内燃机燃烧过程中热声耦合机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热声耦合的本质是空间中热能与声能相互转化的现象,目前,国内外热声领域的研究主要集中在热声制冷,火箭推进器等方向。在内燃机领域,虽然研究者们已认识到燃烧室的压力振荡与燃烧过程尤其是爆震燃烧关系十分紧密,然而由于内燃机燃烧过程中声学振荡的复杂性,目前声波在燃烧室中的具体作用如何仍然没有定量描述,因此对内燃机燃烧中的热声耦合问题进行研究具有重要意义。
     本文首先以火花点火发动机为研究对象,通过分析所引用的可视化发动机高速摄影燃烧照片,应用声学软件SYSNOISE建立了能描述燃烧室结构特征的声模态计算模型并进行了频响分析。基于已燃区和未燃区等燃烧特征,建立声学时域计算模型,开展单点和多点激励下的燃烧室压力波瞬态响应计算,初步研究了燃烧室压力场的时域特性和变化规律。
     随后,通过对柱坐标系波动方程已有的经典解法的讨论,可知经典解法在求解内燃机燃烧过程中声场的困难,得出必须采用数值方法求解的结论。之后,将准维模型与声学模型相耦合,通过合理简化,采用数值解法并编制程序进行计算,与实验结果对比表明,该方法能粗略反应内燃机燃烧过程中的热声耦合性质。
     为更深入了解燃烧过程中压力的声学振荡现象,在分析KIVA的流场求解算法基础上,根据KIVA的流场求解方程组推导出能够运用于内燃机燃烧过程中热声耦合计算的波动方程。该方程表明内燃机燃烧室的声波受到多个源项的激励,包括化学反应放热、粘性耗散、湍流产生项和耗散项、热传导、焓耗散等,具有三维非稳态瞬变的特点,必须与KIVA的模拟相结合进行求解。根据所得方程构造相应的差分方程,给出了在与KIVA相结合时计算的稳定性条件及其数学证明。推导圆筒结构混合气-气缸-水三层结构的声波反射系数的表达式,以具体应用与热声耦合的计算过程中。
     根据所得的波动方程编制计算程序,在燃烧模拟过程中实时获取对燃烧室声场的各种激励源,得出了各源项的定量化计算结果,容易看出化学反应放热是燃烧过程声波产生的主要激励源。计算了某汽油机各种爆震工况的特性,通过与实测爆震时气缸压力振荡的对比,表明用波动方程计算内燃机燃烧过程中声场是可行的。提取多个特征点的振荡历程,经分析知燃烧室不同点的振荡在频率分布和幅值上相差较大,各种声学结构和燃烧参数对燃烧中的声学振荡有明显的影响。
     在分析了内燃机燃烧过程中的热声耦合现象与现有热声装置的异同后,本文将波动方程与燃烧计算软件KIVA3V相结合,根据热声理论,定量的计算了热声耦合在内燃机燃烧过程中的作用。对于文中汽油机,引用高速摄影图片对燃烧过程进行描述,与计算结果进行对比分析。结果表明,爆震发生前,热声效应的作用是增进燃烧过程的不稳定性;而在爆震发生后,热声效应的作用是消耗振荡能量,使系统趋于稳定。爆震时的声压突增能达到数个兆帕的量级,此时由于声学波动造成的温度波动可超过200K。最后,利用耦合程序对一台柴油机燃烧过程进行声学计算和热声学计算,得出了其燃烧过程中燃烧室内的声场波动和温度波动。
The essence of thermoacoustic is a phenomenon of reciprocal transformation of thermal energy and acoustic energy in medium. At the present time, both in China and other countries, the thermoacoustic field concentrates its attention on thermoacoustic refrigeration and rocket propellers. Although the researchers in the field of internal combustion engine have recognized that the pressure oscillation play a great role in combustion chamber, especially in knock conditions. However, there is still no definite theory about the role because of complicacy of the acoustic wave in cylinder during combustion. Therefore, it is of great importance to study the thermoacoustic problems during the combustion of an engine.
     In this paper, a SI engine is chosen as research object. By analyzing the high-speed photographs taken from an optical engine, a model which can be used to describe acoustic characteristics of structure of the combustion chamber of the optical engine is established to calculate the acoustic modes of the chamber and the frequency responses is analyzed in the acoustic software SYSNOISE. Base on the characters of burnt and unburned regions of the chamber, a time domain model is built to calculate the transient responses of pressure wave in the combustion chamber under Single-point stimulation and multi-point stimulation.
