玄武岩纤维材料及其填充防护结构超高速撞击特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天事业的发展,空间碎片数量持续增加,空间碎片环境日益恶化,严重地威胁着航天器的在轨安全运行。对于毫米级空间碎片必须采取加装防护屏的措施予以防护。Whipple防护结构是最基本的空间碎片防护结构形式。目前,针对各种航天器的可靠性要求以及不同部件的功能需要,在Whipple防护结构的基础上发展了多种先进防护结构,如,多层冲击防护结构、填充Whipple防护结构和网格双防护屏防护结构等。这些防护结构普遍使用了先进的高强度纤维材料,如Kevlar、Nextel等。防护材料的选择和防护结构方案设计是开发先进防护结构的重要工作环节,优选先进防护材料、开发先进防护结构对保障航天器在空间碎片环境下的安全运行具有工程实用参考价值,了解和掌握纤维编织材料及其填充防护结构超高速撞击特性及其机理对于高速撞击动力学的发展具有重要的学术价值。
     玄武岩纤维也具有高强度、高模量的材料特性,从而具有作为防护材料的潜在优势。本文采用超高速撞击实验和理论分析相结合的技术手段,较系统地对国产玄武岩纤维布材料及其填充防护结构的超高速撞击损伤特性及机理进行了研究,分析了材料和结构在超高速撞击下的宏观效应与动态响应过程、织物细观编织结构、防护结构布局方案之间的相关关系。主要研究工作包括:
     首先,通过实验开展了玄武岩纤维布抗铝合金弹丸超高速撞击特性研究。利用哈尔滨工业大学超高速撞击研究中心的非火药驱动二级轻气炮高速弹丸发射装置进行了连续玄武岩纤维平纹编织材料-玄武岩纤维布的高速撞击损伤特性研究。通过对记录弹丸破碎过程的X-光闪光阴影照片的分析,除观察到了在高速撞击玄武岩纤维布时,铝合金弹丸后部产生的层裂破碎以外,还观察到了一种以前尚未见过到报道的弹丸前表面出现的局部沟状侵蚀损伤。利用数字显微镜观察到了溅落在玄武岩纤维布击穿孔周围的铝熔化后凝结成的球形颗粒,从而确定了本文实验范围内铝合金弹丸出现局部熔化的初始撞击速度。确认在本文实验范围内,在玄武岩纤维布与铝合金板面密度相同的条件下,相同直径的铝合金弹丸超高速撞击玄武岩纤维布时刚开始发生破碎时的临界破碎速度低于撞击铝合金板时的临界破碎速度,即玄武岩纤维布破碎铝合金弹丸的能力优于相同面密度的铝合金板。建立了玄武岩纤维布击穿孔直径方程、铝合金弹丸临界破碎速度方程和铝合金弹丸剩余速度方程。为将玄武岩纤维布用于空间碎片填充防护结构提供了依据。
     第二,建立了弹丸超高速撞击玄武岩纤维布动态过程的冲击动力学分析模型。通过将弹丸与玄武岩纤维布的弹、靶角色互换,将弹丸对玄武岩纤维布一次撞击的宏观分析模型转换为玄武岩纤维布细观尺度的纤维丝对半空间体(半无限体)弹丸多次冲击的细观动力学分析模型。
     第三,结合超高速撞击实验动态响应过程中弹丸的损伤行为和所建立的冲击动力学模型分析了玄武岩纤维布具有良好破碎高速弹丸能力的机理。根据叠代计算结果,分析了冲击压力的累积效应,并定性地分析了冲击温度的累积效应和累加效应导致弹丸熔化的机理。确认玄武岩纤维布的纤维丝对弹丸的撞击所产生的多源、多次冲击波是造成弹丸前部侵蚀损伤和后部层裂破坏的主要因素。
     最后,通过超高速撞击试验研究了玄武岩纤维布作为填充材料的填充防护结构的撞击特性。确定在本文实验范围内,在防护屏面密度相同条件下:涂环氧树脂胶玄武岩纤维/铝合金板填充防护结构的防护性能优于双层铝合金板防护屏防护结构,而与Nextel/Kevlar填充防护结构相当;涂环氧树脂胶玄武岩纤维布填充防护结构在玄武岩纤维布防护屏等间距分散布置情况下的防护性能优于涂环氧树脂玄武岩纤维布/铝合金板填充防护结构,并略优于Nextel/Kevlar填充防护结构;涂环氧树脂胶玄武岩纤维布填充防护结构在玄武岩纤维布防护屏等间距分散布置情况下的防护性能优于防护屏集中布置时的防护性能,涂环氧树脂胶玄武岩纤维布防护屏的布局方案对防护结构的防护性能有显著影响。并确认玄武岩纤维布作为填充材料在防护结构中提高防护性能的机理是,一方面,玄武岩纤维布防护屏通过拦截、破碎二次碎片云团中的碎片颗粒,降低二次碎片云团中的碎片速度,减轻了对舱壁造成的损伤;另一方面,通过自身材料的碎化或碳化,减轻了自身碎片对舱壁的损伤。
     玄武岩纤维材料作为一种先进的高强度纤维材料,同时还具有高模量的特点,具有抵御空间碎片超高速撞击的潜在优势。研究其在超高速撞击条件下的动态力学行为及其机理,掌握其超高速撞击条件下的防护特性数据,为该类材料在航天领域特别是在空间碎片防护领域的工程应用提供依据,对于发展性能优良的国产超高速撞击防护材料,发展新型的空间碎片防护结构,提高航天器抵御空间碎片超高速撞击的能力具有工程应用参考价值。
Along with the development of space activity, the space debris population isgrowing continually, so the space debris environment is ever deteriorating. Thehazards to orbiting spacecrafts from space debris are aggravated increasingly. Themeasures must be taked to protect the spacecrafts against millimeter-grade spacedebris impacts. Whipple bumper shield is a basic type of space debris shielding. Atpresent, in accordance with reliability and function demand for different spacecraftsand components of all kinds, the high strength fiber materials such as Kevlar andNextel