空间碎片超高速撞击下充气压力容器破损预报
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类航天活动的日趋频繁,空间碎片环境日益恶化,严重地威胁着在轨航天器的安全运行。航天器上的各种压力容器是航天器用来储存液体或含能高压气体的部件,在空间碎片超高速撞击下,可能导致其发生泄漏,甚至发生爆炸等灾难性破坏,使航天器任务提前终止或失效。目前,虽然已对超高速撞击下压力容器破损过程进行了有益的探索,但通常定性分析多于定量计算,并且尚未针对在超高速撞击下压力容器的损伤破坏行为建立出一个相对系统的理论预报模型。压力容器的损伤破坏特性及其失效预报分析是航天器空间碎片风险评估与防护结构设计的一个重要关键技术和前沿课题。
     本文以航天器上的圆柱形充气压力容器为研究对象,以速度范围为1.0km/s~7.0km/s的球形铝制弹丸模拟空间碎片,采用数值模拟和理论分析相结合的技术手段,对空间碎片超高速撞击充气压力容器的破损过程、破损机理开展系统研究,建立了包括容器前壁破损预报及容器后壁破损预报的压力容器破损预报模型,并与实验结果进行了对比。
     应用AUTODYN-2D,采用Lagrange方法确定了压力容器前壁穿孔尺寸、裂纹尺寸与气体压力、撞击条件的关系。根据压力容器前壁穿孔的形态特征,将其简化为含双裂纹的圆孔,建立了压力容器前壁穿孔的简化模型。基于线弹性断裂力学的Bueckner原理,建立了前壁穿孔尺寸、裂纹尺寸及气体压力与裂纹应力强度因子之间的关系式。应用该关系式,并基于断裂力学的K准则,对在气体介质压力作用下压力容器前壁的断裂行为进行了分析,建立了压力容器前壁破损预报模型,获得了压力容器前壁发生灾难性破坏的临界条件。研究结果表明,压力容器前壁穿孔孔边是否有裂纹裂纹产生对容器前壁发生灾难性破坏的临界气体压力有较大的影响。
     应用AUTODYN-2D,采用SPH方法对前壁撞击穿孔而产生的二次碎片与内充气体介质的相互作用过程建立计算模型并进行了数值模拟分析,通过与实验结果相比较,验证了数值模拟方法的有效性。根据二次碎片形态特点,建立了不同弹丸破碎模式的二次碎片初始模型。在此基础上,应用流体动力学、冲击波及气固两相流理论,结合数值模拟研究结果,对不同弹丸破碎模式下二次碎片与气体介质的相互作用过程进行了分析,建立了二次碎片与气体介质的相互作用模型,并通过与数值模拟结果、实验结果相比较验证了模型的有效性,确定了压力容器内二次碎片的运动特性及气体冲击波的传播规律。
     针对不同弹丸破碎模式,根据已获得的二次碎片运动特性及气体冲击波的传播规律,将二次碎片及气体冲击波对容器后壁的作用简化为局部均布冲击载荷对固支圆板的作用,建立了不同弹丸破碎模式下二次碎片及气体冲击波对压力容器后壁作用的简化模型,获得了局部冲击载荷的作用半径及在二次碎片与冲击波共同作用下容器后壁产生的初速度。基于前人对局部冲击载荷作用下圆板的破坏分析,确定了在二次碎片与气体冲击波作用下容器后壁产生穿孔的临界条件及穿孔半径。将穿孔半径等效为贯穿直裂纹,根据线弹性断裂力学,并考虑容器壁曲率的影响,获得了容器后壁发生灾难性破坏的临界条件。
     最后,集成上述研究成果建立了超高速撞击下充气压力容器的破损预报模型,并讨论了预报模型的适用范围。针对具体的实验工况应用建立的预报模型进行了计算,给出了预报流程,并通过与实验结果的比较验证了预报模型的有效性。
     本文建立的球形弹丸超高速撞击充气压力容器破损预报模型对航天器防护结构的设计具有指导意义,揭示了压力容器在超高速撞击下的破损机理,为压力容器类部件空间碎片撞击风险评估及开发研制先进的压力容器防护方案具有工程应用参考价值。
With the unceasing development of space activity, the total number of space debris is ever increasing, which greatly threatens orbiting space vehicles. Spacecraft often employ pressure vessels to contain gases and liquids. A pressure vessel subjected to hypervelocity impact by meteoroids and space debris can represent a significant hazard to a space vehicle because of the energy stored within the vessel. Vessel can occur venting through the impact hole. Catastrophic rupture of the vessel can send high-velocity fragments in all directions and secondary debrisary damage becomes a serious threat to the spacecraft. The damage characteristic of pressure vessel by space debris and prediction of catastrophic failure are the important basic of shield structure design and risk evaluation of spacecraft in space debris environment.