     Subsequently, according to discussion of existing classical solution of wave equation in cylindrical coordinate, it is revealed that one will face awkwarddifficulties when the classical method is adopted to simulate the acoustic wave during combustion of an IC engine. Thus a quasi-dimensional model is applied to couple with an acoustic model. With rational simplifications made to the coupled models, a procedure is compiled and used to calculate the heat release and pressure oscillation. The results indicate that the thermoacoustic characteristics can be explored in this way approximately.
     For profound comprehension of the acoustic oscillations of pressure wave in combustion, with analysis of arithmetic in fluid field embedded in KIVA, a wave equation is deduced based on the equations set that is included in KIVA for fluid solution, which can be applied on the theromacoustic computation during the combustion of an IC engine. The wave equation shows that, in an IC engine, acoustic wave is stimulated by multiple source-items, such as chemical reactions、viscous dissipation、turbulence generation energy and the rate its dissipation、heat transfer and enthalpy dissipation. To solve this three-dimensional transient wave equation, the calculation should be combined with KIVA simulation. For the wave equation, corresponding difference equation is constituted and the stability conditions while it is coupled with KIVA calculation and mathematics justifications are provided. Aformula is derived for the reflect coefficients for a three layer cylindrical structure of mixed gas- cylinder-water, which is applied in the thermoacoustic computation.
     Based on the wave equation, subroutines are programmed and real-time quantitative results of the stimulating source items in combustion chamber are obtained during the combustion simulation. Through the results, it is obviously that the chemical reaction is the mainly source to the acoustic wave in combustion. Then various knock conditions of a SI engine are computed. By comparison of cylinder pressure data and the simulation results, a conclusion can be drawn that it is feasible to apply the wave equation on calculation of acoustic field in an IC engine. Oscillating courses is extracted from several specific points at different position, showing that acoustic structure and combustion parameters influence the acoustic wave in combustion explicitly.
     After the contrast of discrepancies and similarities between IC engine combustion and general thermoacoustic equipments, the wave equation is coupled with KIVA3V to predict the quantificational thermoacoustic effect in IC engines according to thermoacoustic theories. For the SI engine in this paper, high-speed photographs are quoted to denote the development of flame in contrast with the contours from simulation. By Rayleigh integral, we can conclude that before the time of knock, thermoacoustic effect can enhance the instability of the IC engine’s combustion system, while it will drive the system to uniformity after knock. When the knock takes place, the steep increase of acoustic pressure may reach the magnitude of mega Pascal and temperature fluctuation will surpass 200 K due to the acoustic wave. In the end, the couple procedure is introduced in acoustic and thermoacoustic computation to figure out its acoustic wave and temperature fluctuation in the chamber.
引文
[1]周龙保,内燃机学,北京:机械工业出版社,2005
    [2]叶志刚,唐新蓬,周晓琴等,汽车通过噪声法规的颁布对汽车相关产业的影响,汽车科技,2004,(1):12~15
    [3] A general computer program for fluid-flow, heat-transfer and chemical-reaction processes.International,FEM-Congress, Baden-Baden,West Germany,17-18,Nov,1980,Spalding,D B.
    [4]何学良,李疏松等,内燃机燃烧学,机械工业出版社,1990.5
    [5] Spalding D B.,Mixing and Chemical Reaction in Steady Confined Turbulent Flames,13th Symp.(Int.) on Combust,1971
    [6]范维澄,计算燃烧学,合肥:安微科学技术出版社,1987
    [7]张平,燃烧诊断学,北京:兵器工业出版社,1988.
    [8]解茂昭,内燃机计算燃烧学,大连理工大学出版社,2005.9.
    [9]周俊杰,邱东,解茂昭,柴油机工作过程数值计算,大连:大连理工大学出版社,1988
    [10] Amer Ahmad Amer,et al,Multidimensional Optimization of In-cylinderTumble Motion for the New Chrysler Hemi ,SAE2002-01-1732.
    [11] D H Gibson, et al,In-Cylinder Flow and Combustion Modeling of 1.7L Caterpillar Engine,SAE900253,1990
    [12]周磊,三维数值仿真研究及柴油机进气道优化,[学位论文],北京:北京理工大学,2003,2.
    [13]强永平,柴油机喷雾特性仿真与试验研究,[硕士学位论文],北京:北京理工大学,2006
    [14] Hans G.hascher,Harrold J.Schock,et al,A Comparison of Modeled and Measured 3-D In-Cylinder Charge Motion Throughout the Displacement of a Four-Valve SI Engine,SAE2000-01-2799.