have been used in the advanced space debris shielding configurations suchas stuffed Whipple shields, multi-shock shields and mesh double-bumper shields. Itis a key link to choose the bumper materials and configurations of the shielding.Optimization of the advanced bumper materials and development of the advancedspace debris shielding can afford worthful references to ensure running safely inorbit in the space debris environment for spacecrafts. It is important to understandand grasp the highvelocity impact character and mechanism about materials andstructure of shielding for development of high velocity impact dynamic in thesphere of academic research.
     Woven of basalt fiber is a kind of fiber material too, having high strength andhigh modulus properties, and thus has a potential advantage for using in spacedebris shielding. The hypervelocity impact damage characteristics and mechanismof the domestic woven of basalt fiber material and its stuffed Whipple shieldingconfiguration were studied systematically, and the relationship of the hypervelocityimpact macro-effects of the material and the shielding with the process of dynamicresponse, micro-woven fabric structure and shielding configuration was analyzedby hypervelocity impacting tests and theoretical analysis method in present paper.The main research works include:
     First of all, Hypervelocity impact tests to study the damage properties ofwoven of basalt fiber against with space debris were carried out by the non-powdertwo-stage light gas gun facilities at Hypervelocity Impact Research Center inHarbin Institute of Technology. In addition to the spallation damage in the rear of aluminum projectile after hypervelocity impacting on woven of basalt fiber, theerosion damage in the front surface of the projectile that never be observed beforenow also can be observed. The initial velocity of aluminum projectile melting afterimpacting with woven of basalt fiber was determined according to the moltenaluminum spherical particles that splashed around the perforation by useing ofdigital microscope. It is confirmed that the fragmention-initation velocities ofaluminum alloy projectiles impacting on woven of basalt fiber are lower thanimpacting on aluminum alloy plate with the same areal density within the scope ofthe experiment. The perforation diameter equation of woven of basalt fiber, theresidual velocity equation and the fragmention-initation velocity equation ofaluminum alloy projectile were seted up. It provides a basis for woven of basaltfiber to be using in the stuffed Whipple shilding.
