AA 7055铝合金在不同温度及应变率下力学性能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
7055铝合金是目前最先进的商用高强高韧铝合金,具备极高的强度、较好的韧性以及良好的抗应力腐蚀性,具有广泛的应用前景。材料在复杂的服役环境中可能受到各种不同载荷的作用,对材料在不同加载条件下力学行为的研究是完善材料开发、应用以及进行新材料及结构设计的基础。目前,国内对7055铝合金的研究尚处于起步阶段,对于这类新型高性能铝合金在不同加载条件下的力学行为研究仍然十分匮乏,同时,目前也没有一个被广泛接受的本构模型能对该类材料在大的温度和应变率范围内力学行为进行准确描述。另外,作为目前研究材料动态力学行为最为常用的实验设备——分离式霍普金森压杆(SHPB)和分离式霍普金森拉杆(SHTB),在实验方法和实验技术上尚未形成完善、统一的标准,有待进一步的研究和发展,譬如SHPB实验中实现预定应变率的实验参数选取问题,以及SHTB实验中的试样连接方式等。
     基于以上背景,本文首先针对SHPB和SHTB实验方法开展了研究和改进工作;然后,较为系统地研究了美国铝业公司生产的AA 7055-T77铝合金在不同温度和应变率下的力学性能及行为,结合微观组织分析对其部分机理进行了初步研究,根据实验结果对Johnson-Cook本构模型进行了修正,并对本构模型的适用性进行了检验和讨论;最后,为评估AA 7055铝合金的高速撞击特性,对AA 7055铝合金和参考材料在高速撞击下的厚板成坑行为进行了研究和对比分析。本文主要的研究内容如下:
     第一,基于一维应力波理论推导出一个应变率预估公式,以预估公式为核心,提出了一种可方便实现预定应变率的SHPB实验方案设计方法,并通过数值仿真与实验对该方法进行了演示和验证。
     第二,设计了一种用于SHTB装置的楔形卡口式试样连接方式,并通过数值仿真及实验测试证明了这种卡口式连接方式是有效可行的。
     第三,利用Gleeble热模拟试验机对AA 7055铝合金在不同温度下的低应变率单轴压缩性能进行了测试,温度范围为300~750K,加载应变率分别为0.0005s-1、0.01s-1和1s-1;利用SHPB及改进试样连接方式的SHTB装置对其在常温下的动态压缩性能和动态拉伸性能进行了研究,应变率测试范围为:动态压缩时900~5000s-1,动态拉伸时500~1600s-1;获得了AA 7055铝合金在以上加载条件下的应力应变关系和力学行为。
     第四,基于AA 7055铝合金的实验结果,提出了一个包含临界转变温度的温度效应附加函数、一个耦合温度的应变率效应函数和一个包含有效应变的分段应变硬化函数,综合以上结果,提出了一个具有上述特征的修正Johnson-Cook模型。利用该修正模型对7050-T7451铝合金在较大的温度和应变率范围内的流动应力进行了预测,得到的结果与实验结果符合的较好;同时,该修正模型高温下简化形式对AA 7055铝合金在本文研究范围内的流动应力预测结果与实验结果符合得较好,得到的结果均优于Johnson-Cook模型。说明本文提出的修正Johnson-Cook模型对于铝合金材料具有较好的适用性。
     第五,对45%体积分数SiCp/2024Al复合材料、2024铝合金及2A12铝合金也进行了部分测试,获得了这3种参考材料的部分力学性能和材料参数。参考材料的实验结果以及文献中的实验数据表明,本文提出的温度效应附加函数同样适用于参考材料以及部分其它材料。
     第六,在单次动态压缩的基础上,利用SHPB对AA 7055铝合金和2024铝合金进行不同次数的循环动态压缩测试,通过对宏观应力应变关系和微观组织变化综合分析,研究了AA 7055铝合金动态压缩时剪切局部化的发展过程。发现了铝合金动态压缩时试样内部剪切局部化的形成机理和发展规律。
     最后,利用二级轻气炮系统研究了AA 7055铝合金、45%体积分数SiCp/2024Al复合材料和2A12铝合金的厚板结构在高速撞击下的成坑行为,撞击条件分别为: 4.76mm直径2017铝合金球形弹丸,速度范围为1.40~4.47km/s;5mm直径GCr15钢球弹丸,速度范围为1.56~2.36km/s。并对AA7055铝合金和2A12铝合金靶板上弹坑周围的微观组织进行了金相观察和分析。结果表明,靶板材料的力学性质对成坑的尺寸与形貌都有显著的影响,成坑深度与材料强度成反比。
     本文发展和改进了SHPB和SHTB实验方法;较系统地获得了AA 7055-T77铝合金的力学性能,并初步获得了其部分力学行为的微观机理,建立了表征该类材料在不同温度和应变率下力学行为的本构模型。本文取得的研究成果对动态力学性能测试方法和7055铝合金等新型超高强铝合金的材料设计、开发以及工程应用具有一定的指导意义和参考价值。
7055 aluminum alloy is the most advanced aluminum alloy with extremely high strength, preferable tenacity and favorable resistance to stress corrosion, which has broad application prospects. Materials will be subjected by various loads in complicated application environment; so, studying the mechanical properties of the materials under different loading conditions is the basis for application and design of the materials. At present, the research on 7055 aluminum alloy is just at the starting stage in China, and the research on the mechanical behaviors of 7055 aluminum alloy under different loading conditions is still very scarce. Meanwhile, at present, the split Hopkinson pressure bar (SHPB) and the split Hopkinson tensile bar (SHTB) are the most commonly used test equipments of dynamic mechanics. But there are no unified and consummation standard for these experimental methods and equipments. There are still some problems need to be concerned: just as how to accurately gain the preset strain rates in SHPB test; and how to connect specimen to the bars of SHTB, etc.
