固体炸药冲击起爆的物质点法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展起爆动力学方面的研究对军事科学领域的发展具有非常重要的意义,由于问题的复杂性,其实验和理论的研究进展非常缓慢。随着计算机技术的迅速发展,数值模拟技术逐渐成为解决此类问题的重要手段。
     对于冲击起爆问题,涉及大变形、化学动力学、多相介质耦合等问题,这给传统的基于网格算法带来了极大地困难。对于拉格朗日型网格,网格畸变导致时间步的急剧减小,大大降低了计算效率,并增加累计误差;对于欧拉型网格,由于对流项的存在,计算也有一定的困难。针对传统网格算法的缺陷,无网格法逐渐发展成为当今计算力学的热点。物质点法就是一种无网格算法,它由质点网格法(Particle-in-Cell, PIC)和流体代码FLIP的基础上发展而来。物质点法集合了拉格朗日法和欧拉法两者的优点,避免了网格畸变和对流误差。物质点法最大的特点是它自动满足无滑移边界条件,在计算碰撞接触问题时,无需设置主从接触面,在求解本文所研究课题时具有较大的优势。
     建立了冲击动力学的物质点法计算模型,采用集中质量法,给出了控制方程的显式求解格式。物质点法采用固定的背景网格,为方便本质边界条件的处理,采用有限元形函数进行位移函数近似;为保证大变形分析时材料标架的客观性,采用焦曼应力率进行应力的更新;在处理冲击波波阵面的强间断性时,引入了人工粘性;为满足显式时间积分算法的条件稳定性,对时间步控制和声速计算等进行了讨论。采用不同的强度模型对冲击碰撞问题进行了研究,结果表明在高速撞击条件下,强度模型对压力的计算结果影响不大。分别采用物质点法、有限元法、光滑粒子流体动力学方法对高速冲击问题进行了数值模拟,从计算效率来看,采用物质点法来求解本文所研究的问题是相对较优的。对超高速碰撞下碎片云的形状进行了数值模拟,计算得到的碎片云形状与实验结果基本一致。
     进一步发展了物质点法,提出了多物质物质点计算格式并将其成功应用到固体炸药冲击起爆问题。在本文的计算中,未反应炸药和爆轰产物的状态方程均采用JWL状态方程,炸药的反应速率方程采用点火增长方程。通过物质点内两相介质的热力学平衡假设等给出了合理的两相混合准则,并在此基础上提出了多物质物质点法计算格式。由于爆轰过程燃烧速率过快,采用传统时间步控制方法求解时,计算精度较低,本文提出了通过控制燃烧质量分数增量修正时间步的方法来提高计算精度。对冲击起爆问题进行了数值模拟,通过升降法得到了破片冲击下固体炸药起爆的临界速度,并与实验结果吻合较好。与传统算法进行了比较,物质点法计算的结果与实验结果相比更为接近,并且物质点算法简单,计算方便,物质点法在冲击起爆领域中具有较大的发展潜力和应用前景。
     采用冲击波理论推导了在破片冲击下炸药内部冲击波的强度和宽度,对冲击起爆的工程计算方法进行了研究,并用数值模拟结果验证了工程计算方法的有效性,此工程计算方法可与数值模拟方法互为补充。
     目前物质点法还处于研究阶段,没有可用的商业软件,本文开发了相应的计算程序,为计算冲击动力学和冲击起爆问题提供了一个全新的数值模拟平台。该程序包括前处理(可划分背景网格和物质点)和主体计算模块,并编制了相应接口导出数据,可采用Tecplot或Origin等科学绘图软件进行后处理分析。
Study on initiation kinetics is very important for military science. Due to its complexity, progress of experimental and theoretical study is very slow. With the rapid development of computer technology, more and more attention was paid on numerical simulation.
     The main work of this paper focused on Shock to Detonation Transition (SDT). SDT problems, involving large deformation, chemical kinetics, multiphase coupling and so on, is solved difficultly by traditional grid-based algorithms, such as the finite element method (FEM) and the finite difference method (FDM). For the Lagrangian grids, large deformation will lead to large distortion, it made the time steps became smaller and smaller, which made the whole calculation time extended. And mesh distortion made the accumulated error increscent. For the Eulerian grids,there are advection errors. To overcome these disadvantages of traditional grid-based algorithms, meshfree methods were developed rapidly and became hotspot in Computational Mechanics. The material point method (MPM) is an extension to solid mechanics problems of a hydrodynamics code called FLIP which, in turn, evolved from the particle-in-cell method. MPM, which is a new meshfree method, takes advantage of both Eurlerian and Lagrangian methods and avoids the mesh distortion and tangling issues associated with Lagrangian methods and the advection errors associated with Eulerian methods. The key feature of the MPM is the use of the same set of nodal basis functions for both the mapping from material points to cell nodes, and the mapping from cell nodes to material points. As a result, the use of the single-valued mapping functions yields a natural no-slip contact/impact scheme so that no interpenetration would occur for penetration problems.