     Secondly,the impact dynamics model for analysing the dynamic process ofhypervelocity impact between woven of basalt fiber and aluminum projectile hasbeen built up. The macro-analysis model that aluminum projectile impact on wovenof basalt fiber only once was interchanged with the micro-analysis dynamic modelthat basalt fiberes impact on a half-space body (semi-infinite body) of the projectilerepeatedly by exchanging the role of aluminum projectile and woven of basalt fibertarget.
     Thirdly, according to the damage formes of projectiles impacting on woven ofbasalt fiber in hypervelocity impact testes and by using the micro-analysisdynamic model, the damage mechanismes of projectile were analyzed. Accordingto the iteration calculate results, the cumulative effect of the shock pressure wasstudied, and the melting mechanism of projectile caused by cumulative effect ofthe shock temperature was studied qualitatively. The analysis results showed thatthe main reasons of causing the spallation damage in the rear of aluminumprojectile and the erosion damage in the front surface of the projectile was themulti-shock on the projectile with the basalt fiberes at multi-poits.
     Finaly,the impact properties of woven of basalt fiber stuffed Whippleshielding were investigated by hypervelocity impact testes. The test results showedthat the protection property of woven of basalt fabric coated with epoxy resinadhesive/aluminum sheet stuffed Whipple shielding was better than doublealuminumsheet shielding, and equivalent to Nextel/Kevlar stuffed Whipple shielding with the same areal density within the scope of this paper tests. Theprotection property of woven of basalt fabric coated by epoxy resin adhesivestuffed Whipple shielding with bumpers laid in even space was better than withbumpers laid together, woven of basalt fabric coated by epoxy resinadhesive/aluminum sheet stuffed Whipple shielding, and Nextel/Kevlar stuffedWhipple shielding with the same areal density within the scope of this paper tests.The analysis results showed that the reinforce mechanismes of woven of basaltfabric used as the stuffed bumpers in the shielding were that woven of basalt fabricbumpers intercept and break the second debris cloud, and lower the velocity of thesecond debris cloud to reduce the damage of the rear wall, in addition, woven ofbasalt fabric bumpers are also breaked and carbonized to reduce the damage of therear wall caused by themselves as debris.
     Woven of basalt fabric is advanced fiber material with high-strength and highmodulus,and has evident advantages of protection against hypervelocity impactfrom space debris. The research on hypervelocity impact dynamic behaviorproperties and mechanisms to obtain the hypervelocity impact test data of woven ofbasalt fabric provided scientific basis for using this kind of high-strength fibermaterial in astronautical engineering and especially in the field of protectionengineering from space debris, and provided valuable reference for developing thedomestic protection material and new space debris shielding configuration withexcellent properties against hypervelocity impact.
引文
1 Support to the IADC,Space Debris Mitigation Guidelines,IADC WG4.2004.10
    2 Space Debris Mitigation Guidelines of the Scientific and TechnicalSubcommittee of the Committee on the Peaceful Uses of Outer Space(COPUOS), A/AC.105/890, Annex IV. 2007.
    3 H. Klinkrad. Collision Risk Analysis for LEO, Adv. Space Res., 1993,13(2):105~112
    4 Committee on Space Debris, Orbital Debris: A Technical Assessment, NationalResearch Council, National Academy Press, Washington, DC, 1995.
    5 G. A. Graham, A. T. Kears, M. M. Grady, I. P. Wright, A. D. Griffiths, A.M.Mcdonnell. Hypervelocity Impacts in Low Earth Orbit: Cosmic DustversusSpace Debris. Int. J. Impact Engineering, 1999, 23:95~100