     Based on the above background, in this thesis, we researched and developed SHPB and SHTB tests at first. Then, we systematically studied the mechanical properties and behaviors of the AA 7055-T77 aluminum alloy (produced by Alcoa) under different temperatures and strain rates; moreover, combined with micro-structure analysis, we preliminarily analyzed its mechanism. At the same time, as a comparison, part of the tests were performed on three reference materials: 45 vol.% SiCp/2024Al composite, 2024 aluminum alloy and 2A12 aluminum alloy. Finally, to evaluate the resistance of hypervelocity impact, we studied and contrastive analyzed the crater behaviors of AA 7055 aluminum alloy and the reference materials thick plates under hypervelocity impacted. The major research content in the thesis shows as follows:
     First, a strain rate prediction formula of SHPB test is derived from one-dimensional stress wave theory and two-wave method calculation formula. On the basis of this prediction formula, we present a SHPB test design method that can easily verify scheduled strain rates, and demonstrate and verifiy this method through numerical simulation and experiment test.
     Second, we’ve designed a kind of wedge-shaped bayonet specimen connective mode and corresponding specimen form for SHTB device, and proved it’s effective and feasible through numerical simulation and experiment test.
     Third, low strain rate uniaxial compressive tests of AA 7055 aluminum alloy under different temperatures was performed by Gleeble thermo-simulator machine, the temperature range was 300~750K and the strain rate was 0.001s-1,0.01s-1 and 1s-1 respectively. Dynamic compressive tests and dynamic tensile tests of AA7055 aluminum alloy at the room temperature was performed by SHPB and improved SHTB device; the test range of strain rate is: dynamic compression at 900~5000s-1, while dynamic tension at 500~1600s-1. The stress-strain relationships of AA 7055 aluminum alloy at the above loading conditions were obtained.
     Forth, according to the experimental results, we suggest a temperature effect additive function containing critical transformation temperature. Based on the experimental results of AA 7055 aluminum alloy, we propose a strain rate effect function coupling with temperature and a segmented strain-hardening function with effective hardening strain. Synthesizing the above result, we construct a modified Johnson-Cook model. The flow stress of a 7050-T7451 aluminum alloy over a wide temperature and strain rate rage were predicted by the modified Johnson-Cook model, the result is consistent with the experimental results (get from literature [42]) and much better than the result of primary Johnson-Cook model. Compared with the primary Johnson-Cook model, the predicting results of the flow stress of AA 7055 aluminum alloy under different loading conditions by the modified Johnson-Cook model is consistent with the experimental results much better. It indicates that the modified Johnson-Cook model proposed in this thesis has preferable applicability for aluminum alloys.
     Fifth, at the same time, similar tests were performed on three reference materials: 45 vol.% SiCp/2024Al composite, 2024 aluminum alloy and 2A12 aluminum alloy; and the mechanical properties and the materials parameters of these three materials were obtained. Combined with the experimental dates from literatures, the results show that the suggested temperature softening function is also suitable for these reference materials and some other materials.
     Sixth, on the basis of single dynamic compressive test, we performed cyclic dynamic compressive tests on AA 7055 aluminum alloy and 2024 aluminum alloy (contrast material) by SHPB, combining the macro-mechanical characters and microstructure changes analysis, studied the evolution of shearing localization problem of AA 7055 aluminum alloy during dynamic compression. We reveal the forming mechanism and some developmental rules of the shearing localization in the specimen of aluminum alloys during dynamic compression.
     At last, we studied the crater behavior of AA 7055 aluminum alloy and two reference materials thick plates under hypervelocity impact by two-stage light gas gun system, the impact conditions were: 2017 aluminum alloy sphere pellet with a diameter of 4.76mm, velocity range was 1.40~4.47km/s; GCr15 steel sphere pellet with a diameter of 5mm, velocity range was 1.56km/s~2.36km/s. We observed and analyzed the microstructure near the craters on the target plates of two aluminum alloy. The results indicate that the mechanical properties of target material have significant effects on the size and damage morphology of the crater and the intensity of target material is inversely to depth of carter.
     From this study, we get more convenient and efficient SHPB and SHTB testing methods; systematically obtain the mechanical properties and material parameters of AA 7055 aluminum alloy; and establish a constitutive model characterizing the mechanical properties of aluminum alloys at different temperatures and strain rates. The results have some guiding significance and reference value for the design, development and engineering application of the ultrahigh strength aluminum alloys as 7055 aluminum alloy and dynamic mechanical testing methods.