     Impact dynamics model with material point method was established, and explicit calculation format of MPM was deduced. Fixed background mesh was used, and finite element shape function was used for function approximation. Stress for large deformation material which exhibit elastic-plastic behavior was integrated by Jaumann stress rate. Artificial bulk viscosity was used to treat shock wave. For the stability of explicit time integration, the time step and sound speed was studied. Several impacting problems were computed. Several impacting problems with different strength models were computed, and it shows that Strength model has little effect on the calculation results. MPM method, FEM method, SPH method were used to simulate impact engineering problems, and the comparison of results proved the advantage of MPM from the aspect of precision and cost. At last, a hypervelocity impact problem was study. The shapes of debris cloud obtained by MPM are in agreement with the experimental result.
     Material point method was first proposed for SDT problems. JWL Equation of state was used for unreacted explosive and reacted product, and ignition and growth model of explosive initiation was used. According to thermodynamic equilibrium assumption in material points, a two-phase mixture of unreacted explosive and reacted product was proposed. And multi-material material point, which contains unreacted explosive and reacted product in the same time, design procedure was first proposed on that basis. Because of rapid process of explosive detonation, the mass fraction incremental of combustion was controlled to promote accuracy. Simulating some SDT problems, the critical detonating velocities were gained by means of the‘up-down’method. Compared with the traditional algorithm, the superiority of material point method in the calculation of shock initiation problems is obvious.
     Duration and value of shock wave in explosive generated due to impact was deduced with shock wave theory. And a method in engineering calculation, which was validated by numerical results, was proposed in this paper. Engineering calculation method and numerical simulation methods complement each other.
     Currently, the material point method is still in the research stage, and there is no commercial software. A Computer code was developed, which provide a new numerical simulation platform for impact problem and SDT problem. It contains pre-processing, main calculation and data interface modules, and Tecplot, Origin software can be used for Post-processing.
引文
[1]莫言.爆炸.北京:昆仑出版社,1988:25-42页
    [2]杨慧群.炸药装药结构的易损性研究.南京理工大学博士学位论文. 2005:1-2页
    [3] Shaun Forth. Mathematical and Numerical Modelling of Shock Initiationin Heterogeneous Solid Explosives. PHD Thesis of Cranfield University, 2007:1-2P
    [4]时党勇,刘永存,徐建.爆炸力学中的数值模拟技术.工程爆破. 2005, 11(2): 10-13页
    [5]章冠人,陈大年.凝聚炸药起爆动力学.北京:国防工业出版社, 1991: 3-4页
    [6]宁建国,马天宝.国内外爆炸力学仿真软件研究现状及发展趋势.中国科学院技术科学论坛第二十三次学术报告会议(CAE自主创新发展战略),上海, 2006: 129-139页
    [7]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力学分析.北京:清华大学出版社, 2005: 12-14页
    [8]严翰新,姜春兰,李明,王在成.不同起爆方式对聚焦战斗部性能影响的数值模拟.含能材料. 2009, 17(2): 143-146页
    [9]鲁忠宝,南长江.鱼雷入水战斗部动态响应仿真分析.鱼类技术. 2006, 14(4): 36-39页
    [10]汪衡,韩卿,陶敏.焊接药筒发射强度分析及退壳力计算.国防技术基础. 2009, 7: 54-58页
    [11]邓吉平,胡毅亭,贾宪振,陈网桦,彭金华.爆炸驱动球形破片飞散的数值模拟.弹道学报. 2008, 20(4): 96-99页
    [12]杜修力,廖维张,田志敏,李亮.炸药爆炸作用下地下结构的动力响应分析.爆炸与冲击. 2006, 26(5): 474-480页
    [13]辛春亮,秦健,刘科种,徐更光.基于LS-DYNA软件的水下爆炸数值模拟研究.弹箭与制导学报. 2008, 28(3): 156-158页