     At present, the quantitative investigation on damage process of pressure vessel under hypervelocity impact is still very limit. Systemic prediction model for damage and failure of pressure vessels under hypervelocity impact has not built.
     Based on the background mentioned above, this paper investigates the damage process of pressure vessel under hypervelocity impact. The impact velocity is ranging from 1.0 km/s to 7.0 km/s, the impact condition limits to fragmentation and melt of materials. The gas-secondary debris interaction process and propagation process of shock wave are investigated, and the prediction model for damage and failure of pressure vessels under hypervelocity impact is built.
     Lagrange methods in AUTODYN-2D is used for investigate the relationships between impact hole size, crack size, gas pressure and impact conditions. According to characteristics of impact hole, initial model of secondary debris is built. The model is presented by postulates the existence of two-radial cracks that emanate at the boundary of a circular hole. The relationships of impact hole size, crack size, gas pressure and the stress intensity factor which is determined by simplified linear elastic fracture mechanics are obtained. The damage process of the front wall is analyzed. The prediction model for damage and failure of front wall is built. The critical stress value is obtained.
     SPH methods in AUTODYN-2D is used for investigate the gas-secondary debris interaction process. The numerical simulation results are consistent with experimental results very well. The fragmentation process of projectile is introduced. According to characteristic of secondary debris, initial model of secondary debris is built. The gas-secondary debris interaction process is analyzed. The model of the gas-secondary debris interaction is built. The calculational results are compared to experimental results to verify the usefulness of the model. The motion characteristics of secondary debris and the rules of shock wave propagation are obtained.
     the paper assumes that the rear wall is subjected to uniform load when impacted by the debris cloud and shock wave. Initial velocity of the rear wall under a localized pulse loading is obtained. Based on the closed from deflection solution for thin plates subjected to localize explosive loading, the radius of discing and petalling is obtained. The prediction model for damage and failure of rear wall is built. The critical condition of catastrophic rupture of rear wall under a localized gas pressure is obtained.
     Last, based on the previous study, the prediction model for damage and failure of pressure vessels under hypervelocity impact is built. The applicable scope of prediction model is discussed. The calculational results are compared to experimental results to verify the usefulness of the model. The paper gives the prediction process.
     The result of this paper has some significant meanings and is valuable in engineering applications and providing theoretical guidelines. It reveals the physical process of pressure vessel damage and mechanism of damage. It provides technical foundation for risk assessment of pressure vessel and shielding design applications of pressure vessel.