    [15]解茂昭,用任意拉格朗日-欧拉方法( ALE)计算内燃机缸内流场.1986,25(2):29~34
    [16]解茂昭,直喷式柴油机缸内气体运动和燃油喷雾的二维数值分析,空气动力学学报,1989,7(2)
    [17]陈白欣,直喷式柴油机喷雾、燃烧过程的实验和计算机模拟研究,[学位论文],大连:大连理工大学,1989,3
    [18]刘福水,CFD Study on Hydrogen Engine Mixture Formation and Combustion,[学位论文],Germany,Brandenburg University of Technology,2003.
    [19]苟晨华,柴油机工作过程多维数值仿真研究,[学位论文],北京:北京理工大学,2003.2.
    [20]杜巍,向继红,李向荣,用RES3D-Ⅱ程序对12150ZL柴油机燃烧过程进行数值模拟的研究,内燃机工程,2002,3:44~53
    [21]蒋勇,范维澄,计算直喷式柴油机螺旋进气道与缸内空气运动的大型微机化程序:IPIC-CFD(Ⅰ),燃烧科学与技术,2000,6(2):150~153
    [22]蒋勇,范维澄,计算直喷式柴油机螺旋进气道与缸内空气运动的大型微机化程序:IPIC-CFD(Ⅱ),燃烧科学与技术,2000,6(4):342~345
    [23]许思传,张建华,孙志军,孙济美,涡流室式柴油机工作过程的三维模拟程序,2000,3
    [24]许思传,张建华,微机版内燃机缸内多维气流运动模拟程序SUN-Ⅰ的开发,内燃机学报,1997,15(3):333-340
    [25]金滔,白火亘,颜鹏达,可视化Rijke型热声振荡演示器的研制,低温与超导,1998,26(4):42~46
    [26]陈国邦,热声振荡及其在制冷中的应用,低温与特气,1996,(4):55~60
    [27]Feldman,K.T.,Carter,R.L.,A Study of Heat Driven Pressure Oscillations in a Gas, Journal of Heat Transfer, Transactions of the ASTM,1970:536-541
    [28] Rott N,Thermoacoustics,Advances in Appied Mechanics,Academic Press,1980,20
    [29] SWIFT G W. Thermoacoustic engines, Journal of the Acoustical Society of America,1988,84(4):1145-1180.
    [30] Tominaga A. Thermodynamic aspects of thermoacoustic theory ,Cryogenics,1995,35(7):427-440
    [31] Zhou S L,Matsubara Y.,Experimental research of thermoacoustic prime mover,Cryogenics,1998,38(8):813~822
    [32] Radebaugh,R.,A review of pulse tube refrigeration, Adv. Cryo. Eng.,1990,35(B):1191~1205
    [33] J.Wheatley, T. Hofler, G.W.Swift, A.Migliori, Understanding Some simple phenomena in thermoacoustics with applications to acoustical heat engines, Am.J.Phys, 1985, 53:147~162
    [34] DEFF A, HOFLER T J. Design and construction of a solar powered, thermoacoustically driven, thermoacoustic refrigerator,Journal of the Acoustical Society of America,2000,107:3148~3166
    [35]O.G.Symko,Energy conversion using thermoacoustic devices,International Conference on Thermoelectrics,1999:645-648
    [36]J. Wheatley, T. Hofler, G. W. Swift, and A. Migliori,Intrinsically Irreversible Thermoacoustic Heat Engine,Journal of the Acoustical Society of America, 1983,74:153–170
    [37] Swift,G.W.,Thermoacoustic natural gas liquefier,DOE Natural Gas Conference, Houston,1997:1~5
    [38] GARRETTS L,ADEFF J,HOFLER T J.,Thermoacoustic refrigerator for space applications,Journal of Thermophysics and Heat Transfer(AIAA),1993,7:595~599
    [39] A.S.Worlikar, O.M.Knio, Numerical simulation of a thermoacoustic refrigerator I: Unsteady adiabatic flow around the stack, Journal of Computational Physics,1996,127(2):424-451
    [40] Wetzel M , Herman C,Design Optimization of Thermoacoustic Refrigerators,International Journal of Refrigeration,1997,20(1):3~21
    [41]Yuan.H, Karpov S.,Prosperetti.A.,A simple model for linear and nonlinear processes in thermoacoustic prime movers, Part II: Nonlinear oscillations, Journal of the Acoustical Society of America,1997, 102(6): 3497—3506. [DOI] Chen, X.M.,A.Prosperetti,Thermal processes in the oscillation of gas bubbles in tubes, 1998,104:1389-1398.