引文
1李行旦.商用飞机用铝合金结构材料的发展.上海有色金属.1994, 15 (3):
    2刘静安,周昆.航空航天用铝合金材料的开发与应用趋势.铝加工. 1997, 20(6): 51~59
    3李成功,巫世杰,戴圣龙,杨守杰.先进铝合金在航空航天工业中的应用与发展.中国有色金属学报.2002, 12 (1):14~21
    4杨守杰,戴圣龙.航空铝合金的发展回顾与展望.材料导报. 2005, 19(2): 76~80
    5 J. C. Williams, E. A. Starke. Progress in Structural Materials for Aerospace Systems. Acta Mater., 2003, 51 (19): 5775~5799
    6吴一雷,李永伟,强俊,李春玉.超高强度铝合金的发展与应用.航空材料学报.1994, 14 (1): 49~55
    7宋仁国.高强度铝合金的研究现状及发展趋势.科学导报.2000, 14(1): 20~21
    8钟掘.提高铝材质量基础研究的进展.中国有色金属学报.2002, 12: 1~13
    9 R. Q. Liang, A. S. Khan. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. International Journal of Plasticity, 1999, 15:963~980
    10 M. E. Kassner, S. Nemat-Nasser, Z.G. Suo, et al. New Directions in Mechanics.Mechanics of Materials, 2005, 37(2): 231~259
    11 A.A.Salem,S.R.Kalidindi,S.L.Semiatin.Strain Hardening due to Deformation Twinning inα-titanium:Constitutive Relations and Crystal-Plasticity Modeling. Acta Materialia, 2005, 53(12): 3495~3502
    12夏源明.摆锤式杆杆型冲击拉伸试验装置和低温动态测试技术.实验力学, 1988(1): 57~66
    13韦习成,李磷,符仁钮,史文.高速冲击拉伸试验装置的研制.机械科学与技术. 2005, 24(7): 844~847
    14宋顺成,田时雨. Hopkinson冲击拉杆的改进及应用.爆炸与冲击,1992, 12(1): 62~67
    15胡时胜,邓德涛.材料冲击拉伸实验的若干问题探讨.实验力学. 1998, 13(1): 9~14
    16佟景伟,乌时毅,李鸿琦.高应变率拉伸shb试验设备的研制和测试技术.力学学报, 1994(1): 99~105
    17刘瑞堂,姜风春,张晓欣,沙桂英.用于材料动态力学性能研究的测试装置.哈尔滨工程大学学报,1999, 20(1): 13~18
    18李海,王芝秀,郑子樵.预变形及时效处理对7055铝合金组织和性能的影响.稀有金属材料与工程. 2006, 35 (8): 1276~1279
    19费得良捷尔,吴学,译.高强度变形铝合金.上海科技出版社.1963
    20 E. H. Dix. Develop of Cross-Wind Undercarriages for Airplaaes. Trans Asm, 1950, 42: 1057~1062
    21 D. A. Lukasak, R. M. Hart. Aluminum Alloy Development Efforts for Compression Dominated Structure of Aircraft. Light Metal Age, 1991, 2 (9): 11~15
    22李海.Ag、Sc合金化及热处理工艺对7055铝合金的微观组织与性能影响研究.中南大学博士学位论文.2005
    23周鸿章,李念奎.超高强度铝合金强韧化的发展过程方向[A].铝——21世纪基础研究与技术发展研讨会论文集第一部分册.2002
    24王涛,尹志民.高强变形铝合金的研究现状和发展趋势.稀有金属.2006, 30 (2): 197~202
    25李春梅,陈志谦,程南璞,曾苏民,何洪. 7055超高强、超高韧铝合金力学性能分析.金属热处理. 2008, 33 (1): 100~104
    26李杰.热处理对7055合金组织和性能的影响.中南大学硕士学位论文. 2005
    27陈军洲. AA 7055铝合金xxxxxxxxx.哈尔滨工业大学博士学位论文. 2009
    28 D. L. Holt, S. G. Babcock, S. J. Green, C. J. Maiden. The Strain-Rate Dependence of the Flow Stress in Some Aluminum Alloys. Transactions of the Asm: Transactions Quarterly. 1967, 60(2): 152~159
    29 K. Tanaka, T. Nojima. Strain Rate Change Tests of Aluminum Alloys Under High Strain Rate. Proceedings of the 19th Japan Congress on Materials Research, Tokyo, Japan, 1975. 48~51
    30 U. S. Lindholm, R. L. Bessey, G. Y. Smith. Effect of Strain Rate on Yield Strength, Tensile Strength, and Elongation of Three Aluminum Alloys. J Mater 1971;6(1):119~33
    31 L. Oosterkamp, Djapic, A. Ivankovic, G. Venizelos. High Strain Rate Properties of Selected Aluminium Alloys. J Mater Sci Eng A. 20002,78: 225~35
    32 T. Masuda, T. Kobayashi, L. Wang, H. Toda. Effects of Strain Rate on Deformation Behavior of A6061-T6. Materials Science Forum. 2003,426~432(1):285~90
    33 E. El-Magd, M. Abouridouane. Influence of Strain Rate and Temperature on the Compressive Ductility of Al, Mg and Ti Alloys. J Physiq Iv France. 2003, 110:15~20
    34 K. Higashi, T. Mukai, K. Kaizu, S. Tsuchida, S. Tanimura. Strain Rate Dependence on Mechanical Properties in Some Commercial Aluminum Alloys. J Physiq Iv France. 1991, 1(8): 341~6