引文
1刘静.航天空间环境—空间碎片及其应用研究.北京大学博士学位论文, 2004: 1~30
    2 R. Robert. Debris Environment Interactions with Low Earth Orbit Constellations. Proceedings of the Secondary debris Europe Conference on Space Debris, ESOC, Darmstadt, Germany, 1997
    3曲广吉,韩增尧.航天器空间碎片被动防护技术研究的总体构思.航天器工程. 2005, 14: 1~7
    4庞宝君,韩增尧.建立空间碎片防护设计工程体系提高航天器在轨安全能力.中国第三届空间碎片会议文集,北京, 2005
    5 Space debris. National Academy Press. Washington, D.C. 1955
    6 Y. T. Igor. Analysis of Burst Conditions of Shielded Pressure Vessels Subjected to Space Debris Impact. Journal of Pressure Vessel Technology, 2005, 127: 179~183
    7 N. L. Johnson. Environmentally-Induced Debris Sources. Advances in Space Research, 2004, 34(5): 993~999
    8 P. D. Anz-meador. Density and Mass Distributions of Orbital Debris. Acta Astronautica, 1996, 38(12): 927~936
    9朱毅麟.空间碎片环境近况.中国空间技术, 1996, 6: 19~28
    10张庆明,黄风雷.超高速碰撞动力学引论.科学出版社, 2000: 13~19
    11 E. L. Christiansen, J. H. Kerr. Debris Cloud Ablation in Gas-Filled Pressure Vessels. Int. J. Impact Engineering, 1997, 20: 173~184
    12 L. Michel, F. sch?fer. Hypervelocity Impacts on Gas Filled Pressure Vessels. Int. J. Impact Engineering, 1997, 20: 491~498
    13 F. Sch?fer. Hypervelocity Impact Testing Impacts on Pressure Vessels Final Report. EMI Report I-27/01, 2001
    14 W. P. Schonberg, H. J. Evans, J. E. Williamsen, et al. Uncertainty Considerations for Ballistic Limit Equations. Proceedings of the 4th European Conference on Space Debris, 2005
    15 F. S. Stepka, C. R. Morse. Preliminary Investigation of Catastrophic Fracture of Liquid-Filled Tanks Impacted by High-Velocity Particles. NASA Technical Note D-1537, LeRC, OH, 1963
    16 C. W. Ferguson. Hypervelocity Impact Effects on Liquid Hydrogen Tanks. NASA CR-54852, LeRC, OH, 1996
    17 B. G. Cour-Palais, J. L. Crews. Hypervelocity Impact and Uupper-Stage Breakups. Orbital Debris from Upper-Stage Breakup, 1989, 1: 121~130
    18 J. P. Whitney. Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels. NASA Report JSC 32294, 1993
    19 L. J. Friesen. Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels, Part II. NASA Johnson Space Center, JSC27081, 1995
    20 D. O. Greory, M. N. Angela. Hypervelocity Impact Testing of Pressure Vessels to Simulate Spacecraft Failure. Int. J. Impact Engineering, 2001, 26: 555~566
    21 J. W. Luta. Critical Fracture of Space Station Modules Following Orbital Debris Penetration. AIAA, 1996, 96: 43~62
    22 W. P. Schonberg, J. E. Williamsen. Empirical Hole Size and Crack Length Models for Dual-Wall Systems under Hypervelocity Projectile Impact. Int. J. Impact Engineering, 1997, 20: 711~722
    23 W. P. Schonberg, J. E. Williamsen. Cracking Characteristics of Multi-Wall Pressure Vessels Following Hypervelocity Projectile Impact. Proceeding 1996 ASME Conference on Structures under Extreme Loading Condition. Edit. Y. S. Shin, J. A. Zukas, Montreal, Canada, 1996: 214~221
    24 W. P. Schonberg, J. E. Williamsen. Space Station Module Wall Hole Size and Crack Length Following an Orbital Debris Penetration at 6.5km/s. Proc. Space96/Comet Day II Symposium. Edited By S. E. Johnson, Albuqueerque, New Mexico, 1996, 1: 1~7