    [42] Gu Y.F.,Timmerhaus K.D, Damping Criteria for Thermal Acoustic Oscillations in Slush and Liquid Hydrogen Systems, Cryogenics,1992,32(2):194-198
    [43] Godshalk K M, Jin C, Kwong Y K, Hershberg E L, Swift W G,Radebaugh R,Characterization of 350 Hz thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure,Advances in Cryogenic Engineering,1996,41:1411~1418
    [44] Mozurkewich G.,Time-average distribution in a thermoacoustic stack,Journal of the Acoustical Society of America,1998,103(6):380~388
    [45] S.Backhaus,G.W.Swift,A thermoacoustic Stirling heat engine,Nature,1999,399:335-338
    [46]肖家华,热声制冷的基本原理和应用前景,应用声学,1993,(3):1~7
    [47]陈国邦,蒋彦龙,甘智华,回热式低温制冷机循环理论研究,低温工程,2001(4):1~8
    [48] B.B.拉乌申巴赫,振荡燃烧,北京:科学出版社,1965:315-320.
    [49]张均勇,张宝诚,航空发动机燃烧室工作稳定性研究,航空发动机,2001(1):31-39
    [50]哈杰D T,里尔登F H,液体推进剂火箭发动机不稳定燃烧,朱宁昌,张宝炯译,北京:国防工业出版社,1980.
    [51] Yang V,Third-order nonlinear acoustic instabilities incombustion chambers,partⅡ:transverse modes,AIAA:88-0152
    [52] Hersh A,Nonlinear behavior of helmholtz resonators,AIAA:90-4020
    [53] Priem R J.,3D Rocket Combustor Acoustic Model,AIAA:92-3228
    [54] Dubois I., Numerical Analysis of Liquid Rocket Engine Combustion Instability.AIAA 95-0607
    [55]程显晨,脉动燃烧,北京:中国铁道出版社,1994,8,3-18.
    [56]洪鑫,程惠尔,液体火箭发动机燃烧室波动过程数值分析,推进技术,1999,2:5~8
    [57] Issa R I.,Solution of the implicity discretized fluid flow equations by operator-spliting.J Comp Phys,1986,62:40~65
    [58]武得钰,顾笑映等,火花点火发动机爆震燃烧研究的发展与现状,车用发动机,1995,5,:7~11
    [59] Mi11er CD etal,Analysis of Spark Ignition Engine Knock as Seen in Photograhs Taken at 200,000 Frames Per Second,NACA TR859,1946.
    [60] MaleT,Photographs at 500,000 Frames per Second of Combustion and Detonation in Reciprocating Engine.3th InternationalSymposium on Combustion,Williams & WilKins Co.Baltimore,1949
    [61] Curry S,A,Three Dimensional Study of Flame Propagation ina Spark Ignition Engine,SAE Transactions,Vol.71,1963
    [62] Oppenheim A K,The Knock Syndrom-Its Curves and Its Victims,SAE Paper,841339.
    [63] Chun K M,Heywood J B.,Characteristization of Knock in a SI Engine,SAE Paper,890156
    [64] Zhao H,Collings N.,Characteristics of Khock and Its Effect on surface Temperature,SAE paper,920514.
    [65] Spicher U,Kollmeler H P.,Detection of Flame Propagation During Knocking Combustion by Optical Fiber Diagnostics,SAE paper,861532
    [66] Konig G,et a1,Role of Exothermic Centres on Knock Initiation and Knock Damages,SAE paper,902l36,
    [67] Maly RR,et al,Theoretical and Experimental Investigation of Knock Induced Surface Destruction,SAE paper,900025
    [68] Betz G EllenmannJ,Knock Related Piston Damage in Gasoline Engines , Aspects of PistonFailer Prevention International VW-SymPosium,Wolfsburg,Germany,1981.
    [69] Errig G, Piston Loading at Knocking Combustion (detonation),Aspects of Piston Failer Prevention International VW-Symposium,Wolfsburg,Germany,1981.
    [70] Keek JC,Turbulent Flame Strueture and speed In Spark Ignition Engine , 19th Symposiumon Combustion , Pittsburgh ,Pern,1982.