    35 K. Higashi, T. Mukai, K. Kaizu, S. Tanimura, S. Tsuchida. the Microstructural Evolution During Deformation Under Several Strain Rates in A Commercial 5182 Aluminum Alloy. J Physiq Iv France. 1991, L (8): 347~52
    36 Woei-Shyan Lee, Wu-Chung Sue, Chi-Feng Lin, Chin-Jyi Wu. The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy. Journal of Materials Processing Technology. 2000, 100: 116~122
    37 R. Smerda, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, M. Finn. High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet. International Journal of Impact Engineering 32 (2005) 541–560
    38高玉华.铝合金Lc4和LY12cz在高应变率拉伸和压缩下的本构关系[J].材料科学与工艺,1994,2(2):24—29
    39高玉华.铝合金Lc4和LY12cz应变率相关力学性能的实验研究[J】.上海力学,1995,16(1):61—66
    40佟景伟,高丛峰,李林安,等.温度和应变率对拉伸载荷作用下高强铝合金本构关系影响的研究[J].试验力学,1999,1 4(4):498 604
    41赵寿根,何著,杨嘉陵,程伟.几种航空铝材动态力学性能实验[J].北京航空航天大学学报,2007,33(8):982—985
    42李娜,李玉龙,郭伟国. 3种铝合金材料动态性能及其温度相关性对比研究.航空学报,2008,29(4):903~908
    43郭伟国,田宏伟.几种典型铝合金应变率敏感性及其塑性流动本构模型.中国有色金属学报,2009,19(1):56~61
    44 S. Nemat-Nasser. Introduction to High Strain Rate Testing. ASM Handbook. Eds. H. Kuhn, D. Medlin. 2000, 8: 427~428
    45王礼立,朱兆祥.应力波基础(第二版).北京:国防工业出版社,2005: 52
    46 J. Hopkinson. on the Rupture of Iron Wire by a Blow. Proc. Man. Lit. Phil. Soc. 1872,11: 40~45
    47 B. P. Hopkinson. Trans. R. Soc. Lond. 1914, A213: 437~456
    48 R. M. Davies. A Critical Study of the Hopkinson Pressure Bar. Philos. Trans. R.Soc A.1948, 240:375~457
    49 H. Kolsky. An Investigation of the Mechanical Pproperties of Materials at Very High Rates of Loading. Proc. R. Soc. B. 1949,62:676~700
    50肖大武,胡时胜,田杰.对小截面试件SHPB实验中的二维效应的探讨.第四届全国爆炸力学实验技术学术会议.武夷山. 2006: 60~68
    51 J. M. Staehler, W. W. Predebon, et al. Testing of High-Strength Ceramics with the Split Hopkinson Pressure Bar. J Am Ceram Soc, 1993, 76(2): 536~5383
    52 H. Zhao, G. Gary. on the Use of SHPB Techniques to Determine the Dynamic Behavior of Materials in the Range of Small Strains. International Journal of Solids and Structures. 1996, 33: 3363~3376
    53 S. Sarva, S. Nemat-Nasser. Dynamic Compressive Strength of Silicon Carbide under Uniaxial Compression. Mater Sci Eng A, 2001, 317: 140~144
    54李英雷,胡时胜,李英华. A95陶瓷材料的动态压缩测试研究.爆炸与冲击. 2004, 24(3):233~239
    55 B. P. Zhang, Y. L. Zheng, H. J. Wu. Study on the Dynamic Behavior of Tungsten Alloy at Strain Rates Up to 5000s~1. Journal of Beijing Insititue of Technology. 2004, 13(3): 270~273
    56李英雷,胡时胜,魏志刚,史洪刚,冯宏伟.大变形锻造钨合金动态力学性能研究.兵工学报. 2003, 24(3): 378~380
    57张晓晴,姚小虎,杨桂通,黄小清.用于高强度材料的SHPB实验添加垫块法.实验力学. 2005, 20(2):275~280
    58孟益平,胡时胜.混凝土材料冲击压缩试验中的一些问题.实验力学. 2003, 18: 108~112
    59 D. J. Frew, M. J. Forrestal, W. Chen. Pulse Shaping Techniques for Testing Brittle Materials with a Split Hopkinson Pressure Bar. Experimental Mechanics. 2002, 42: 93~106
    60 D. J. Frew, M. J. Forrestal, W. Chen. a Split Hopkinson Pressure Bar Technique to Determine Compressive Stress-Strain Data for Rock Materials. Experimental Mechanics. 2001, 41: 40~46
    61宋博,姜锡权,陈为农.霍普金森压杆实验中的脉冲整形技术.第三届全国爆炸力学实验技术交流会.黄山. 2004: 1~70
    62刘孝敏,胡时胜.大直径SHPB弥散效应的二维数值分析.实验力学. 2000, 15: 371~376
    63胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究.工程力学. 2001, 18: 115~119.