    25 S. A. Mullin, H. Couque, et al. Bursting of Shielded Pressure Vessels Subject to Hypervelocity Impact. Int. J. Impact Engineering, 1997, 20: 579~590
    26 M. Lambert, E. Schneider. Hypervelocity Impacts on Gas Filled Pressure Vessels. Int. J. Impact Engineering, 1997, 20: 491~498
    27 F. sch?fer, E. Schneider, M. Lambert, et al. Propagation of Hypervelocity Impact Fragment Clouds in Pressure Gas. Int. J. Impact Engineering, 1997, 20: 697~710
    28 F. sch?fer, E. Schneider, M. Lambert. Impact Fragment Cloud Propagation a Pressure Vessel. Acta Astronautica, 1997, 39(1): 31~40
    29 E. L. Christiansen, J. H. Kerr, J. P. Whitney. Debris Cloud Ablation in Gas-Filled Pressure Vessels. Int. J. Impact Engineering, 1997, 20: 217~228
    30 M. R. Baum. Rupture of A Gas-Pressurized Cylindrical Vessel: The Velocity of Detached End-Cap. J. Loss Prev. Process Ind, 1995, 8(3): 149~161
    31 N. N. Smirnov, A. B. Kiselev, V. F. Nikitin. Fragmentations Caused by Hypervelocity Collisions of Debris Particles with Pressurized Vessels. Third European Conference on Space Debris, ESOC, Darmstadt, Germany, 2001
    32 F. sch?fer, E. Schneider. Impact Testing-Impact on Pressure vessels, Hypervelocity Impacts on Aluminum Pressure Vessels. Report No. EMI-HVI-PVI 001, Ernst-Mach-Institut, Freibury, Germany, 1996
    33 J. P. Whitney, P. D. White. Designing Hypervelocity Impact Testing for Thin-Walled Pressure Vessels. Presented at the 43rd Meeting of theAeroballistics Range Association, Columbus, Ohio, 1992
    34 M. Lambert. Hypervelocity Impact on Pressure Vessels. An Overview. European Space Agency, Technical Note: YME/ML/1140, 1991
    35 R. F. Poe, M. A. Ruck0er. Evaluation of Pressurized Vessels Following Hypervelocity Impact. ESA SD-01, Proceedings of the First European Conference on Space Debris, Darmstadt, Germany, 1993
    36 Y. T. Igor, E. Dmitri. Engineering Model for Simulation of Debris Cloud Propagation Inside Gas-Filled Pressure Vessels. Int. J. Impact Engineering, 2003, 29: 703~712
    37 Y. T. Igor, F. sch?fer. Analysis of the Fracture of Gas-Filled Pressure Vessels under Hypervelocity Impact. Int. J. Impact Engineering, 1999, 23: 905~919
    38 F. sch?fer, E. Schneider. Impact Testing Impact on Pressure Vessels, Hypervelocity Impacts on Aluminum Pressure Vessels, Report No. EMI-HVI-PVI 001, Ernst-Mach-Institut, Freibury, Germany, 1996.
    39 H. Stefan, F. sch?fer. Hypervelocity Impact Fragment Clouds in High Pressure Gas Numerical and Experimental Investigations. Int. J. Impact Engineering, 1999, 23: 391~400
    40 C. Maveyraud, J. P. Vila, D. Sornette. Numerical Modeling of the Behaviour of High Pressure Vessel under Hypervelocity Impact. Mec. Ind., 2001, 2: 57~62
    41 M. Xia, H. Tukayanagi, K. Kemmochi. Analysis of Multi-Layered Filament Wound Composite Pipes under Internal Pressure. Composite Structures, 2001, 53: 483~491
    42 V. E. Verijenko, S. Adali, Y. T. Parel. Stress Distribution in Continuously Heterogeneous Thick Laminated Pressure Vessels. Composite Structures, 2001, 54: 371~377
    43 L. Parnas, N. Katirci. Design of Fiber-Reinforced Composite Pressure Vessels under Various Lading Conditions. Composite Structures, 2002, 58: 83~95