    6李春来,欧阳自远,都亨.空间碎片与空间环境,第四纪研究,2002, 22(6):540~551
    7 L. Anselmo, Space debris, Advances in Space Research,2008, 41(7):1003
    8 Space debris,http://www.esa.int/esaCP/Protecting.html, 2007.
    9 C.Pardini. Survey of Past On-orbit Fragmentation Events, Acta. Astronautica,2005, 56:379~389
    10 F. H?rz, R.P. Bernhard, T.H. See and D.J. Kessler Metallic and OxidizedAluminum Debris Impacting the Trailing Edge of the Long Duration ExposureFacility (LDEF), Space Debris, 2002, 2(1):51~66
    11 http://setas-www.larc.nasa.gov/LDEF/MET_DEB
    12 D. S. F. Portree, Joseph P. Loftus, Jr., Orbital Debris: A Chronology, NASATP-1999-208856:84
    13 M. Oswald, H. Krag, P. Wegener, B. Bischof. Concept for an Orbital TelescopeObserving the Debris Environment in GEO, Adv. Space Res.,2004,34:1155~1159
    14 M. Matney, R. Goldstein, D. Kessler, E. Stansbery. Recent Results fromGoldstone Orbital Debris Radar, Adv. Space Res., 1999, 23(1):5~12
    15 T. J. Settecerri, E. G. Stansbery, M. J. Matney. Haystack Measurements of theOrbital Debris Environment, Adv. Space Res., 1999, 23(1):13~22
    16 L. Anselmo, A. Rossi, C. Pardini. Undated Results on the Long-Term Evolutionof the Space Debris Environment, Adv. Space Res., 1999, 23(1):201~211
    17 A. E. Potter. Measuring the Orbital Debris Population, Earth SpaceReview,1995, 4:21~29
    18 G. Stansberry, M. Matney, T. Settecerri, A. Bade. Debris Families Observed bythe Haystack Orbital Debris Radar, Acta Astronautica, 1997, 41(1):53~56
    19 L. Hyde, E. L. Christiansen, J. H. Kerr. Meteoroid and Orbital Debris RiskMitigation in Low Earth Orbit Satellite Constellation, Int. J. ImpactEngineering, 2001, 26:345~356
    20李清源.航天器对空间碎片撞击危害的被动防护技术.强度与环境,2002,29(4):45~50
    21 F. L. Whipple. Meteorites and Space Travel, The Astronmical Journal, 1947, 52,No.1161:131
    22 C. J. Maiden, W. J. Gehring and A. R. McMillan, Investigation of FundamentalMechanism of Damage to Thin Targets by Hypervelocity Projectiles. NASATR 63-225, 1963
    23 G. V. Stepanov, Hypervelocity Projectile Impact in Semi-infinite Targets.Strength of Materials, 1969, 1(5):523~528
    24 V. V. Kuznetsov. Crater Formation under Hypervelocity Impact, J. Appl.Mechanics and Technical Physics, 1982, 23(3):419~420
    25 W. P. Schonberg, A. J. Bean, K. Darze. Hypervelocity Impact Physics, NASACR-4343, Washington, D. C., 1991:1~242
    26 M. Lambert. Hypervelocity Impacts and Damage Laws, Advance in SpacecraftResearch-COSPAR, 1996, 7:213~223
    27 B. G. Cour-Palais. Hypervelocity Impact in Metals, Glass and Composites,Int. J. Impact Engineering, 1987, 5:221~237
    28 W. P. Schonberg, R. A. Taylor. Penetration and Ricochet Phenomena in ObliqueHypervelocity Impact, Int. J. Impact Engineering, 1989, 27:639~646
    29 W. P. Schonberg, J. E. Williamsen. Empirical Hole Size and Crack LengthModels for Dual-Wall Systems under Hypervelocity Projectile Impact, Int. J.Impact Engineering, 1997, 20:711~722
    30 E.L. Christiansen, Evaluation of Space Station Meteoroid/Debris ShieldingMaterials, Eagle Engineering Report No. 87-163, 1987, NASA CR-1850271987
    31 William H. Jolly, Ballistic Limit Regression Analysis for Space StationFreedom Meteoroid and Space Debris Protection System. NASA CR-184374,May 1992
    32 B. G. Cour-Palais, J. L. Crew. A Multi-Shock Concept for Spacecraft Shielding,Int. J. Impact Engineering, 1990, 10:135~146
    33 G. D. Olsen, A. M. Nolen. Advanced Shield Design for Space Station Freedom,Int. J. Impact Engineering, 1993, 14:541~550
    34 K. Shiraki, F. Terada. Space Station JEM Design Implementation and Testingfor Orbital Debris Protection, Int. J. Impact Engineering, 1997, 20: 723~732
    35 E. L. Christiansen, and Kerr J.H., Mesh Double-Bumper Shield: A Low-WeightAlternative for Spacecraft Meteoroid and Orbital Debris Protection.International Journal of Impact Engineering 1993, 14:169~180
    36 E. L. Christiansen, Crews J.L., Williamsen J.E., et al. Enhanced Meteoroid andOrbital Debris Shield. Int. J. Impact Engineering, 1995, 17:217~228
    37 E. L. Christiansen, J. L. Crew, J. H. Kerr. Hypervelocity Impact Testing above10km/s of Advanced Orbital Debris Shields, Shock Compression of CondensedMatter-1995, AIP Conference Proceedings 1995, 1183~1186
    38 E. L. Christiansen. Flexible and Deployable Meteoroid/Debris Shielding forSpacecraft, Int. J. Impact Engineering, 1999, 23:125~136
    39 Committee on International Space Station, Protecting the Space Station fromMeteoroid and Orbital Debris, National Research Council, National AcademyPress, Washington, DC, 1997.