    [71] KonigG,Sheppard GGW,End Gas Autoignition and Knock in a Spark Ignition Engine,SAE Paper,902135
    [72] Syrimis Michalis,Assanis Dennis N, Knocking cylinder pressure data characteristics in a spark-ignition engine, American Society of Mechanical Engineers,Internal Combustion Engine Division(Publication)ICE, Advanced Engine Simulations, 1997,28(1):71-78
    [73] Hicking R.,Cavity Resonance in Engine Combustion Chambers and Some Applications,Journal of Acoustic Society of America, 1983,73(3): 1170-1178
    [74] Cerda S.,Romero J.,Navasquillo J.,Zurita,G.,A newtime-frequency representation: Analysis of the combustion noise, Acta Acustica (Stuttgart),2001,87(3):423-425
    [75] Cerda S., Romero J.,Navasquillo J.,Zurita, G.,Detection of the knock in diesel engines by using the Choi-Williams distribution,Acta Acustica(Stuttgart),2002,88(6):998-1004
    [76] Kitaev A.I.,Abrukov S.A.,Kidin N.I.,Diagnostics and control of unstable combustion in power plants using a modulated plasmatron,Fizika Goreniya i Vzryva,1995,31(1):45-50
    [77] Hamamoto Yoshisuke,Tomita Eiji,et al,Study on knocking phenomena in a spark-ignition engine,Nippon Kikai Gakkai Ronbunshu,B Hen/Transactions of the Japan Society of Mechanical Engineers, 1996,62(596),Part B:1666-1672
    [78]吴平友,黄河等,汽油发动机爆震分析与控制,传动技术,2003,17(3):36-38.
    [79]李建权,火花点火发动机爆震燃烧的研究,[学位论文],天津大学,1995,5
    [80]卫海桥,舒歌群,内燃机缸内压力与燃烧噪声的研究[J],燃烧科学与技术,2004,10(1):56~61
    [81] Pschinger F.,Regularities of Cylinder Pressure Oscillation and Their Effects on Combustion Process and Noise,SAE Paper,872248
    [82] Priede T.,Research of Origin of Engine Noise-an Historical Review,SAE Paper,800645
    [83] Crocker J.,Model of Diesel Engine Noise Using Coherence, SAEPaper,790362.
    [84]何学良,杜国平,吴吉湘,直喷式柴油机燃烧压力振荡的研究,内燃机学报,1986,4(3):229~237
    [85] Russell M F,Young C D,Nicol S W,Modulation of injection rate to improve direct injection diesel engine noise.SAE Transactions 1990,99(3):804~816.
    [86] Kohketsu S, Mori K, Kato,降低柴油机排放、燃烧噪声和燃油消耗的技术,国外内燃机,1995,27(6):13~21.
    [87] Yoshizu F,Nakayama M,Spray characteristics of a pilot injection system operating in an idling D.I. diesel engine,NISTSpecial Publication,Natl.Inst.of.Standards & Technology,1991,813:587~594.
    [88] Shoji Takeshi,Reduction of idle combustion noise with the groove needle of injection nozzle in a D.I. diesel engine,Nippon Kikai Gakkai Ronbunshu,JSME,1997,63(607),Part B:1098~1104.
    [89] Ikegami Makoto, Nakatani Koichiro, Yamane Koji,Improvement of diesel combustion using pilot injection and reduction of initial fuel injection rate,Nippon Kikai Gakkai Ronbunshu, JSME 1997,63(613),Part B:3158~3164
    [90] Abdalla A Y,Radwan M S,Ahmed S H,Smoke level and operational roughness of a pre-combustion chamber diesel engine running on gas oil/methanol blends,SAE Technical Paper Series, Oct 7-10,1991:1~10.
    [91] Rouhi A,Maureen A Amoco,Haldor Topsoe,Develop dimethyl ether as alternative diesel fuel,Chemical & Engineering News,1995:37~39.
    [92] Galinsky G, Reader G T, Potter I J,Effect of various working fluid compositions on combustion noise in diesel engines ,Proceedings of the Intersociety Energy Conversion Engineering Conference 3 Aug 7-11,1994:1157~1162.
    [93] Reader Graham T, Galinsky G, Potter Ian J,Combustion noise levels and frequency spectra in an IDI diesel engine using modified intake mixtures , American Society of Mechanical Engineers, Petroleum Division (Publication) PD 66 Jan 29-Feb 1,1995:53~58.
    [94] Stone C R,Kwan E K M,IDI diesel noise reduction with heated inlet air,International Journal of Vehicle Design,1993,14(2-3):205~211.
    [95] Kitaev A.I.,Abrukov S.A.,Kidin N.I.,Diagnostics and control of unstable combustion in power plants using a modulated plasmatron,Fizika Goreniya i Vzryva,Jan-Feb,1995,31(1):45-50.