    44 T. Messanger, M. Pyrz, B. Gineste. Optimal Laminations of Thin Underwater Composite Cylindrical Vessels. Composite Structure, 2002, 58: 529~537
    45 T. K. Hwang, C. S. Hong, C. G. Kim. Size Effect on the Fiber Strength of Composite Pressure Vessels. Composite Structure, 2003, 59: 489~498
    46张伟,庞宝君,邹经湘.充气压力容器超高速撞击实验研究.爆炸与冲击,2000, 20(4): 353~358
    47张伟,管公顺,哈跃等.弹丸超高速撞击压力容器损伤实验研究.实验力学, 2004, 19(2): 229~235
    48张永,霍玉华,韩增尧等.卫星高压气瓶的超高速撞击试验.中国空间科学技术. 2009, 29(1): 56~60
    49 J. F. Harvey. Theory and Design of Modern Pressure Vessels. Published by Van Nostrand Reinhold Com, 1974
    50沈成康.断裂力学.同济大学出版社, 1996: 8~23
    51张行.断裂力学中应力强度因子的解法.国防工业出版社, 1992: 58~79
    52王铎.断裂力学(上册).哈尔滨工业大学出版社, 1989: 17~36
    53 S. Folias. An Axial Crack in a Pressurized Cylindrical Shell. Int. J. Fracture Mech, 1965, 1: 104~113
    54李维新.一维不定常流与冲击波.国防工业出版社, 2003: 202~308
    55周毓麟.一维非定常流体力学.科学出版社, 1990: 144~223
    56童秉纲,孔祥言,邓国华.气体动力学.高等教育出版社, 1990: 329~359
    57方丁酉.两相流动力学.国防科技大学出版社, 1988: 10~326
    58孟会林,孙新利,王少龙. LS-DYNA程序在战斗部仿真计算中的应用.上海航天, 2003, 20(2): 33~37
    59乐莉,闫军,钟秋海,等.超高速撞击仿真算法研究.系统仿真学报, 2004, 16(9): 1941~1943
    60 Belytschko. On the Completeness of Meshfree Particle Methods. Int. J. Num. Meth. Engineering, 1998, (43): 785~819
    61 M. Faraud. SPH Simulations of Debris Impacts Using Two Different Computer Codes. Int. J. of Impact Engineering, 1998, (23): 249~260
    62 P. W. Randles, L. D. Libersky. Smoothed Particle Hydrodynamics: Some Resent Improvements and Applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 375~408
    63 M. Katayama, S. Toda, S. Kibe. Numerical Simulation of Space Debris Impacts on the Whipple Shield. Acta Astronautica, 1997, 40(12): 859~869
    64 R. J. Gordon, A. S. Robert, R. B. Stephen. SPH for High Velocity Impact Computations. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 347~373
    65 AUTODYN Users Manual Revision 6.0. Concord, CA94520 USA: Century Dynamics, Incorporated, 2005
    66马文来,张伟,管公顺等.椭球弹丸超高速撞击防护屏碎片云数值模拟.材料科学与工艺, 2005, 13(3): 294~298
    67张伟,庞宝君,贾斌.弹丸超高速撞击防护屏碎片云数值模拟.高压物理学报, 2004, 18(1): 47~52
    68马志涛,张伟,贾斌等.弹丸超高速撞击半无限厚铝板数值模拟.材料科学与工艺, 2004, 12(3): 283~286
    69 H. A. Bueckner. Principle for the Computation of Stress Intensity Factors. ZAMM, 1970, 50: 529~546
    70 S. T. Xiao, M. W. Brown, K. J. Miller. Stress Intensity Factors for Cracks in Notched Finite Plates Subjected to Biaxial Loading. Fatigue&Fracture of Engineering Materials&Structures, 1985, 8(4): 349~372
    71徐芝纶.弹性力学(上册).第三版.高等教育出版社, 1990: 97~103
    72 J. Piekutowski. Formation and Description of Debris Clouds Produced by Hypervelocity Impact. NASA Contractor Report 4707, Contract NAS8-38856, 1996
    73管公顺,庞宝君,哈跃等.铝合金Whipple防护结构高速撞击实验研究.爆炸与冲击, 2005, 25(5): 461~466
    74张永强.超高速撞击防护屏碎片云特性建模及损伤预报.哈尔滨工业大学硕士学位论文, 2004: 37~40
    75迟润强,庞宝君,何茂坚等.球形弹丸超高速正撞击薄板破碎状态实验研究.爆炸与冲击, 2009, 29(3): 231~236
    76迟润强.弹丸超高速撞击薄板碎片云建模研究.哈尔滨工业大学博士学位论文, 2010: 47~91
    77 A. J. Piekutowski. Effects of Scale on Debris Cloud Properties. Int. J. Impact Engng. 1997, 20:639~650
    78 A. J. Piekutowski. Fragmentation-Initiation Threshold for Spheres Impacting at Hypervelocity. Int. J. Impact Eng. 2003, 29:563~574