    [14]韩宝成,王丽琼,冯长根.集中药包土中爆炸成腔的三维数值模拟.计算机仿真. 2002, 19(4): 86-88页
    [15]卢红琴,刘伟庆.空中爆炸冲击波的数值模拟研究.武汉理工大学学报. 2009, 31(19): 105-108页
    [16] Tham C Y. Reinforced concrete perforation and penetration simulation using AUTODYN-3D. Finite Elements in Analysis and Design. 2005, 41(14): 1401-1410P
    [17] Miyoshi H. Numerical simulation of shaped charges using the SPH solver: jet formation and target penetration. Materials Science Forum. 2007, 566(1): 65-70P
    [18]马天宝,宁建国.三维爆炸与冲击问题仿真软件研究.计算力学学报. 2009, 26(4): 600-603页
    [19] Ning J G, Wang C, Ma T B. Numerical analysis of the shaped charged jet with large cone angle, International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7 (1): 71-78P
    [20]温万治,恽寿榕,赵衡阳,张月琴.欧拉程序中描述分界面的网格线示踪点法.兵工学报. 1999, 20(3): 212-216页
    [21]何长江,于志鲁,冯其京.高速碰撞的三维欧拉数值模拟方法.爆炸与冲击. 1999, 19(3): 216-221页
    [22]李光耀,卡里鲁.弹塑性大变形畸变问题的无网格分析.湖南大学学报. 2003, 30(1): 47-49页
    [23]恽寿榕,涂侯杰,梁德寿,张汉萍.爆炸力学计算方法.北京:北京理工大学出版社, 1995: 1-7页
    [24] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl. Meshless methods: An overview and recent developments.Computer Methods inApplied Mechanics and Engineering, 1996, 139(1-4): 3-47P
    [25]宋康祖,陆明万,张雄.固体力学中的无网格法.力学进展, 2000, 30(1):55-65页
    [27] Lucy L B.Numerical approach to testing the fission hypothesis. Astron. J.1977, 82(12):1013-1024P
    [28] Gingold R A, Monaghan J J. Smoothed Partiele hydrodynamies: theory and applications to non-spherical stars . Mon. Not. Roy. Astron. Soc.1977, 18: 375-389P
    [29] P.W. Randles, L.D. Libersky. Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications. Computer Methods in Applied Mechanics and Engineering. 1996, 139(1-4): 375-408P
    [30] Chen J K, Beraun J E, Jih CJ. An improvement for tensile instability in smoothed particle hydrodynamics.Comput.Mech. 1999, 23(1):279-287P
    [31] G.R. Johnson, S.R. Beissel. Normalized Smoothing Functions for SPH Impact Computations. International Journal for Numerical Methods in Engineering. 1996, 39(16): 2725-2741P
    [32] Jiannong Fang, Parriaux A, Rentschler M, Ancey C. Improved SPH methods for simulating free surface flows of viscous fluids. Applied Numerical Mathematics. 2009, 59(2): 251-271P
    [33] Violeau D, Issa R. Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. International Journal for Numerical Methods in Fluids. 2007, 53(2): 277-304P
    [34] Basa M, Quinlan N J, Lastiwka M. Robustness and accuracy of SPH formulations for viscous flow. International Journal for Numerical Methods in Fluids. 2009, 60(10): 1127-1148P
    [35] Potapov S, Maurel B, Combescure A, Fabis J. Modeling accidental-type fluid-structure interaction problems with the SPH method. Computers &Structures. 2009, 87(11-12): 721-734P
    [36] Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid-structure interaction by SPH. Computers & Structures. 2007, 85(11): 879-890P
    [37]杨刚,韩旭,龙述尧.应用SPH方法模拟近水面爆炸.工程力学. 2008, 25(4): 204-208页
    [38] Jubelgas M, Springel V, Dolag K. Thermal conduction in cosmological SPH simulations. Monthly Notices of the Royal Astronomical Society. 2004, 351(2): 423-435P
    [39]徐金中,汤文辉.钨合金长杆弹侵彻玻璃靶板的SPH方法数值模拟.弹箭与制导学报. 2009, 28(6): 95-98页
    [40] Liu W K, ChenY, Zhang Y F.Overview and applications of the reproducing kernel particle methods. Archives of Computational Methods in Engineering,stat eof the art review. 1996, 3(1):3-80P
    [41] Nayroles P, Touzot G, Villon P. Generalizing the finite element methods: diffuse approximation and diffuse elements.Comput. Mech. 1992, 10: 307–318P