    40 E. L. Christiansen, J. H. Kerr. Ballistic Limit Equations for SpacecraftShielding, Int. J. Impact Engineering, 2001, 26:93~104
    41 H. G. Reimerdesa, D. N?lke, F. Sch?fer, Modified Cour-Palais-ChristiansenDamage Equations for Double-wall Structures, Int. J. Impact Engineering, 2006,33:645~654
    42 S. Ryan, F. Schaefer, R. Destefanis, M. Lambert, A Ballistic Limit Equation forHypervelocity Impacts on Composite Honeycomb Sandwich Panel SatelliteStructures, Advances in Space Research, 2008, 41(7):1152~1166
    43 R. Janovsky, I. Kalninsch, A. Stichternath, The Meteoroid and DebrisProtection System for the ATV-Spacecraf, Acta Astronautica, 2000, 47:281~287
    44“Jules Verne”Automated Transfer Vehicle (ATV), European Space Agency(ESA), February 2008
    45 K. Shiraki, F. Terada, M. Harada, Space Station JEM Design Imp-lementationand Testing for Orbital Debris Protection, Int. J. of Impact Engineering. 1997,20:723~732
    46 M. Tanaka, Y. Moritaka, Single Bumper Shields Based on Vectran Fibers,Advances in Space Research, 2004, 34:1076~1079
    47 F. H?rz, M. J. Cintala, R. P. Bernhard, et al. Cratering and PenetrationExperiments in Teflon Targets at Velocities from 1 to 7 km/s, Int. J. of ImpactEngineering. 1995, 17:419~430
    48 M. Higashidea, M. Tanakab, Y. Akahoshia, es tl, Hypervelocity impact testsagainst metallic meshes, Int. J. of Impact Engineering. 2006, 33:335~342
    49 R. Destefanisa , F. Sch?fer, M. Lambertc, M. Faraud, Selecting enhanced spacedebris shields for manned spacecraft, Int. J. Impact Engineering, 2006,33:219~230
    50 F. Sch?fer, R. Janovsky, Impact Sensor Network for Detection ofHypervelocity Impacts on Spacecraft, IAC-04-IAA.5.12.2.04, 55thInternational Astronautical Congress 2004
    51 E. L. Christiansen, J. H. Kerr. Projectile Shape Effects on ShieldingPerformance at 7km/s and 11km/s. Int. J. Impact Engineering, 1997,20:165~172
    52 F. K. Sch?fer, M. Herrwerth, S. J. Hiermaier, E. E. Schneider. Shape Effects inHypervelocity Impact on Semi-Infinite Metallic Targets. Int. J. ImpactEngineering, 2001, 26:699~711
    53 Hu K, W. P. Schonberg, Ballistic limit curves for non-spherical projectilesimpacting dual-wall systems, Int. J. Impact Engineering, 2003, 29: 345~355.