    79 A. J. Piekutowski. Characteristics of Debris Clouds Produced by Hypervelocity Impact of Aluminum Spheres with Thin Aluminum Sheets. NASA CR-201003, 1995
    80 A. J. Piekutowski. Fragmentation of a Sphere Initiated by Hypervelocity Impact with a Thin Sheet. Int. J. Impact Eng. 1995, 17:627~638
    81 A. J. Piekutowski. Debris Clouds Produced by the Hypervelocity Impact of Nonspherical Projectiles. Int. J. Impact Engng. 2001, 26: 613~624
    82 F. Sch?fer. An Engineering Fragmentation Model for the Impact of Spherical Projectiles on Thin Metallic Plates. Int. J. Impact Engineering, 2006, 33: 1~12
    83 M. E. Kipp, D. E. Grady, J. W. Swegle. Numerical and Experimental Studies ofHigh Impact Fragmentation. Int. J. Impact Engineering, 1993, 16:427~438
    84 E. L. Christiansen. Design and Perforation Equation for Advanced Meteoroid and Debris Shields. Int. J. Impact Engineering, 1992, 14: 145~156
    85吴望一.流体力学(下册).北京大学出版社, 1983: 1~178
    86 D. J. Carlson, R. F. Hoglund. Particle Drag and Heat Transfer in Rocket Nozzles. AIAA, 1970, 2(11): 1980~1984
    87张兆顺,崔桂香.流体力学.清华大学出版社, 1998: 113~118
    88И.戈歇克,多罗德尼钦,А.А.保高斯洛伏斯基.高速空气动力学.安继光,吕绍椿译.国防工业出版社, 1958: 1~21
    89 W. P. Schonberg, A. J. Bean, K. Darzi. Hypervelocity Impact Physics. NASA Contractor Report 4343, 1991
    90 V. M.Boiko, V. P. Kiselev, S. P. Kiselev. Interaction of a Shock Wave with a Cloud of Particles. Combustion, Explosion, and Shock Waves, 1996, 32(2): 191~203
    91 V. M.Boiko, V. P. Kiselev, S. P. Kiselev. Shock Wave Interaction with a Cloud of Particles. Shock Waves, 1997, 32: 275~285
    92张涤明.计算流体力学.中山大学出版社, 1991: 82~144
    93苏明德,黄素逸.计算流体力学基础.清华大学出版社, 1997: 231~322
    94刘润泉,白雪飞,朱锡.舰船单元结果模型水下接触爆炸破口试验研究.海军工程大学学报, 2001, 13(5): 41~47
    95朱锡,白雪飞,黄若波等.船体板架在水下接触爆炸作用下的破口试验.中国造船, 2003, 44(1): 46~52
    96 G. N. Nurick, A. M. Radford. Deformation and Tearing of Clamped Circular Plates Subjected to Localised Central Blastloads.In:Reddy BD(editor)Recent Developments in Computational and Applied Mechanics. A Volume in Honour of John B.Martin, 1997: 276~301
    97 Y. W. Lee, T. Wierzbicki. Fracture Prediction of Thin Plates under Localized Impulsive Loading Part I: Dishing. Int J Impact Engineering, 2005, 31: 1253~1276
    98张振华,朱锡.刚塑性板在柱状炸药接触爆炸载荷作用下的花瓣开裂研究.船舶力学, 2004, 8(5): 113~119
    99 T. Wierzbick, G. N. Nurick. Large Deformation of Thin Plates under Localized Impulsive Loading. Int J Impact Engineering, 1996, 18: 899~918
    100杨桂通,熊祝华.塑性动力学.清华大学出版社, 1984: 159~217
    101 S. M. Mihailescu, T. Wierzbicki. Wave Solution for an Impulsively Loaded Rigid-Plastic Circular Membrane. Arch Mech, 2002, 54(5-6): 737~759
    102 T. Wierzbicki. Petalling of plates under explosive and impact loading. Int J Impact Engineering, 1999, 22:935~954
    103 R. L. Bjork, A E Olshaker. The Role of Melting and Vaporization in Hypervelocity Impact. Memorandum RM-3490-PR, 1965
    104汤文辉,张若棋.物态方程理论及计算概论.国防科技大学出版社, 1999: 88~128
    105经福谦.实验物态方程导引.科学出版社, 1999: 1~100
    106管公顺.航天器空间碎片防护结构超高速撞击特性研究.哈尔滨:哈尔滨工业大学博士学位论文, 2006: 124~131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700