    [42] Belyschko T, Touzot G, Gu L. Element free galerkin methods. Int. J. Num. Meth. Engrg. 1994, 37(2):229–256P
    [43] Krysl P, Belytschko T. Analysis of thin plates by the Element-free Galerkin method. Computational Mechanics. 1996, 17(1-2):26-35P
    [44] Krysl P, Belytschko T. Analysis of thin shell by the Element-free Galerkin method. International Journal of Solid and Structures. 1996, 33(20-22): 3057-3080P
    [45] Liu G R, Chen X L. Buckling of symmetrically laminated composite plates using the element-free Galerking method. International Journal of Structural Stability and Dynamlics. 2002, 2(3): 281-294P
    [46] Chen X L, Liu G R, Lim S P. An element free Galerkin method for the freevibration analysis of composite laminates of complicated shape. Composite Structures, 2003, 59(2): 279-289P
    [47]潘小飞.高效稳定的无网格法若干问题的研究.清华大学博士论文. 2006: 79-99页
    [48]潘小飞,张雄,陆明万.质点积分无单元伽辽金法及其在金属成型中的应用.计算力学学报. 2008, 25(5): 595-601页
    [49] Onate E, Idelsohn S, Zienkiewicz O C. A finite point method in computational mechanics:Applications to convective transport and ?uid ?ow. Int. J. Numer. Methods Engrg.1996, 39(22): 3839-3866P
    [50] Onate E, Idelsohn S, Zienkiewicz O C. A stabilized finite point method for analysis of ?uid mechanics problems.Comput. Method. Appl. Mech. Engrg. 1996, 139(1-4):315–346P
    [51] Ortega Enrique, O?ate Eugenio, Idelsohn Sergio. A finite point method for adaptive three-dimensional compressible flow calculations. International Journal for Numerical Methods in Fluids. 2009, 60(9): 937-971P
    [52] Onate E, Idelsohn S, Zienkiewicz O C, Taylor R L. A finite point method in computational mechanics. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering. 1996, 39(22): 3839-3866P
    [53] L?hner Rainald, Sacco Carlos, O?ate Eugenio, Idelsohn Sergio. A finite point method for compressible flow. International Journal for Numerical Methods in Engineering. 2002, 53(8): 1765-1779P
    [54] Perazzo F, L?hner R, Perez-Pozo L. Adaptive methodology for meshless finite point method. Advances in Engineering Software. 2008, 39(3): 156-166P
    [55] Boroomand B, Najjar M, O?ate,E. The generalized finite point method. Computational Mechanics. 2009, 44(2): 173-190P
    [56] Bitaraf M, Mohammadi S. Large deflection analysis of flexible plates by the meshless finite point method. Thin-Walled Structures. 2010, 48(3): 200-214P
    [57] Zhu T, Zhang J, Atluri S N. A local boudary integral equation (lble) method in computational mechanics, and a meshless discretization approach. Comput. Mech. 1998, 21:223–235P
    [58] Atluri T, Zhu. A new meshless local Petrv-Galerkin(MLPG) approach in computational mechanics. Comput.Mech. 1998, 22(2): 117–127P
    [59] Liu KY, Long SY, Li GY. A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem. Engineering Analysis with Boundary Elements. 2006, 30(1): 72-76P
    [60]龙述尧.用无网格局部Petrov-Galerkin法分析弹性地基上的梁.湖南大学学报. 2001, 28(5): 11-15页
    [61]龙述尧.用无网格局部Petrov-Galerkin法分析非线性地基梁.力学季刊. 2002, 23(4): 547-551页
    [62]熊渊博,龙述尧.用无网格局部Petrov-Galerkin方法分析Winkler弹性地基板.湖南大学学报. 2004, 31(4): 101-104页
    [63]龙述尧.弹性力学问题的局部Petrov-Galerkin方法.力学学报, 2001, 33(4): 508~518页
    [64]熊渊博,龙述尧.薄板的局部Petrov-Galerkinf方法.应用数学和力学,2004, 28(2): 198-206页
    [65] Duarte C A, Oden J T. Hp clouds: A h-p meshless method. Numerical Methods for Partical Differential Equations. 1996, 12: 673–705P
    [66] Liszka T J, Duarte C A, Tworzydlo W W. Hp-meshless cloud method.Comput. Method Appl. Mech. Engrg. 1996, 139(1-4): 263–288P
    [67] Mendon?a, De Barcellos C.S, Duarte A. Investigations on the hp-Cloud Method by solving Timoshenko beam problems. Computational Mechanics. 2000, 25(2): 286-295P