    [96] Hamamoto Yoshisuke,Tomita Eiji,et al,Study on knocking phenomena in a spark-ignition engine,Nippon Kikai Gakkai Ronbunshu,B Hen/Transactions of the Japan Society of MechanicalEngineers,1996,62(596),Part B,:1666-1672
    [97] Brunt Michael F.J.,Pond Christopher R.,Biundo John, Gasoline engine knock analysis using cylinder pressure data, SAE Special Publications,SI Engine Combustion,1998,1315,980896:21-33.
    [98] Lee Y.,Pae S.,Min K.,Kim E.S.,Prediction of knock onset and the autoignition site in spark-ignition engines,Proceedings of the Institution of Mechanical Engineers,Journal of Automobile Engineering,2000,214(7),Part D:751-763.
    [99] Grandin B.,Knock in gasoline engines-The effects of mixture composition on knock onset and heat transfer, Doktorsavhandlingar vid Chalmers Tekniska Hogskola,2001,1781:81-92.
    [100] Cerda S.,Romero J.,Navasquillo J.,Zurita, G.,Detection of the knock in diesel engines by using the Choi-Williams distribution, Acta Acustica (Stuttgart),2002,88(6):998-1004.
    [101] Pride T.,Research of Origin of Engine Noise-an Historical Review,SAE Paper,800645
    [102]李太宝,计算声学-声场的方程和计算方法,北京:科学出版社,2005.
    [103]姜哲,郭骅,内燃机气缸压力频谱分析,内燃机学报,1989,7(3):251-258
    [104]史绍熙,冯明志.火花点火式发动机燃烧过程中缸内气流运动研究,燃烧科学与技术,2000,6(1):1-5.
    [105] M.J.LIGHTHILL,On sound generated aerodynamically, Parts I, Proceedings of the Royal Society,1952,211,Series A:564-587.
    [106] M.J.LIGHTHIL,On sound generated aerodynamically, Parts II , Proceedings of the Royal Society,1954,222,Series A:1-32.
    [107] M.J.LIGHTHILL,Viscosity effects in sound waves of finite amplitude,in Surveys in mechanics, ed. G. K. Batchelor & R. M. Davies,Cambridge University Press,1956:250-351.
    [108]马大猷,现代声学理论基础,北京:科学出版社,2006
    [109]董芳,内燃机燃烧过程的数值模拟,[硕士学位论文],大连;大连理工大学,2004
    [110]A.A.Amsden,J.D.Ramshaw,P.J.O'Rourke,et al,KIVA:A ComputerProgram for Two-and Three-Dimensional Fluid Flows with Chemical Reactions and Fuel Sprays,Los Alamos National Laboratory report,LA-10245-MS,1985
    [111] A.A.Amsden,P.J.O'Rourke,T.D.Butler,KIVA-2:A Computer Program for Chemically Reactive Flows with Sprays,Los Alamos National Laboratory report,LA-11560-MS,1989
    [112] A.A.Amsden,KIVA-3:A KIVA Program with Block-Structured Mesh for Complex Geometries,Los Alamos National Laboratory report,LA-12503-MS,1993.
    [113] A.A.Amsden,KIVA-3V:A Block-Structured KIVA Program for Engines with Vertical or Canted Valves, Los Alamos National Laboratory report,LA-13313-MS,1997
    [114] R.P.Hessel,Numerical Simulation of Intake Valve Port and In-Cylinder Flows Using KIVA-3:[PhD Thesis],Madison; Universityof Wisconsin-Madison,1993.
    [115] C.J.Rutland,C.M.Pieper,R.P.Hessel,Intake and Cylinder Flow Modeling with a Dual-Valve Port,SAE Technical Paper,1993,930069
    [116] A.A.Amsden,KIVA-3V,RELEASE 2,IMPROVEMENTS TO KIVA-3V,LosAlamos National Laboratory report,LA-13608-MS,1999.