    54 W. P. Schonberg, J. E. Williamsen, RCS-based ballistic limit curves for nonsphericalprojectiles impacting dual-wall spacecraft systems, Int. J. ImpactEngineering. 2006, 33: 763~770
    55 R. Seurig, G. Morfill, V. Fortov, P. Hofmann, Complex Plasma Research on ISSPast, Present, and Future Facilities, IAC-05-B4.3.09, 56th InternationalAstronautical Congress 2005
    56 K. Ohtani, D. Numata, T. Kikuchi, M. Sun, et al, A study of hypervelocityimpact on cryogenic materials, Int. J. Impact Engineering. 2006, 33:555~565
    57 D. Numata, K. Ohtani, M. Anyoji, et al, Experimental Study of HypervelocityImpacts at Low Temperatures, Shock Waves, 2008, 18(3):169~183
    58 T. Hanada, J.-C. Liou, Comparison of Fragments Created by Low- and Hyper-Velocity Impacts, Advances in Space Research, 2008, 41(7):1132~1137
    59 D. Palmieri, M. Faraud, R. Destefanis and M. Marchet, Whipple ShieldBallistic Limit at Impact Velocities Higher than 7 km/s, Int. J. ImpactEngineering, 2001, 26:579~590
    60 S. Ryan, F. Schaefer, W. Riedel, Numerical Simulation of Hy-velocity Impacton CFRP-Al HC SP Spacecraft Structure Causing Penetration and FragmentEjection, Int. J. Impact Engineering, 2006, 33:703~712
    61 Huang Hai, Jia Guanghui, Dong Yunfeng. Study on Space Debris and ImpactEffect on Spacecraft. Nuclear Physics B 2007, 166:282~285
    62刘育魁.表面爆炸和高速撞击问题的自模拟解,力学进展,1977, 2:64~75
    63闵桂荣,肖名鑫.防止微流星击穿航天器舱壁的可靠性设计.中国空间科学技术,1986, 6:45~49
    64黄本城.空间环境工程学.宇航出版社,北京,1993
    65朱毅麟.空间碎片减缓.国际太空,1999, 5:12~15
    66都亨.空间碎片行动计划近期工作设想及今后工作展望,中国航天,2003,11:13~15
    67柳森,李毅.Whipple防护屏弹道极限参数试验.宇航学报,2004,25(2):205-208
    68张伟,庞宝君,马文来,张泽华.第一门槛值区间单防护屏防护正撞击实验研究.实验力学,2000, 15(1):115~119
    69 Q. M. Zhang, Y. H. Chen. Experimental Study of Hypervelocity Impact onMulti-Shock Structure, Journal of Beijing Institute of Technology, 2004,13(3):274~279
    70张伟,庞宝君,罗德坤,张泽华.柱状弹丸撞击防护屏形成碎片云材料状态特性研究.中国空间技术,2001, (3):53~59
    71张伟,庞宝君,张泽华,马文来.航天器波纹防护屏高速撞击实验研究.宇航学报,2000, 21(1):79~84
    72韩增尧,郑世贵,闫军,范晶岩,曲广吉.空间碎片撞击概率分析软件开发、校验与应用.宇航学报,2005, 26(2):228~231
    73柳森,谢爱民,黄洁,李毅,罗锦阳,石安华.超高速碰撞碎片云的激光阴影照相技术.实验流体力学,2005, 19(2):35~39
    74韩增尧.中国空间碎片防护研究工作进展,航天器工程,2007, 16(5):11~15
    75 Ma Zhi-tao,Jia Bin,Pang Bao-jun.Comparison of Shielding PerformanceBetween AL-Fome and Solid-Aluminum Bumpers with Numerical Simulation,Science and Technology Series,2006, 112
    76张伟,马文来,管公顺,庞宝君.非球形弹丸超高速撞击航天器防护结构数值模拟,爆炸与冲击,2007,27(3):241~245