    [68] Garcia Oscar, Fancello Eduardo A, De Barcellos Clovis S, Duarte C Armando. hp-clouds in Mindlin's thick plate model. International Journal for Numerical Methods in Engineering. 2000, 47(8): 1381-1400P
    [69] Wendland H. Meshless galerkin method using radial basis functions. Math. Comput. 1999, 68(228): 1521–1531P
    [70] Sulsky D, Chen Z, Schreyer H L. A particle method for history-dependent materials. Computer Methods in Applied Mechanics and Engineering. 1994, 118(1-2): 179–196P
    [71] Shang Ma, Xiong Zhang, Qiu,X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems. International Journal of Impact Engineering. 2009, 36(2): 272-282P
    [72] Weiss J A, Guilkey J E, Hoying J B. Computational modeling of multicellular constructs with the material point method. Journal of Biomechanics. 2006, 36(11): 2074-2086P
    [73] Guo Y, Nairn J A. Calculation of J-integral and stress intensity factors using the material point method. Computer Modeling in Engineering & Sciences. 2004, 6(3): 295-308P
    [74] R. E. Winter, J. E. Field. The Role of Localised Plastic Flow in the Impact Initiation of Explosives. In Proc.Roy.Soc. 1975, A343: 399–413P
    [75] J. I. Copp, S. E. Napier, T. Nash, W. J. Powell, H.Skelly, A. R. Ubbelohde, P. Woodward. The Sensitiveness of Explosives. Philosophical Transactions of the Royal Society, 1948, 241:198–296P
    [76] N. K. Bourne, J. E. Field. Shock-Induced Collapse of Single Cavities in Liquids. J.Fluid Mech. 1992, 244:225–240P
    [77] N. K. Bourne. On the Collapse of Cavities. Shock Waves. 2002, 11(6): 447–455P
    [78] H. R. James. An Extension to the Critical Energy Criterion Used to PredictShock Initiation Thresholds Lots. Popellents, Explosives, Pyrotechnics. 1996, 21(1): 8–13P
    [79] R. E. Winter, S. S. Sorber, D. A. Salisbury, P. Taylor, R.Gustavsen, S Sheffield, R. Alcon. Experimental Study of the Shock Response of an HMX-Based Explosive. Shock Waves. 2006, 15(2): 89–101P
    [80] F.P.Bowden, A.D. Yoffe. Initiation and Growth of Explosion in Liquids and Solids. USA: Cambridge University Press, 1952:67-96P
    [81] J.E. Field, N.K. Bourne, S.J.P. Palmer. Hot-Spot Ignition Mechanisms for Explosives and Propellants. Phil.Trans.Soc.Lond.A. 1992, 339(1654): 269–283P
    [82] Krishna M. K., et al. Effects of Physical Inhomogeneities on the Impact Sensitivity of Solid Explosives: A High-Speed Photographic Study. Combustion Science and Technology. 1984, 40(5-6): 269-278P
    [83] Chaudhri, M. M., Field, J. E. The Role of Rapidly Compressed Gas Pockets in the Initiation of Condensed Explosive. Proceedings of the Royal Society of London. 1974, 340(1620):113-128P
    [84] C.L.Mader.Initiation of Detonation by the Interaction of Shocks With Density Discontinuities. Physics of Fluids. 1965, 8(10):1811–1816P
    [85] M.M. Carroll, A.C.Holt. Staticand Dynamic Pore Collapse Relations for Ductile Porous Materials. Journal of Applied Physics. 1972, 43(4): 1626–1636P
    [86] R.B. Frey. Cavity Collapse in Energetic Materials.In Proceedings of the 8th International DetonationSymposium. 1985:68–80P
    [87] Grady, D. E., Kipp, M. E. The Growth of Unstable Thermoplastic Shear with Application to Steady-wave Shock compression in Solids. Journal of Mechanics and Physics of Solids. 1987, 35(1): 95-100P
    [88] Tokmakoff, A., etal. Chemical Reaction Initiation and Hot-Spot Formation inShocked Energetic Material. Journal of physical Chemistry. 1993, 97(9): 1901-1913P