    64胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系.爆炸与冲击. 2002, 22:242~246.
    65 T. S. Lok, X. B. Li, D. Liu, P. J. Zhao. Testing and Response of Large Diameter Brittle Materials Subjected to High Strain Rate. Journal of Materials in Civil Engineering. 2002, 14: 262~269
    66 G. T. Gary, W. R. Blumenthal. Split Hopkinson Pressure Bar Testing of Soft Materials. Mechanical Testing and Evaluation, Metals Handbook, American Society for Metals, Materials Park, Ohio. 2000, 8: 488~496
    67 W. Chen, B. Zhang, M. J. Forrestal. A Split Hopkinson Bar Technique for Low Impedance Materials. Experimental Mechanics. 1999, 39: 81~85
    68胡时胜,唐志平,王礼立.应变片技术在动态力学测量中的应用.实验力学. 1987, 2: 73~82
    69胡时胜,刘剑飞,冯建平.硬质聚氨酯泡沫塑料动态力学性能的研究.爆炸与冲击. 1996, 16: 373~376
    70刘剑飞,王正道,胡时胜.低阻抗多孔介质材料的SHPB实验技术.实验力学. 1998, 13: 218~223
    71刘剑飞,胡时胜. PVDF压电计在低阻抗介质动态力学性能测试中的应用.爆炸与冲击. 1999, 19: 229~234
    72宋博,胡时胜,刘剑飞.泡沫塑料中冲击波的传播.实验力学. 1999, 14: 273~278
    73 Chen W, Lu F, Zhou B. A Quartz-Crystal-Embedded Split Hopkinson Pressure Bar for Soft Materials. Experimental Mechanics. 2000, 40: 1~6
    74 G. T. Gray, W. R. Blumenthal, C. P. Trujillo, R. W. Carpenter. Influence of Temperature and Strain Rate on the Mechanical Behavior of Adiprene L-100. Journal De Physique IV France Colloque C3 (DYMAT 97). 1997, 7: 523~528
    75 W. Chen, F. Lu, D. J. Frew, M. J. Forrestal. Dynamic Compression Testing of Soft Materials. Transactions of the ASME, Journal of Applied Mechanics. 2002, 69: 214~223
    76 X. J. Wu, D. A. Gorham. Stress Equilibrium in the Split Hopkinson Pressure Bar Test. Journal De Physique IV France Colloque C3(DYMAT 97). 1997, 7: 91~96
    77 Song B, Chen W. Dynamic Stress Equilibration in Split Hopkinson Pressure Bar Tests on Soft Materials. Experimental Mechanics. 2004, 44: 300~312
    78孙善飞,巫绪涛,李和平等. SHPB试验中试样形状和尺寸效应的数值模拟.合肥工业大学学报(自然科学版), 2008, 31(9): 1509~1512
    79 J. Z. Malinowski, J. R. Klepaczko. Dynamic Frictional Effects As Measuredfrom the Split Hopkinson Bar . Int J Mech Sci, 1986, 28: 381–91
    80谭柱华,盖秉政,庞宝君等.影响Hopkinson压杆试验结果因素的数值模拟分析.哈尔滨工业大学学报, 2007, 39(3): 363~366
    81王晓燕,卢芳云,林玉亮. SHPB试验中端面摩擦效应的试验研究.第三届全国爆炸力学试验技术学术会议论文集,黄山, 2004: 144~149
    82 D. A. Gorham. Specimen Inertia in High Strain ~ Rate Compression. J Phys D, 1989, 22: 1888~1893
    83陶俊林,陈裕泽,田常津等. SHPB系统圆柱形试件的惯性效应分析.固体力学学报, 2005, 26(1): 107~110.
    84 B. A. Gama, S. L. Lopatnikov, J. W. Gillespie. Hopkinson Bar Experimental Technique: a Critical Review. Appl Mech Rev, 2004, 57(4): 223~250.
    85 E. D. H. Davies and S. C. Hunter. the Dynamic Compression Testing of Solids by the Method of Split Hopkinson Pressure Bar. J. Mech. Phys. Solids, 1963, 11: 155–179.
    86 G. T. Gray III. Classic Split Hopkinson Pressure Bar Testing, ASM Handbook Vol 8, Mechanical Testing and Evaluation, ASM Int, Materials Park OH, 462–476.
    87陈刚,陶俊林,陈忠富等. SHPB的径向惯性效应修正.西南科技大学学报, 2008, 23(2): 15~18.
    88 C. K. H. Dharan, F. E. Hauser. Determination of Stress-Strain Characteristics at Very High Strain Rates. Experimental Mechanics, 1970 ,10:370~376.
    89陶俊林. SHPB实验技术若干问题研究.中国工程物理研究院,博士论文. 2005
    90 J. Harding. Testing Techniques at High Rates of Strain. J Mech Engng Sci, 1960(20): 88~96
    91 F. E. Hauser. Exp. Mech. 1966 6: 395~402
    92 D. R. Christman, W. M. Isbell, S. G. Babcock, A. R. Mcmillan, S. J.Green. Report No. DASA 2501~2, MSL 70~23, Vol.II, Arlington, V A. 1971.
