators[J]. IEEE Trans. on Power Apparatus & Systems, 1970, PAS-89(8): 1800-1804.
    [31] M. D. Charneski, G. L. Gaibrois, B. F. Whitney. Flashover Tests on Artificially Iced Insulators[J]. IEEE Trans. on Power Apparatus & Systems, 1982, PAS-101(8): 2429-2433.
    [32] Z. Vuckovic, Z. Zdravkivic. Effect of Polluted Snow and Ice Accretion on High Voltage Transmission Line Insulators[C]. Proceedings of the 5th International Workshop onAtmospheric Icing of Structures, Tokyo, Japan, 1990, Paper B4-3.
    [33] M.Farzaneh, T.Baker, etc. A.bernstorf, etc. Insulator icing test methods and procedures a position paper prepared by the IEEE task force on insulatior icing test methods. IEEE Transaction on power Delivery[J]. 2003,18(4): 1503-1515.
    [34] Phan C. L. and Matsuo H.. Minimum Flashover Voltage of Iced Insulators[J]. IEEE Transactions on Electrical Insulation, 1983, 18(6): 605-618.
    [35] Khalifa, M. M. and Morris, R. M.. Performance of Line Insulators under Rime Ice[J]. IEEE Transactions on Power Application and Systems, 1967, PAS-86(6): 692-698.
    [36] Sugawara N., Takayama K., Hokari K., Yoshida K. and Ito S.. Withstand Voltage and Flashover Performance of Iced Insulators Depending on the Density of Accreted[C]. Proceedings of &h International Workshop on the Atmospheric Icing of Structures, Budapest, Hungary, 1993. 231-235.
    [37] Farzaneh M. and Kiernicki J.. Flashover Performance of ice-covered Insulators[J]. Canadian Journal of Electrical and Computer Engineering, 1997, 22(3): 95 -109.
    [38] Farzaneh M. and Zhang J.. Behavior of DC Arc Discharge on Ice Surfaces[C]. Proceedings of 8th International Workshop on the Atmospheric Icing of Structures, Iceland, 1998. 193-197.
    [39] Renner P.E., Hill H.L. and Ratz O. Effects of Icing on DC Insulation Strength[C]. Proceedings of IEEE Summer Power Meeting and EHV Conference, Los Angeles, USA, 1970. 1201-1205.
    [40] Shu L., Gu L. and Sun C. A Study of Minimum Flashover Voltage of Icedcovered suspension Insulators[C]. Proceedings of 7th International Workshop on the Atmospheric Icing of Structures, Chicoutimi, Canada, 1996. 87-92.
    [41]蒋兴良.输电线路导线覆冰机理和三峡地区覆冰规律及影响因素分析[D].重庆:重庆大学, 1997
    [42]蒋兴良,舒立春,张志劲,等.覆冰绝缘子长串交流闪络特性和放电过程研究[J].中国电机工程学报, 2005, 25(14): 158-163.
    [43]蒋兴良,孙才新,司马文霞等,10kV合成绝缘子覆冰交流闪络特性及冰闪过程的研究,中国电机工程学报,2002, 22(8):51-54.
    [44]张志劲,蒋兴良,马俊,等.工作电压下110kV交流绝缘子串覆冰特性研究[J].中国电机工程学报, 2006, 26(4): 140-143.
    [45] M.Farzaneh, J.Kiernicki, Flashover problems caused by ice build-up on insulators, IEEE Electrical Insulation Magazine,1995, 11(.2): 5-17.
    [46]蒋兴良.覆冰绝缘子工频放电特性与放电过程研究[D].重庆:重庆大学, 1988.
    [47]梁晨.覆冰绝缘子的直流放电特性和放电过程的研究[D].重庆:重庆大学, 1989.
    [48]武利会,蒋兴良. XZP-160直流绝缘子低气压下覆冰闪络特性[J].高电压技术, 2002,28(10): 5-7.
    [49]孙才新,舒立春,蒋兴良,等.高海拔、污秽、覆冰环境下超高压线路绝缘子交直流放电特性及闪络电压校正研究[J],中国电机工程学报,2004, 22(11): 115-120.