    [89]陈广南.固体火箭发动机机械撞击荷载作用下安全性研究.国防科技大学博士学位论文. 2005: 11-45页
    [90] C.S.Coffey. Phonon Generation and Energy Localization by Moving Edge Dislocations. Phys.Rev. 1981, B24(12):6984P
    [91] C L Mader, C A Forest. Two-dimensional homogeneous and heterogeneous wave propagation. Technical Report LA-6259, Los Alamos Scientific Laboratory. 1976: 9P
    [92] J N Johnson, P K Tang, C A Forest. Shock wave initiation of heterogeneous reactive solids. Journal of Applied Physics. 1985, 57(9): 4323-4334P
    [93] J Starkenberg. Modeling detonation propagation and failure using explosive initiation models in a conventional hydrocode. in The Twelfth Symposium (International) on Detonation. 2002: 1001-1007P
    [94] E L Lee. C M Tarver. Phenomenological Model of Shock Initiation in Heterogeneous Explosives. Physics of Fluids. 1980, 23(12): 2362–2372P
    [95] J W Kury, R D Briethaupt, C M Tarver. Detonation waves in trinitrotoluene. Shock Waves. 1999, 9(4): 227-237P
    [96] J K Clutter, D Belk. Simulation of detonation wave interaction using an ignition and growth model. Shock Waves. 2002, 12(3): 251-263P
    [97] C M Tarver, R D Breithaupt, J W Kury. Detonation waves in pentaerythritol tetranitrate. Journal of Applied Physics. 1997, 81(11): 7193-7202P
    [98] C M Tarver, J W Kury, R Don Briethaupt. Detonation waves in triaminotrinitrobenzene. Journal of Applied Physics. 1997, 82(8): 3771-3782P
    [99] C M Tarver. Ignition-and-growth modeling of LX-17 hockey puck experiments. Propellants, Explosives and Pyrotechnics. 2005, 30 (2):109-117P
    [100]黄风雷,丁儆,浣石.固体推进剂冲击起爆及其反应区本构方程的整体标定研究.北京理工大学学报. 1994, 14(4): 443-448页
    [101]张雄,刘岩.无网格法.北京:清华大学出版社, 2004:71-81页
    [102] Ventura G. An augmented Lagrangian approach to essential boundary conditions in meshless methods. Int. J. Num. Meth. Engng., 2002, 53(4): 825-842P
    [103] Lu Y Y, Belytschko T, Gu. L. A new implementation of the element free Galerkin method.Comput. methods appl. Mech. Engng., 1994, 113(3-4): 397-414P
    [104] Mukherjee Y X, Mukherjee S.On boundary conditions in the element free Galerkin method. Comput. Mech. 1997, 19(4): 267-270P
    [105] Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 1998, 22(2): 117-127P
    [106] Zhu T, Atluri S N. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech., 1998, 21(3): 211-222P
    [107] Luming Shen. Multi-scale modeling and simulation of multi-physics in film delamination.University of Missouri-Columbia, Paper of Phd degree. 2004: 33-41P
    [108] Honglai Tan, John A. Nairn. Hierarehieal, adaptive, material point method for dynamic energy release rate calculations.Comput. Methods Appl. Mech. Engrg. 2002, 191(19-20): 2095-2109P
    [109] W. Hu, Z. Chen. A multi-mesh MPM for simulating the meshing proeess of spurgears. Computers&struetures, 2003, 81(20): 1991-2002P
    [110]韩旭,杨刚,强洪夫译.光滑粒子流体动力学——一种无网格粒子法.湖南长沙:湖南大学出版社, 2005: 137-138页
    [111]张晓波.船底结构砰击时的流固耦合数值模拟.大连理工大学硕士论文, 2007: 15-16页
    [112]张宝平,张庆明,黄风雷.爆轰物理学.北京:兵器工业出版社, 2006: 370-371页
    [113]唐鸽,江少恩,易有根,巫顺超.混合物质高压状态方程的计算.强激光与粒子束, 2008, 20(2): 247-250页
    [114]黄秀光,罗平庆,傅思祖,顾援,马民勋,吴江,何钜华.激光驱动高压状态方程实验中的绝对测量方法.物理学报, 2002, 14(1): 75-80页
    [115]顾援,傅思祖,黄秀光,吴江,叶君建,舒桦,马民勋,何钜华,王世绩.激光驱动高压下材料状态方程实验研究进展.物理. 2007, 36(6): 465-471页
    [116]同济大学数学教研室.高等数学(第四版下册).北京:高等教育出版社, 2002: 163-168页
    [117] John O. Hallquist. LS-DYNA Theoretical Manual .USA: Livemore Software Technology Corporation, 1998: 313-314P
    [118]张雄,王天舒.计算动力学.北京:清华大学出版社, 2007: 289-290页
    [119] AUTODYN. Theory Manual Revision 4.3. USA: Century Dynamics, Incorporated, 2005: 149-152P