    93 U. S. Lindholm. Mechanical Properties at High Rates of Strain. Proc Conf Mech. Properties of Mater. at High Rates of Strain. Oxford, 1974
    94 K. Kawata, A. Kobayashi. Bull.Inst.Space Aerenaut. Sci. University of Tokyo 1977, 13: 529~560
    95 T. Nicholas. Tensile Testing of Materials at High Rates of Strain. Exp. Mech. 1981, 21(5): 177~182
    96 K. Saka, J. Harding. Behaviour of Fibre-Reinforced Composites under Dynamic Tension. CSA Report AD~A150629. 1984
    97 G. H. Staa. A Direct Tension Split-Hopkinson Bar for High Strain-Rate Testing. Exp. Mech. 1991, 9: 232~235
    98 W. E. Baker, C. H. Yew. Strain-Rate Effects in the Propagation of Torsional Plastic Wave. Journal of Applied Mechanics-Transactions of the ASME, 1966, 33: 917~923
    99 J. D. Campbell, A. R. Dowling. The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading. Journal of the Mechanics and Physics of Solids, 1970, 18: 43~63
    100 J Duffy, J. D. Campbell, R. H. Hawley. On the Use of a Torsional Split Hopkinson Bar to Study Rate Effects in 1100 Aluminium. Journal of Applied Mechanics-Transactions of the ASME, 1971, 38: 83~91
    101田兰桥, C Sturt, B Dodd.铝-锂合金动态扭转实验研究,爆炸与冲击. 1992, 12(1): 68~76
    102胡时胜,桥本彰三,小林昭.一种新型的冲击扭转装置.实验力学. 1193, 8(3): 238~243
    103乌时毅,佟景伟,李鸿琦.高应变率扭转SHPB实验技术.天津大学学报, 1994, 27(3): 278~283
    104 J. F. KALTHOFF. Fracture Behavior under High Rates of Loading. Engng Fracture Mech, 1986, 23(1): 289~29
    105 M. N. BASSIM. Investigation of Dynamicjidfor Alloy Steel Weldments Using the Split Hopkinson Bar. Journal of Testing and Evaluation,1986,14(5):229~235
    106 M. R.Bayoumi, J. Klepaczko, M. N. Bassim. Determination of Fracture Toughnessjicunder Quasistatic and Dynamic Loading Conditions Using Wedge Loaded Specimen. Journal of Testing and Evaluation, 1984, 12(5): 316~323
    107李玉龙.利用三点弯曲试样测定材料动态起裂韧性的技术与展望.稀有金属材料与工程, 1993, 22(5): 12~18
    108 Xia Yuan Ming. a Novel Method for Measure Plane Stress Dynamic Fracture Toughness. Engng Fracture Mech, 1994, 48(1):17~24
    109李玉龙,刘元镛,郭伟国等.动态起裂韧性及动态裂纹扩展的理论与实验研究.西安:西北工业大学出版社, 1995: 21—114
    110孙洪涛,刘元镛.用Hopkinson压杆技术研究试样几何对动态起裂韧性的影响.实验力学, 1996, 11(2): 141~146
    111 T. Yokoyama. Determination of Dynamic Fracture Initiation Toughness Using a Novel Impact Bend Test Procedure. Journal of Pressure Vessel Technology, 1993, 115: 389~397
    112刘瑞堂,张晓欣,姜风春,欧贵宝.用Hopkinson压杆技术测试材料动态断裂韧性.哈尔滨工程大学学报. 2000,21(6): 18~21
    113 S. Nemat-Nasser, J. B. Isaacs, J. E. Starrett. Hopkinson Techniques for Dynamic Recovery Experiments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. London: the Royal Society, 1991: 371~391
    114 S. Nemat-Nasser, Isaacs J B. Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates with Application to Ta and Ta-W Alloys. Acta Matall, 1997, 45: 907~919
    115 A. M. Lennon, K. T. Ramesh. a Technique for Measuring the Dynamic Behavior of Materials at High Temperatures. International Journal of Plasticity. 1998,14(12): 1279~1292
    116 S. Nemat-Nasser, W. G. Guo, et al. Dynamic Response of Conventional and Hot Isostatically Pressed Ti-6Al-4V Alloys: Experiments and Modeling. Mechanics of Materials, 2001, 33: 425~439
    117 M. Shazly, V. Prakash, S. Draper. Mechanical Behavior of Gamma~Met PX under Uniaxial Loading at Elevated Temperatures and High Strain Rates. International Journal of Solids and Structures. 2004, 41:6485~6503.