    [50] Farzaneh, M.. Effect of Ice Thickness and Voltage Polarity on the Flashover Voltage on Ice Covered High Voltage Insulators[C]. Proceedings of 7th International Symposium on High Voltage Engineering, Dresden, Germany, 1991, Vol. 4, Paper No. 43.10: 203-206.
    [51] Fikke S. M.. Possible Effects of Contaminated Ice on Insulator Strength[C]. Proceedings of 5th International Workshop on the Atmospheric Icing of Structures, Tokyo, Japan, 1990, Paper No. B4-2-1.
    [52] Kannus K. and Verkkonen V.. Effect of Coating on the Dielectric Strength on High Voltage Insulators[C]. Proceeding of 4th International Workshop on the Atmospheric Icing of Structures, Paris, France, 1988. 296-300.
    [53] Su F. and Jia Y.. Icing on Insulator String of HV Transmission Lines and Its Harmfulness[C]. Proceedings of 3rd International Offshore and Polar Engineering Conference, Singapore, 1993. 655-658.
    [54] Fujimura T., Naito K., and Suzuki Y.. DC Flashover Voltage Characteristics of Contaminated Insulators[J]. IEEE Transactions on Electrical Insulation, 1981, EI-16(3): 189-197.
    [55] Farzaneh, M. and Kiernicki, J.. Flashover Performance of IEEE Standard Insulators under Ice Conditions[J]. IEEE Transactions on Power Delivery, 1997, 12(4): 1602-1613.
    [56] CIGRE Task Force 33.04.09. Influence of Ice and Snow on the Flashover Performance of Outdoor Insulators, part I: Effects of Ice[J]. Electra, 1999, No.187: 91-111.
    [57] CIGRE Task Force 33.04.09. Influence of Ice and Snow on the Flashover Performance of Outdoor Insulators, part II: Effects of snow[J]. Electra, 2000, No.188: 55-69.
    [58]蒋兴良,马俊,谢述教,等.覆冰污秽XP-70绝缘子(长)串最低交流闪络电压[J].高电压技术, 2004, 30(3):12-14.
    [59]舒立春,蒋兴良,田玉春,等.海拔4000m以上地区4种合成绝缘子覆冰交流闪络特性及电压校正[J].中国电机工程学报, 2004, 24(1): 97-101.
    [60]武利会.海拔2500m以下污秽覆冰绝缘子直流闪络特性及机理研究[D].重庆:重庆大学, 2003.
    [61]田玉春.海拔3500 m以上覆冰绝缘子交流放电特性及过程研究[D].重庆:重庆大学, 2003.
    [62]王岩.污秽覆冰绝缘子(长)串交流闪络特性和过程研究[D].重庆:重庆大学, 2004.
    [63]谢述教.直流绝缘子(长)串覆冰闪络特性的研究[D].重庆:重庆大学, 2004.
    [64]蒋兴良,谢述教,舒立春,等.低气压下三种直流绝缘子覆冰闪络特性及其比较[J].中国电机工程学报, 2004, 24(9): 158-162.
    [65] M. Farzaneh, J. Zhang and C. Volat. Effect of Insulator Diameter on AC Flashover Voltage of an Ice-covered Insulator String[J]. IEEE Transactions on Dielectrics and Electrical Insulation 2006, 13(2): 264-271.
    [66] H.M.Schneider. Atrificial ice tests on transmission line insulaors–A progress report. IEEE/PES Summer Meeting , San Trancisco, USA, 1975. 374-353.
    [67] L.Y.Lee, C.L.Nellis, J.E.Brown. 60 Hz Tests on ice coated 500Kv insulator strings, IEEE/PES Summer Meeting, San Francisco, USA,1975, Paper A75-499-4.
    [68] T. Kawamura, Pressure Dependence of DC Breakdown of Contaminated Insulators[J], IEEE Transaction on Dielectrics and Electrical Insulation, 1982, 17(1): 39-45.
    [69] V. I. Bergman, O. I. Kolobova. Some Results of Investigation of the Dielectric Strength Studies of Contaminated Line Insulation under Lower Air Pressure Conditions[J]. Elektrotekhnika, 1983, 54(2): 14-18.
    [70] V. M. Rudakova, N. N. Tikhodeev. Influence of Low Air Pressure on Flashover Voltage of Polluted Insulators: Test Data, Generalization Attempts and Recommendations[J]. IEEE Transaction on Power Delivery, 1989, 4(1): 607-613.