    77张伟,管公顺,贾斌,庞宝君.弹丸形状对超高速撞击厚合金铝靶成坑影响的数值模拟,高压物理学报,2008, 22(4):343~349
    78管公顺,航天器空间碎片防护结构超高速撞击特性研究,博士论文,哈尔滨工业大学,2006.12
    79 F. H?rz, M. J. Cintala, R. P. Bernhard, et al, Cratering and PenetrationExperiments in Teflon Targets at Velocities from 1 to 7km/s, Int. J. ImpactEngineering, 1995, 17:419~430
    80 Makoto Tanka, Yoko Moritaka, Yasuhiro Akahoshi. Development of alightweight space debris shield using high strength fibers, Int. J. ImpactEngineering, 2001, 26:761~772
    81 C. J. Maiden, A. R. McMillan. An Investigation of the Protection Afforded aSpacecraft by a Thin Shield. AIAA Journal, 1964, 2(11):1992~1998
    82 D. R. Sawle. Hypervelocity Impact in Thin Sheets and Semi-Infinite Targets at15km/s. AIAA Paper No. 69-378, AIAA Hypervelocity Impact Conference,Cincinnati, Ohio, 1969
    83 N. R. Sorenson. Systematic Investigation of Crater Formations in Metals,Proceedings of the Seventh Hypervelocity Impact Symposium, 1964, VI:281~325
    84 C. R. Nysmith. Penetration Resistance of Double-Sheet Structures atVelocityes to 8.8 km/sec. NASA TN D-4568, 1968
    85 C. R. Nysmith, B. P. Denardo. Experimental Investigation of the MomentumTransfer Associated with Impact into Thin Aluminum Targets. NASA TN D-5492, 1969
    86 A. J. Piekutowski. Radiographic Studies of Impact Fragmentation, HighPressure Shock Compression of Solids, Springer, 1996, 150~175
    87 A.J. Piekutowski, Fragmention-Initation Threshold for Spheres Impacting atHypervelocity. International Journal of Impact Engineering 2003, 29: 563~574
    88 IADC, Protection Manual, Version 4.0, 2006
    89 E. L. Christiansen, Design and performence equations for advanced meteoroidand debris shield, International Journal of Impact Engineering 1993,14:145~156
    90 E. L. Christiansen. Advanced Meteoroid and Debris Shielding Concepts, AIAA90-1336 1990
    91赵勐,李青山,谢磊,张鹏.玄武岩连续纤维的特性与应用,中国非金属矿工业导刊,2007,4:11~13
    92胡显奇,申屠年.连续玄武岩纤维在军工及民用领域的应用,高科技纤维与应用,2005, 30(6):7~13
    93北京君安泰防护科技有限公司产品介绍-玄武岩纤维制品,http://www.junantai.com/Templates
    94成都航天拓鑫科技有限公司产品说明书
    95李平,智欧.正确认识玄武岩纤维,玻璃纤维, 2008, 3:35~41
    96李新娥.连续玄武岩纤维的研发及其应用,第八届功能性纺织品及纳米技术研讨会论文集,2008, 166~170
    97石钱华.国外连续玄武岩纤维的发展及其应用.玻璃纤维, 2003, 4:27~31
    98叶鼎铨.玄武岩纤维发展动态,玻璃纤维,2008, 1:39~41
    99邢声远,吴宏仁.化工产品手册-纺织纤维,第四版,化学工业出版社,2005,468:332~333,
    100齐风杰,李锦文,李传校等.连续玄武岩纤维研究综述,高科技纤维与应用,2006, 31(2):42~46
    101刘铁砚,谯瑾.玄武岩纤维—一种高性能天然无机矿物纤维.中国纤检,2008,4:74
    102我国玄武岩纤维制造技术开发成功,纺织服装周刊,2007, 5:17.