    [120]王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社, 1992: 130-142页
    [121]庄茁.连续体和结构的非线性有限元.北京:清华大学出版社, 2002:188-267页
    [122] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proeeedings of the 7th International Symposium on Ballisties .The Hague, Netherlands, 1983: 541-547P
    [123]赵光明.无网格方法及其在冲击动力学中的应用研究.西南交通大学博士论文. 2006: 116-118页
    [124]唐炳涛,孙德明,王兆清,赵震.用于板料成形反向模拟的特殊应力更新算法: 2009,41(3): 376-382页
    [125] Zhou X, Tamma, K.K. On the applicability and stress update formulations for corotational stress rate hypoelasticity constitutive models.Finite Elements in Analysis and Design. 2003, 39(8):783-816P
    [126] Ortiz M, Popov E P. Accuracy and stability of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering. 1985, 21(9): 1561-1576P
    [127]熊祝华,傅衣铭,熊慧而.连续介质力学基础.长沙:湖南大学出版社, 1997: 69-71页
    [128]马上.超高速碰撞问题的三维物质点法模拟.清华大学硕士论文. 2005: 14页
    [129] E. J. Caramana, M. J. Shashkov, P. P. Whalen. Formulations of artificial viscosity for multi-dimensional shock wave computations. Journal of Computational Physics. 1998, 144(1): 70-97P
    [130]周海兵,熊俊,刘文韬,张树道.拉氏数值模拟中的新人工粘性方法.第四届全国计算爆炸力学会议论文集, 2008: 36-41页
    [131] Von Neumann J, Richtmyer R D. A method for the numerical calculation of hydrodynamical shocks .Journal of Applied Physics. 1950, 21(21) :232-257p
    [132] Hernquist L, Katz N. TREESPH-A unification of SPH with the hierarchical tree method. The Astrophysical Journal Supplement Series. 1989, 70: 419-446P
    [133] John O. Hallquist. LS-DYNA theory Manual .USA: Livemore Software Technology Corporation, 2006: 489-490P
    [134]王新月,杨清真.热力学和气体动力学基础.西安:西北工业大学出版社, 2004: 33页
    [135]凌道盛,徐兴.非线性有限元及程序.杭州:浙江大学出版社, 2004: 221-239页
    [136] S.G. Bardenhagen, J.U. Brackbill, and D. Sulsky, The material-point method for granular materials[]J. Computer Methods in Applied Mechanics and Engineering, 2000. 187(3-4): 529-541P
    [137]王津龙,刘天云,张楚汉.材料点法的高效局部隐式接触算法.清华大学学报(自然科学版).2008, 48(3): 344-347页
    [138] PAN Xiao-Fei, XUAi-Guo, ZHANG Guangcai, ZHANG Ping, ZHUJian-Shi, MA Shang, ZHANG Xiong. Three-Dimensional Multi-mesh Material Point Method for Solving Collision Problems. Communications in Theoretical Physics. 2008, 49(5): 1129-1138P
    [139] Deborah Sulsky, Shi-Jian Zhou, Howard L Schreyer. Application of a particle-in-cell method to solid mechanics. Computer Physics Communica- tions. 1995, 87(1-2): 236-252P
    [140]王宇新,顾元宪,孙明.无网格MPM法在冲击载荷问题中的应用.工程力学. 2006, 23(5): 46-51页
    [141] Deborah Sulsky, Howard L. Schreyer. Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems. Computer Methods in Applied Mechanics and Engineering. 1993, 139(1-4): 409-429P
    [142] Chen Weidong, Zhang Zhong. Material Point Method in Impact Engineering Problems. Key Engineering Materials Vols. 2010, 419-420: 501-504P
    [143]何建,唐平,王善,欧阳志为.柱形杆高速碰撞薄靶板的数值仿真.系统仿真学报. 2005, 17(9): 2107-2111页
    [144]刘天生,张晋红,李长顺.三种算法在侵彻模拟中的对比研究.弹箭与制导学报. 2009, 29(3): 117-119页
    [145] Tekeste M Z, Tollner E W, Raper R L. Non-linear finite element analysis of cone penetration in layered sandy loam soil - Considering precompression stress state. Journal of Terramechanics. 2009, 46(5): 229-239P
    [146] Seo Songwon, Min Oakkey, Lee Jaehoon. Application of an improved contact algorithm for penetration analysis in SPH. International Journal of Impact Engineering. 2008, 35(5): 578-588P
    [147] Thomas J N. Influence of plasticity models upon the outcome of simulated hypervelocity impacts. AIP Conference Proceedings. 1994, 309:1785-1788P