    [117]张光德,陈志,直喷式柴油机燃烧过程模拟与分析(一),内燃机,2004(1):28~30
    [118]张光德,陈志,直喷式柴油机燃烧过程模拟与分析(二),内燃机,2004(2):39~42
    [119] D B.Spalding,Concentration fluctuations in a round turbulent free jet,Chemical Engineering Science,1971,26(1):95-107
    [120]T.D.Butler,L.D.Cloutman,J.k.Dukowicz,J.D.Ramshaw,CONCHAS:An Arbitrary Lagrangian-Eulerian Computer Code for Multicomponent Chemically Reactive Fluid Flow at All Speeds,Los Alamos Scientific Laboratory report LA-8129-MS,1979
    [121]张兆顺,湍流理论与模拟,北京:清华大学出版社,2005
    [122]陶文铨,数值传热学,西安:西安交通大学出版社,2001
    [123]李瑞遐,何志庆,微分方程数值方法,上海:华东理工大学出版社,2005,12
    [124]楚泽涵,彭斐,平面声波在平行分界面上反射和折射的理论计算,中国石油大学学报(自然科学版),2006,30(5)
    [125]何祚镛,赵玉芳,声学理论基础,北京:国防工业出版社,1981
    [126]吕干霖,褚梅娟等,高温钢声速与声速滞后现象,声学学报,1992,17(6):446~450
    [127]杜功焕,朱哲民,龚秀芬声学基础,南京:南京大学出版社,2001,03
    [128]钱祖文,非线性声学,北京:科学出版社,1992
    [129] A.G.Gaydon,H.G.Wolfhard,Flames,Their Structure,Radiation and Temperature,London;Chapman and Hall Limited,1979,
    [130]蒋德明主编,内燃机原理,北京:机械工业出版社,1987
    [131] Westbrook C K,Pitz W J,Chemical Kinetic Modeling of Combustion of practical Hydrocarborn Fuels,SAE Paper,890990
    [132] Halstead M P,Kirsch L J,Quinn C P;The Autoignition of Hydrocarbon Fuels at High Temperatures and Pressures Fitting a Mathematical Model,Combustion and Flame,1977,vl30:45-60
    [133] C K Westbrook,dryer F L,Chemical Kinetics and Combustion Modeling of combustion process,18th Symposium Internationalon Combustion,Pittsburgh,1981:749
    [134] Charles K.Westbrook, William J.Pitz, A Comprehensive Chemical Kinetic Reaction Mechanism for Oxidation and Pyrolysis of Propane and Propene,Combustion Science and Technology,1984,37(3):117-152.
    [135] William R. Leppard, A Comparison of Olefin and Paraffin Autoignition Chemistries: A Motored Engine Study, SAE Paper, 892081.
    [136] Chun K M,Heywood J B.Characteristization of Knock in a S I.Engine, SAE paper, 890156
    [137]Klim ston J, The Knock Severity Index:A Proposal for a Knock Classiflcation M ethod,SAE paper,541335.
    [138]Benson G,et al,Knock (Detonation) Control by Engine Combustion Chamber Shape,SAE paper,530509
    [139] Valtadoros TH,et al,Engine Knock Characteristlcs at the Audible Leve1,SAE paper,910567.
    [140] Leppard W R. ,Individual Cylinder Knock Occurrence andIntensity in Multieylinder Engines.SAE Paper,820074.
    [141]王记海,董刚,姚敏,汽车发动机爆震的测试及谱分析,工业技术经济,1998,17(8):118~119
    [142]E Pipitone and LD.Acquisto,Development of a low-cost piezo film-based knock sensor,Proc.Instn Mech.Engrs, 217 PartD;J Automobile Engineering
    [143]王银,袁黎,汽油发动机爆震的产生以及检测与控制,汽车电器,2002.4:40~41
    [144]张红光,汽油机爆震检测的研究,[硕士学位论文],北京:北京理工大学,1995.
    [145]王良煜,应用高速摄影法研究火花点火发动机爆震燃烧过程,[硕士学位论文],天津:天津大学,1995
    [146] Candel Sebastien, Combustion dynamics and control: Progress and challenges, Proceedings of the Combustion Institute, 2002, 29(1):1~28
    [147] Annaswamy A.M.,Fleifil M.,Ghoniem A.F.,Ghoniem Z.,Dynamic model of resonant interactions in combustion systems,AmericanSociety of Mechanical Engineers,Dynamic Systems and Control Division (Publication) DSC,1995, 57(1):45-53.