    118李玉龙,索涛,郭伟国等.确定材料在高温高应变率下动态性能的Hopkinson杆系统.爆炸与冲击, 2005, 25(6): 487~492
    119 S. Nemat-Nasser, W. G. Guo. Thermomechanical Response of HSLA-65 Steel Paltes: Experiments and Modeling. Mechanics of Materials, 2005, 35: 379~405
    120昝祥,陈晓宏,黄文,夏源明.高温冲击拉伸试验中的快速接触加温技术.实验力学. 2005, 20(3): 321~327
    121 L. W. Meyers, S. Manwaring. In: L. E. Murr, K. P. Staudhammer, M. A. Meyers Eds. Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena. New York: Marce Dekker, 1986: 657
    122孙坤,王富耻,程兴旺,苗普.赵双赞1TC6钛合金不同组织绝热剪切带的形成机理.稀有金属材料与工程. 2009, 38(1):34~37
    123吴德伦,叶晓明,张平.围压SHPB试验理论与应用.第三届全国岩石动力学学术会议.桂林, 1992: 85~94
    124刘飞,赵凯,王肖钧,任辉启.软材料和松散材料SHPB冲击压缩实验方法研究.实验力学. 2007, 22(1): 20~26
    125 G. I. Taylor. the Use of Flat-Ended Projectiles for Determining Dynamic Yield Stress, I, Theoretical Considerations. Proc. Roy. Soc. 1948, A194: 289
    126 W. H.Gust, D. A. Yong, A. M. Bull. Phys. Soc. 1980(25): 567
    127 P. C. Johnson, B. A. Stein, R. S. Davies. Measurement of Dynamic Plastic Flow Properties under Uniform Stress. in Symposium on the Dynamic Behavior of Materials, ASTM Special Publication, 1963, No.336:195
    128 U. R. and rade, M. A. Meyers, A. H. Chokshi. Constitutive Description of Work- and Shock-Hardened Copper. Scripta Metallurgica Et Mterialia, 1994, 30(7): 933~938.
    129 L. M. Baker, C. D. Lundergan, W. J. Hermann. Appl. Phys., 1964(40): 1203
    130 R. J. Clifton. In Mechanical Properties at High Rates of Strain (J. Harding Ed.). 1979: 174.
    131 G. I. Taylor. The Plastic Wave in a Wire Extended by An Impact Load. British Ministry of Home Security, Civil Defense Research Committee Report RC 323. 1942
    132 Von Karman, P. Duwez. The Propagation of Plastic Deformation in Solids. Journal of Applied Physics, 1950, 21: 987.
    133严宗达编著.塑性力学.天津大学出版社, 1988.
    134 G. R. Johnson, W. H. Cook. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. Proceedings of the Seventh International Symposium on Ballistic, the Hague, the Netherlands, 1983: 541~547.
    135 T. J. Holmquist, G. R. Johnson. Determination of Constants and Comparison of Results for Various Constitutive Model. J. Phys. 1, 1991, C3: 853~860.
    136 W. K. Rule, S. E. Jones. A Revised Form for the Johnson-Cook Strength Model[J]. Int. J. Impact Engng., 1988, 21(8): 609~624
    137 U. R. Andrade, M. A. Meyers, A. H. Chokshi. Constitutive Description Fo Work- and Shock-Hardened Copper. Scripta Metallurgica Et Materialia, 1994, 30(7): 933~938.
    138 G. R. Johnson, T. J. Holmquist. An Improved Computational Constitutive Model for Brittle Materials. In: High Pressure Science and Technology 1993. Eds. Schmidt S. C., Shaner J. W., Samara G. A., Ross M. New York: AIP Press, 1994.
    139 G. R. Johnson, T. J. Holmquist. An Computational Constitutive Model for Brittle Materials Subjected to Large Strains, High Strain Rates and High Pressure. In: Proceedings of the Explomet Conference. CA, San Diego, 1990.
    140 F. J. Zerilli, R. W. Armstrong. Dislocation-Mechanics-Based Constitutive Relations for Materials Dynamics Calculations. J. Appl. Phys., 1987, 61(5): 1816~1825.
    141 D. J. Steinberg, S. G. Cochran, M. W. Guinan. A Constitutive Model for MetalsApplicable at High Strain Rate. J. Appl. Phys., 1980, 51(3): 1498~1503.
    142 M. A. Meyers. Dynamic Behavior of Materials. John Wiley and Sons, Inc. 1994
    143 D. J. Steinberg, C. M. Lund. A Constitutive Model for Strain Rates from 10-4 to
    106S-1. J. Appl. Phys. 1989, 65(4): 1528~1533.
    144 D. J. Steinberg. a Rate-Dependent Constitutive Model Molybdenum. J. Appl. Phys. 1993, 74(6): 3827~3831.
    145 S. R. Bodner, Y. Partom. Constitutive Equations for Elastic-Viscoplastic Strain- Hardening Materials. Journal of Applied Mechanics, 1975, June: 385~389.
    146 P. S. Follansbee, U. F. Kocks. A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress As An Internal State Variable. Acta Metall. 1988, 36(1): 81~93.
    147 A. S. Khan, S. Huang. Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Range 10-5S-1 to 104S-1. International Journal of Plasticity, 1992, 8: 397~424.
    148 D. Yao, E. Krempl. Viscoplasticity Theory Based on Overstress. the Prediction of Monotonic and Cyclic Proportional and Nonproportional Loading Paths of An Aluminum Alloy. International Journal of Plasticity, 1985, 1(3): 259~274.
    149 E. Krempl, J. M. Gleason. Isotropic Viscoplasticity Theory Based on Overstress (VBO). the Influence of the Direction of the Dynamic Recovery Term in the Growth Law of the Equilibrium Stress. International Journal of Plasticity, 1996, 12(6): 719~735.