    [71] Hubert P. Mercure. Insulator Pollution Performance at High Altitude: Major Trends[J]. IEEE Transaction on Power Delivery, 1989, 4(2): 1461-1468.
    [72]谢军,张建辉,孙才新.低气压下染污绝缘子的直流放电特性[J].高压电器, 1989,25(5):7~11.
    [73]张建辉,孙才新,顾乐观.高海拔条件下绝缘子污秽闪络特性及校正[J].中国电机工程学报, 1993, 13(5): 25-30.
    [74]张建辉,孙才新.污秽、覆冰、低气压综合作用下绝缘子闪络特性及校正[J].中国电力, 1993, 26(11): 32-36.
    [75]舒立春,孙才新.覆冰、低气压下染污绝缘子的交流闪络特性[J].高电压技术, 1995, 21(2): 28-31.
    [76]顾乐观,孙才新.低气压下染污绝缘子的工频闪络特性[J].重庆大学学报, 1988, 11(7): 25-28.
    [77] Gu Leguan, Sun Caixin. AC Flashover Characteristics of EHV Line Insulators for High Altitude Contamination Regions[C]. Proceeding of the 6th International Conference on Properties and Application of Dielectric Materials, Beijing, China, 1988. 37-40
    [78]张建辉.绝缘子污秽闪络机理及影响因素的研究[D].重庆:重庆大学, 1991.
    [79]蒋兴良,张志劲,胡建林,等.高海拔下不同伞形结构750kV合成绝缘子短样交流污秽闪络特性及其比较[J].中国电机工程学报, 2005, 25(12): 159-164.
    [80]张志劲,蒋兴良,孙才新,等.两种不同染污方式下绝缘子交流闪络特性的比较[J].中国电机工程学报, 2006, 26(8):124-127.
    [81]张志劲.低气压下绝缘子(长)串污闪特性及直流放电模型研究[D].重庆:重庆大学, 2007.
    [82] Yu Li. study of the influence of altitude on the characteristics of the electrical arc on polluted ice surface[D]. Thesis of PhD, University of Québec, Canada, 2002.
    [83]苑吉河,蒋兴良,张志劲,等.低气压下三种覆冰支柱绝缘子直流闪络特性研究[J].中国电机工程学报, 2005, 25(15): 12-15.
    [84] Bandel H.W.. Corona from Ice Points[J]. Journal of Applied Physics, 1951, 22(7): 984-985.
    [85] Loeb L.B. Electrical Coronas: Their Basic Physical Mechanisms[M]. California: University of California press, 1965.
    [86] Phan C. L., Pirotte, P. and Trinh, N. G.. A Study of Corona Discharges at Water Drops over the Freezing Temperature Range[J]. IEEE Transactions on Power Apparatus and Systems, 1974, PAS-93(2): 724-734.
    [87] Jordan J. B. and Saint-Armand, R.. Electrical corona at Ice Surface[C]. Proceedings of 4th International Conference on Gas Discharges, Swansea, 1976. 239-243.
    [88]孙才新,顾乐观,张建辉,等.覆冰绝缘子的交流放电机理研究[J].中国电机工程学报, 1989, 9(5): 1-8.
    [89]张建辉,孙才新,顾乐观,等.覆冰绝缘子直流放电过程及特性[J].高电压技术, 1990, 16(2): 26-29.
    [90] Sugawara N., Watanabe, S. and Hokari, K.. Flashover Performance of Transmission Line Insulators Covered with Salt-Contaminated Ice and Icicles[C]. Proceedings of 7th International Symposium on High Voltage Engineering, Dresden, German, 1991. 291-294.
    [91] Zhang J. and Farzaneh, M.. Propagation of DC Arc on Ice Surfaces[C]. Proceedings of 8th International Offshore and Polar Engineering Conference, Montreal, Canada, 1998. 547-550.
    [92] Farzaneh M. and Zhang J.. Propagation of AC arc on ice surfaces[C]. Conference record of the 1998 IEEE sysposium on electrical insulation, Arlington, Virginia, 1998. 386-389.
    [93] Zhang J. and Farzaneh, M.. Propagation of AC and DC Arcs on Ice Surfaces[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(2): 269-276.