    [148] Cliff E.M,Combustion Instability:A Distributed-Parameter Model,Proceedings of the American Control Conference,2003,v3:2103-2107
    [149] Cammarata L., Fichera A.,Paqano,A.Neural prediction of combustion instability,Applied Energy,2002,72(2):513-528
    [150] Pun W.,Palm S.L.,Culick F.E.C.,Combustion dynamics of an acoustically forced flame,Combustion Science and Technology,2003,175(3):499-521
    [151]Campos Delqado, DanielU., etal,Thermoacoustic instabilities:Modeling and control, IEEE Transactions on Control Systems Technology,2003,11(4):429-447
    [152] Hamosfakidis V.,Reitz R.D.,Optimization of a hydrocarbon fuel ignition model for two single component surrogates of diesel fuel,Combustion and Flame, 2003, 132(3):433-450
    [153] Zolver M.,Klahr D.,et al,Reactive CFD in engines with a newunstructured parallel solver, Oil and Gas Science and Technology, 2003,58(1):33-46.
    [154] Griffiths Johnq F.,Whitaker B.J.,Thermokinetic interactions leading to knock during homogeneous charge compression ignition,Combustion and Flame, 2002, 131 ( 4 ):386-399.
    [155] Tanaka Shiqeyuki,Ayala Ferran,Kech James C.,A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine,Combustion and Flame, 2003,133(4):467-481.
    [156]史绍熙,薛远,直喷式柴油机燃烧压力振荡特性及其对燃烧噪声影响的研究,燃烧科学与技术,1996,2(4):387~392
    [157] Imoto Koji,New combustion system of the IDI diesel engine.Nippon Kikai Gakkai Ronbunshu,Transactions of the Japan Society of Mechanical Engineers,1996,62(602),Part B:3739~3745
    [158] Imoto Koji, Sugiyama Seiichi,Fukuzawa Yorihiro,Reduction of combustion-induced noise in IDI diesel engine (1st report, target of cycle and low-noise combustion),Nippon Kikai Gakkai Ronbunshu,Transactions of the Japan Society of Mechanical Engineers,1997,63(605)Part B:329~336
    [159] Imoto Koji,Sugiyama Seiichi,Fukuzawa Yorihiro,Reduction of combustion-induced noise in IDI diesel engine (2nd report, low-noise combustion system).Nippon Kikai Gakkai Ronbunshu,Transactions of the Japan Society of Mechanical Engineers, 1997,63(609),Part B:1862~1868.
    [160] Imoto Koji,Katayama Susumu,Tsubota Toshimitsu,Ohta Kazuhide.Development of noise reduction technique in small diesel engine,Technical Review-Mitsubishi Heavy Industries,1998,35(12):31~35.
    [161] Rychter T J,Teodorczyk A,Stone C.R,VR/LE engine concept application to the turbocharged diesel engine,SAE Technical Paper Series,1991,9:1~8.
    [162] Bowen Caroline E,Reader Graham T,Potter,Effect of exhaust gas recirculation on the combustion noise level of an indirectinjection diesel engine,Proceedings of the Intersociety Energy Conversion Engineering Conference,1997:2088~2093.
    [163] Kondo Masahiko, Kimura Shuji, Hirano Izuho,Development of noise reduction technologies for a small direct-injection diesel engine,JSAE Review,2000,7:327~333.
    [164] Murayama,Studies of Combustion Noise on Diesel Engine,(First Report, Solation of Combustion Noise in Engine Noise) JSME Paper 1974,40(336)
    [165]匹辛格等,柴油机燃烧噪声直接测量的新方法,噪声与振动控制,1984,5:34~38.
    [166] Russell M F,Diesel Engine Noise, Control at Source,SAEPapaer,1982,2:820238.
    [167] Russell M F.Combustion Noise from High Speed Direct Injection Diesel Engines,SAE Paper,850973
    [168] Yajima Yuji,Nakashima Kazuhiro,New measuring technique of cylinder pressure spectrum and its application to combustion noise reduction:Time-frequency analysis of combustion excitation using wavelet transform analysis,JSAE Review,1998,19(3):280~282.
    [169] Hirano Izuho, et al,Using multiple regression analysis to estimate the contributions of engine-radiated noise components,JSAE Review,1999,20(3):363~368.
    [170]陈锦祥,张殿昌,蓝军等,声诊断内燃机燃烧过程的研究(一)-燃烧噪声识别的数学模型,内燃机学报,1992,10(3):221~226.
    [171] Cerda S,Romero J,Navasquillo J,A new time-frequency representation: Analysis of the combustion noise,Acta Acustica (Stuttgart),2001,87(3):423~425
    [172] W LI,F GU,A D BALL,A study of the noise from diesel engiines using the independent component analysis,Mechanical Systems and Signal Processing,2001,15(6):1165~1184.
    [173] Li Z,Hua H,Shi Y,A new method for measuring combustion noise,Proceedings of the International Modal Analysis Conference - IMAC v 2 2001:1617~1621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700