    [148]张伟,马文来,马志涛,庞宝君.弹丸超高速撞击铝靶成坑数值模拟.高压物理学报. 2006, 20(1): 1-5页
    [149] S.R. Beissel, C.A. Gerlach, G.R. Johnson. Hypervelocity impact computations with finite elements and meshfree particles. International Journal of Impact Engineering, 2006,33(1-2): 80-90P
    [150]徐金中,汤文辉.空间碎片超高速碰撞问题的SPH方法模拟.强度与环境. 2008, 35(5): 25-31页
    [151] Libersky L D, Randles P W, Carney T C, Dickinson D L, Recent improvements in SPH modeling of hypervelocity impact. International Journal of Impact Engineering. 1997, 20(6): 525-532P
    [152] Honglai Tan, John A Nairn. Hierarchical, adaptive, material point method for dynamic energy release rate calculations. Computer methods in applied mechanics and engineering. 2002, 191(19-20): 2095-2109p
    [153] Z.Chen a, W Hu, L Shen, X Xin, R Brannon. An evaluation of the MPM for simulating dynamic failure with damage diffusion. Enineering fracture mechanics. 2002, 69(17): 1873-1890P
    [154] Duan Z Zhang, Qisu Zou W, Brian Vander Heyden, Xia Ma. Material point method applied to multiphase ?ows. Journal computational physics. 2208,227(6): 3159-3173P
    [155]马上,张雄,邱信明.超高速碰撞问题的三维物质点法.爆炸与冲击, 2006, 26(3): 273-278页
    [156]王宇新,陈震,张洪武,孙明.多层抗爆结构冲击响应无网格MPM法分析.工程力学. 2207, 24(12): 186-192页
    [157]王宇新,顾元宪,孙明.无网格MPM法在冲击载荷问题中的应用.工程力学. 2006, 23(5): 46-51页
    [158]张守中.爆炸与冲击动力学.北京:兵器工业出版社, 1993: 28-30页
    [159]王丽琼,冯长根,杜志明.有限空间内爆炸和点火的理论与实验.北京:北京理工大学出版社, 2005: 245-247页
    [160]恽寿榕,赵衡阳.爆炸力学.北京:国防工业出版社, 2005: 106-120页
    [161]陈朗,龙新平,冯长根等.含铝炸药爆轰.北京:国防工业出版社, 2005: 108-120页
    [162] AUTODYN. Explosive Initiation users manual. USA: Century Dynamics, Incorporated, 2005: 41-44P
    [163] C M Tarver. J O Hallquist. Modelling Two-Dimensional Shock Initiation and Detonation Wave Phenomena inPBX-9404 and LX-17. Proceedings of the 7th International Detonation Symposium. 1981: 488–497P
    [164] C M Tarver, J O Hallquist, L M Erickson. Modelling Short Pulse Duration Shock Initiation of Solid Explosives.Proceedings of the 8th International Detonation Symposium, 1985: 951–961P
    [165]浣石,薛鸿路.冲击波起爆炸药的拉格朗日分析方法.爆炸与冲击. 1984, 5(3): 20-26页
    [166]浣石,蒋国平.用Lagrange分析方法确定固体炸药基于JWL状态方程的反应速率方程.湖南大学学报. 2006, 33(3): 33-36页
    [167] Shiro Kubota, Kunihito Nagayama, Tei Saburi, Yuji Ogata. State relations for a two-phase mixture of reacting explosives and applications.Combustion and Flame, 2007, 151: 74–84P
    [168]陈卫东,蔡萌林,于诗源.工程优化方法.哈尔滨:哈尔滨工程大学出版社, 2006: 26-41页
    [169]董小瑞,隋树元.破片对屏蔽炸药的撞击起爆研究.华北工学院学报, 1999, 20(3): 236-238页
    [170]伍俊英,陈朗,鲁建英,冯长根,王永杰.高能固体推进剂冲击起爆特征研究.兵工学报. 2008, 29(11): 1315-1319页
    [171]王永杰,鲁建英,陈林泉,陈朗.固体火箭发动机撞击靶板安全性数值分析.固体火箭技术. 2009, 32(3): 274-277页
    [172]王健.凝聚炸药撞击起爆的拉格朗日模拟.弹道学报, 2006, 18(4): 48-50页
    [173]张先锋,陈惠武,赵有守.射弹冲击引爆带壳炸药数值模拟.弹道学报, 2005, 17(2): 24-27页
    [174]李会敏,刘彤.破片冲击引爆带盖板装药的数值模拟方法研究.弹道学报, 2008, 20(1): 35-38页
    [175] Belytschko. On the Completeness of Meshfree methods Particle. Int.J. Num.Meth.Engng. 1998, 43: 785-819页
    [176] Faraud,M..SPH Simulations of Debris Impacts Using Two Different Computer Codes. Int.J.of Impact Engng.1998, 23(1): 249-260P
    [177]贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理. 1997, 14(2): 155-166页
    [178]马利.无网格法及液体射流射流高速碰撞与侵彻模拟.浙江大学博士论文. 2007: 76-77页
    [179]乐莉,闫军,钟秋海.超高速撞击仿真算法分析.系统仿真学报. 2004, 16(9): 1941-1943页
    [180]姚惠生,黄风雷,恽寿榕,李芳,周栋.损伤炸药反应速率及起爆的数值模拟.北京理工大学学报, 2007, 27(4): 287- 290页
    [181]卫玉章.非均匀炸药的冲击引爆综合判据.爆炸与冲击. 1982, 1: 117-121页
    [182]王海福,冯顺山.密实介质中冲击波衰减特性的近似计算.兵工学报, 1996, 17(1): 79-81页
    [183]王树山,隋树元.注装B炸药冲击起爆特性试验.火工品. 2001, 2: 18-20页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700