    [94] M. Farzaneh, S. Brettschneider and K.D. Srivastava. Study of visible discharge onset and development on ice surfaces[C]. Conference Record of the 2000 IEEE Intemational Symposium on Electrical Insulation, Anaheim, CA USA, 2000. 216-221.
    [95] Bui H. T., Phan L. C., Huraux C., and Pissolato J.. HVDC Flashover on the Surface of Conductive Ice[J]. IEEE International symposium on Electrical Insulation, Montreal, Canada,1984. 85-88.
    [96] Farzaneh M., Zhang J., and Chen X.. Modeling of the AC Arc Discharge on Ice Surfaces[J]. IEEE Transactions on Power Delivery, 1997, 12(1): 325-338.
    [97] Farzaneh M., Zhang J., and Chen X.. DC characteristics of Local Arc on Ice Surface[J]. Atmospheric Research, 1998, 46(1): 49-56.
    [98] Farzaneh M., and Zhang J.. Modeling of DC Arc Discharge on Ice Surfaces[J]. IEE Proceedings Generation, Transmission and Distribution, 2000, 147(2): 81-86.
    [99] Chen X.. Modeling of Electrical Arc on Polluted Ice Surface[D] Thesis of PhD, University of Montreal, Canada, 2000.
    [100]杨津基,气体放电[M].北京:科学出版社, 1983.
    [101] F.A.M Rizk. Mathematical model for pollution flashover[J], Electra, 1981, No.78: 71-103.
    [102] B. F. Hampton. Flashover Mechanism of Polluted Insulation[J]. Proc. IEE, 1964, 111(5): 985-990.
    [103] R. Sundararajan and R. S. Gorur. Dynamic Arc Modeling of Pollution Flashover if Insulators under dc Voltage[J]. IEEE Transaction on Electrical Insulation, 1993, 26(2): 209-218.
    [104] P. Claverie. Predetermination of the Behavior of Polluted Insulators[J]. IEEE Transactions on Power Apparatus and Systems, 1971, PAS-90(4): 1902-1908.
    [105] P. Claverie, Y. Porcheron. How to Choose Insulators for Polluted Areas[J]. IEEE Transactions on Power Apparatus and Systems, 1973, PAS-92(2): 1121-1131.
    [106]关志成,张仁豫.染污绝缘子在交流电压下的污闪条件分析[J].清华大学学报, 1986,(3): 30-39.
    [107]关志成,张仁豫.污秽绝缘子闪络电压的估算[J].中国电机工程学报, 1988, 8(2): 1-11.
    [108]孙才新,顾乐观,谢军,等.染污绝缘子沿面电场分布与局部电弧发展的关系[J].中国科学(A辑), 1991, (10):1113-1120.
    [109] P. S. Ghosh, N. Chatterjee. Polluted Insulator Flashover Model for ac Voltage[J]. IEEE Transaction on Dielectrics and Electrical Insulation, 1995, 2(1): 128-136.
    [110]张建辉.绝缘子污秽闪络机理及影响因素的研究[D].重庆:重庆大学, 1991.
    [111]司马文霞.染污悬式绝缘子电场分布数值计算及其闪络机理研究[D].重庆:重庆大学, 1994.
    [112] I.Fofana, M.Farzaneh, C.tavakoli, A.Beroual. Dynamic modeling of flashover process on insulator under atmospheric icing conditions[C]. 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. 2001, 605-608.
    [113] M.Farzaneh, I.Fofana and C.tavakoli. Dynamic modeling of DC arc discharge on ice surfaces[J]. IEEE Transation on Dielectrics and Electrical Insulation, 2003, 10(3): 463-574.
    [114] C.tavakoli. Dynamic modeling of ac arc development on ice surface[D]. Thesis of PhD, University of Québec, Canada, 2004.
    [115]杨庆.覆冰绝缘子沿面电场特性和放电模型研究[D].重庆:重庆大学, 2006.
    [116] International Electrotechnical Commission (IEC). Artificial Pollution Tests on High-voltage Insulators to be Used on D.C. Systems. Technical Report 1245, 1993.
    [117] GB/T311.1-1997.高压输变电设备的外绝缘配合[S], 1997.