    103谢尔盖,李中郢.玄武岩纤维材料的应用前景.纤维复合材料,2003, 3:17~20
    104谢尔盖.玄武岩纤维的特性及其在中国的应用前景[J]玻璃纤维,2005,5:44~48
    105杨勇新,岳清瑞.玄武岩纤维及其应用中的几个问题,工业建筑,2007, 37(6):1~4
    106都亨,张文祥,庞宝君,刘静.空间碎片,科学技术出版社,2008
    107 W. D. Crozier, W. Hume, Hight-velocity Light-Gas Gun, J. Apl. Phy. 1957,28:892
    108 A. C. Charters, B. P. Denardo, V. J. Rossow, Development of a Piston-Compressor Type Light-Gas Gun for the Launching of Free-Flight Models atHigh Velocity, NACA TS 4143, 1957
    109 J. S. Curtis. An Accelerated Reservoir Light Gas Gun, NASA TN D-1144, 1962
    110 A. E. Seigel. The Theory of High Speed Guns, AGARDograph 91, 1965
    111 J. Lukasiewicz, Constant Acceleration Flows and Applications to High-SpeedGuns, Amer. Inst. Aero. Astro. 1967, 5(11):1955~1963
    112 A. C. Charters, Development of the High-velocity Gas-Dynamics Gun, Int. J.Impact Engineering, 1987, 5:181~203
    113林俊德.弹速1400米秒的57毫米气炮阀门,爆炸与冲击,1985, 5(3):60-67
    114林俊德.非火药驱动的二级轻气炮的发射参数分析研制,爆炸与冲击,1995,15(3):229~239
    115张德志,唐润棣,林俊德等.新型气体驱动二级轻气炮研制.兵工学报,2004,25(1):14~18
    116 T. Moritoh, N. Kawai, S. Matsuoka, Hypervelocity Impact Experiments up to 9km/s by a Compact Multi-Stage Light-Gas Gun. Int. J. Impact Engineering,2003, 29:459~467
    117 Y. V. Batkov, N. P. Kovalev, A. D. Kovtun, et al, Explosive Three-StageLauncher to Accelerate Metal Plates to Velocities More than 10km/s. Int. J.Impact Engineering, 1997, 20:89~92
    118 Jerome T. Tzeng, Edward M. Schmidt. Comparison of Electromagnetic andConventional Guns From a Mechanics and Material Aspect. 23rd InternationalSymposium on Ballistics, 2007:597~604
    119 W. D. Weldon. Development of Hypervelocity Electromagnetic Launchers, Int.J. Impact Engineering, 1987, 5:671~679
    120沈金华,贾浩.电磁轨道炮及其应用.爆炸与冲击,1984, 4(2):90~96
    121周之奎,陈素年,邓利文.电热炮原理实验研究.爆炸与冲击,1993,13(2):186~192
    122 E. Schmidt, M. Bundy. Ballistic Launch to Space, 22nd International Symposiumon Ballistics 2005:243~250
    123王金贵.超高速碰撞的弹托分离技术,高压物理学报1993, 7(2):143-147
    124张德志,唐润棣,林俊德等.非火药驱动二级轻气炮关键部件的研制,第二届全国爆炸力学实验技术交流会论文集,2002:56~61
    125施尚春,陈攀森,黄跃.高速弹丸的磁感应测速方法,高压物理学报1991,5(3):205~214
    126 A. J. Piekutowski. Debris Clouds Produced by Hypervelocity Impact ofNonspherical Projectiles, Int. J. Impact Engineering.2001, 26:613~624
    127 J. Williamsen, E. Howard. Video Imaging of Debris Clouds FollowingPenetration of Lightweight Spacecraft Material, Int. J. Impact Engineering,2001, 26:865~877
    128 A. J. Piekutowski. Radiographic Studies of Impact Fragmentation, High-Pressure Shock Compression of Solids, Springer, 1996:150~175
    129 A. J. Piekutowski. Formation and Description of Debris Clouds Produced byHypervelocity Impact, NASA CR-4707, 1996.
    130王根山,杨乃宾,王晓蔚,王惠杰.国外复合材料性能手册,中国环境科学出版社,1990:4~5
    131 E. P. Fahrenthold, Y. K. Park. Simulation of Hypervelocity Impact onAluminum-Nextel-Kevlar Orbital Debris Shields, Int. J. Impact Engineering,2003, 9:227~235.
    132 E. L. Christiansen, Meteoroid-debris shielding NASA TP-2003-210788, 2003.8
    133顾平.织物结构与设计学.东华大学出版社2006.7
    134 M. A. Meyers, Dynamic Behavior of Materials.张庆明等译.材料的动力学行为,国防工业出版社2006:71~83
    135张庆明.LY-12铝合金熔化的临界碰撞速度.北京理工大学学报,2000,20(4):427~430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700