    150 M. Kothari, L. Anand. Elasto-Visoplastic Constitutive Equations for Polycrystalline Metals: Application to Tantalum. Journal of the Mechanical and Physics of Solids, 1998, 46(1): 51~83.
    151 J. S. Wilbeck, C. E. Anderson, A. B. Wenzel, P. S. Westine, U. S. Lindholm. A Short Course on Penetration Mechanics. Southwest Research Institute, San Antonio, Texas, 1985: 5~70 to 5~78.
    152 J. M. Walsh, W. E. Johnson. On the Theory of Hypervelocity Impact. Proc.7th Hypervelocity Impact Symp. Martin Company, 1965, Vol.II.
    153 J. K. Dinenes, J. M. Walsh. Theory of Impact: Some General Principles and the Method of Eulerian Codes. High Velocity Impact Phenomena(Edited by R. Kinslow), 1970: 46~103.
    154 A. C. Charters, J. L. Summers. High Speed Impact of Metal Projectiles in Targets of Various Materials. Proc. 3rd Symp. on Hypervelocity Impact, Armour Research Foundation, Chicago, Illinois, 1959.
    155 W. W. Atkins. Hypervelocity Penetrations Studies. Proc. 4th Symp. on Hypervelocity Impact, Eglin Air Force Base, Florida, 1960, Vol.VI.
    156 D.R. Christman, J.W. Gehring. Penetration Mechanisms of High Velocity Projectiles. Proc. 7th Hypervelocity Impact Symp. Martin Company, 1965, Vol. VI.
    157 T. D. Riney, J. F. Heyda. Hypervelocity Impact Calculations. Proc. 7th Hypervelocity Impact Symp. Martin Company, 1965, Vol. II.
    158 J. R. Baker, M. A. Persechino. An Analytical Model of Hole Size in Finite Plates for Both Normal and Oblique Hypervelocity Impact for All Target Thicknesses Up to the Ballistic Limit. Proc. 1992 Hypervelocity Impact Symp. Int. J. Impact Eng. 1993, 14:73~84.
    159 J. R. Baker. Hypervelocity Crater Penetration Depth and Diameter—a Linear Function of Impact Velocity? Int. J. Impact Engng, 1995, 17: 25~35.
    160 A. J. Watts, D. Atkinson. Dimensional Scaling for Impact Cratering and Perforation. Int. J. Impact Engng. 1995, 17: 925~935.
    161孙庚辰,谈庆明等.金属厚靶超高速碰撞的开坑实验.第四届全国爆炸力学会议论文集,合肥,1990.
    162张庆明,黄风雷.超高速碰撞动力学引论.科学出版社,2000.
    163 E. Ferreyra, L. E. Murr, et al. Effect of Initial Microstructure on High Velocity and Hypervelocity Impact Cratering and Crater~Related Microstructures in Thick Copper Targets, Part I Soda~Lime Glass Projectiles. J. Mat. Sci.. 1997, 32: 2573–2585.
    164 L. E. Murr, E. Ferreyra, et al. Effect of Initial Microstructure on High Velocity and Hypervelocity Impact Cratering and Crater~Related Microstructures in Thick Copper Targets, Part I Stainless Steel Projectiles. J. Mat. Sci. 1997, 32: 3143–3156.
    165 B. G. Cour-Palais. Int. J. Impact Eng. 1987, 5: 221
    166 C. J. Hayhurst, H. J . Ranson, et al. Int. J. Impact Eng. 1995, 17: 375
    167 M. A. Meyers, K. K. Chawla. Mechanical Metallurgy: Principles and Applications. Prentice~Hall, Englewood Cliffs, New Jersey. 1984
    168周劲松.在高速粒子撞击作用下几种金属的宏观和微观损伤行为.哈尔滨工业大学博士学位论文. 1997
    169李国爱,高速撞击条件下几种金属材料的变形及组织演变行为.哈尔滨工业大学博士学位论文. 2006
    170张强,陈国钦,武高辉.含高体积分数SiCp的铝基复合材料制备与性能.中国有色金属学报.2003,13(5):1180~1183
    171 H. Meng, Q.M. Li. Correlation between the Accuracy of a SHPB Test and the Stress Uniformity Based on Numerical Experiments. Int. J. Imp. Eng. 2003,28:537~555
    172郭伟国.高导无氧铜在大变形、不同温度和不同应变率下的流动应力和本构模型. 2005, 25 (3):244~250
    173王春奎,黄晨光,孙原龙,段祝平.升温率和应变率对30CrMnSi拉伸强度的影响.金属学报, 1995, 31(10):475~478
    174刘合军,郎利辉,李涛.铝合金板材温热成形性能.塑性工程学报, 2009, 16(3): 145~149
    175昝祥,陈晓宏,黄文,夏源明.高温冲击拉伸试验中的快速接触加温技术.实验力学, 2005, 20(3): 321~327
    176 Bai Y L. Thermo-Plastic Instability in Simple Shear. J. Mech. Phys. Solids, 1982, 30: 195~207
    177 M. A. Meyers, Y. B. Xu, Q. Xue, M. T. Pérez-Prado, T. R. McNelley. Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel. Acta Materialia. 2003, 51:1307~1325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700