    [118] GB/T16927.1-1997.高电压试验技术(第一部分):一般试验条件和要求[S]. 1997.
    [119] DL/T 859-2004.高压交流系统用复合绝缘子人工污秽试验[S]. 2004.
    [120] International Electrotechnical Commission (IEC). Artificial pollution tests on high-voltage insulators to be used on a.c. systems[S]. International Standard 507, 1991
    [121] GB/T4585-2004交流系统用高压绝缘子的人工污秽试验,2004.
    [122]蒋兴良.三峡地区输电线覆冰特征及雾凇覆冰模型[D].重庆:重庆大学, 1997.
    [123]王守礼,李家垣.云南高海拔地区电线覆冰问题研究[M].昆明:云南科技出版社, 1993.
    [124]蒋兴良,孙才新,舒立春.正棒-板短空气间隙雷电冲击放电电压的海拔修正[J].重庆大学学报(自然科学版), 2003, 26(3):77-81.
    [125]孙才新,蒋兴良,司马文霞.海拔4000m以上短间隙交流放电特性及电压校正[J].中国电机工程学报, 2002, 22(10): 116-120.
    [126]王秉钧,王昌长,谈克雄.数理统计在高电压技术中的应用[M].北京:水利电力出版社, 1990.
    [127] M. Farzaneh, J. Zhang and Y. Li. Effects of low air pressure on ac and dc arc propagation on ice surface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(1): 60-71.
    [128] M. Farzaneh, Y. Li, S. M. Fikke, and H. Mercure. DC Flashover of Artificial Ice-Covered Insulators at Low Atmospheric Pressure[J]. Proc. 9th International Offshore and Polar Engineering Conference, Brest, France, 1999. 612-615.
    [129]李顺元.交流电压下染污绝缘表面闪络机理[D].北京:清华大学, 1988.
    [130] S. Li, R. Zhang and K. Tan. Measurement of dynamic potential distribution during the propagation of a local arc along a polluted surface[J]. IEEE Transactions on Electrical Insulation, 1990, 25(4): 757-761.
    [131]李顺元,张仁豫,谈克雄.污秽闪络放电机理的研究[J].清华大学学报(自然科学版), 1991, 31(1): 7-15.
    [132] Li S., Zhang R. and Tan K.. Measurement of the Temperature of a Local Arc Propagating[C]. Proceedings of 6th International Symposium on High Voltage Engineering, New Orleans, USA, 1989. Paper No. 12.05.
    [133] David C. Jolly. Contamination Flashover, Part II: Flat Plate Model Tests[J]. IEEETransactions on Power Apparatus and Systems, 1972, PAS-91(6): 2443-2451.
    [134] A. Nekahi, M. Farzaneh, C. Volat and W.A. Chisholm. Electron Density and Temperature Measurement of Arc on an Ice Surface[C]. 2008 Annual Report Conference on Electrical Insulation Dielectric Phenomena, Quebec, 2008. 658-661.
    [135]К.Ф.斯捷潘楚克,Н.А.基那可夫.高电压技术[M].北京:机械工业出版社, 1990.
    [136] David C. Jolly. Contamination Flashover, Part I: Theoretical Aspects[J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(6): 2437-2442.
    [137] Alston L. L. and Zoledziowski S.. Growth of discharges on polluted insulation[J]. Proceedings of IEE, 1963, 110(7): 1260-1266.
    [138] Rahal A. M. and Huraux C.. Flashover Mechanism of High Voltage Insulators[J]. IEEE Transactions on Power Apparatus and Systems, 1979, PAS- 98(6): 2223-2231.
    [139] Hampton B. F.. Flashover Mechanism of Polluted Insulation[J]. Proceedings of IEE, 1964, 11(5): 985-990.
    [140] J. Zhang, M. Farzaneh and X. Chen. Variation of ice surface conductivity during flashover[C]. Conference on 1995 Annual Report of Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, 1995. 479-483.
    [141] Wilkins, R. and Al-Baghdadi, A. A. J.. Arc Propagation along an Electrolyte surface[J]. Proceedings of IEE, 1971, 118(12): 1886-1892.
    [142] Wilkins, R.. Flashover Voltage of High Voltage Insulators with Uniform Surface Pollution Films[J]. Proceedings of IEE, 1969, 116(3): 457-465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700