轮轨/磁浮动车组虚拟样机若干关键技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟样机(VP)技术是复杂产品设计的一种新方法。论文首先给出了虚拟样机的定义和内涵,并对国内外虚拟样机技术的研究现状及发展趋势进行了综述。根据铁路机车车辆行业中典型的复杂产品——轮轨/磁浮动车组的技术复杂性,论证虚拟样机技术可以缩短轮轨/磁浮动车组的研发周期,最大可能地降低物理样机投资风险的可行性及紧迫性。
     以虚拟样机的核心技术——性能仿真为切入点,论文从理论上论证了性能仿真与CAD技术相比可以为产品创造更多技术附加值。论文并依此构建了主要研究方向。
     在虚拟样机性能仿真过程中,提高仿真置信度至关重要,而提高仿真置信度的关键却在于建模。论文针对机车车辆行业性能仿真中过分依赖仿真软件的错误倾向,将多年的性能仿真建模经验予以归纳、提炼和升华,总结了四项建模原则,即:能量等效替换原则;定性力学原则;主要矛盾原则;反馈原则。同时,还讨论了边界条件模型化以及如何发现模型中错误等技术问题。论文将这些建模原则及技术具体化,并应用于结构复杂的三个典型产品:时速210公里中空挤压铝型材的高速动车组;不锈钢点焊结构的城市轻轨动车组;中空挤压铝型材/夹层蜂窝板混合结构的中低速常导磁浮动车组。在这三个工程应用中,针对“点传力”的结构特点,提出了位移主—从建模思想;针对蜂窝夹层复合材料蜂窝尺寸极小的结构特点,提出了不丧失蜂窝材料基本功能的等效“大蜂窝”建模思想。三个产品物理样机的测试结果证明了上述建模原则及建模思想非常实用,论文并给出了具体的数据对比。
     在动力学仿真方面,论文开展了刚-柔混合建模技术研究,不仅讨论了刚-柔混合建模算法,还讨论了刚-柔混合建模的关键接口技术。轮轨动车组的盘形制动实例给出了一个完整的刚-柔混合建模技术路线。
     考虑到轮轨/磁浮动车组多学科交叉的技术特点,论文研究了性能仿真过程中跨平台工具软件仿真的协同与集成技术。基于液-固耦合的动车组水箱起皱机理分析,表明协同与集成是虚拟样机性能仿真的重要平台技术,为此,基于PDM技术管理模式,论文提出了轮轨/磁浮动车组性能仿真中间数据文件的协同管理框架。
     由于主动控制已经成为不提高线路等级而提速的核心技术及未来趋势,也由于中低速常导磁浮动车组已对城市轨道交通带来了另一个极有经济、环保潜力,且又可行的新思路,因此,论文最后又开展了轮轨/磁浮动车组主动控制探索性研究。关于轮轨动车组垂向主动控制,论文针对跨平台工具软件算法中的积分步长不协调导致的输出偏差问题;ADAMS环境中控制器代码非光滑连续导致的高频成分误差问题;以及系统动力学线性化的速度敏感性问题,提出了基于模型移植的求解策略,并用工程实例验证了此项技术的实际意义。作为探索,又基于遗传算法对PID控制器三个参数进行了优化,从而提高了控制的平稳性。
     关于中低速常导磁浮动车组,论文构建了包括磁间隙在内的磁浮车单转向架动力学仿真模型,并成功地解决了磁转向架防侧滚板的机械耦合问题。
     在结论与展望一章,提出了论文的三个创新点,它们是:
     (1) 在复杂产品结构建模方面,针对点焊结构、铆焊结构的难点,提出了基于主—从关系的点传力建模技术;针对磁浮车蜂窝复合材料建模难点,提出了“大蜂窝”建模技
Virtual Prototype (VP) technology is a new design method for all complex products. In this paper, the definition and implied meaning of Virtual Prototype is firstly given, and then, the research situation and future development about Virtual Prototype technology are summarized. According to the technological complexity of rail-wheel/MagLev trainset, which is very typical products in railway vehicle industry, it is proved that shortening the design period and decreasing as large as possible the venture of physical product are total feasible and urgently needed while based on the Virtual Prototype technology.In this paper, it is theoretically addressed that performance simulation is able to create more additive value than CAD technology. As performance simulation is the key technology of Virtual Prototype, so the main research direction in this paper is therefore constructed following it.While using the Virtual Prototype technology, how to keep the high fidelity of performance simulation is key issue, and it has being pointed out how to create good simulation model is the most key issue also. In order to avoid such a wrong incline excessively depending on commercial simulation software, the many-year experiences coming from dealing with the real engineering problems are summarized, and the four principles, which could be used to create the simulation models, are established as well. The four principles are: (1) Energy Equivalent Exchange Principle; (2) Qualitative Mechanics Principle; (3) Keeping Main Contradiction Principle; (4) Feedback Principle. At same time, some useful technology for creating models and how to avoid and find some mistakes in models are suggested as well. Based on these principles and useful technology, three FEA models of newest and most complex products among all railway vehicle factories in China are created. And they are: (1) high-speed train with 210Km/h constructed with hollow-shape aluminum beams; (2) stainless steel city-car constructed with stainless steel and using spot-welding technology; (3) mid-/low-speed EMS MagLev trainset constructed with hollow-shape aluminum beams and composite material named as cellular layers structures. In these three engineering applications, according to the structure feature, the master-slave displacement constrain modeling technology is employed to define the special node which is able to keep two nodes always have same displacements such as spot nodes and rivets. Since the size of each cell is too small to create its finite element model, so keeping its main features, a new special method is employed which is named big-cell method. Comparing the results between the finite element analysis results of virtual prototypes and the measured results of corresponding physical prototypes, it is clear that the above modeling principles and technology are very useful and practical. The more details within comparisons are given in the paper in addition.In the dynamical simulation aspect, in order to obtain more information, rigid-flex hybrid modeling technology is developed. Both arithmetic and interface technologies of rigid-flex hybrid modeling are discussed. Taking the disc-brake paradigm of rail-wheel trainset as an example, the whole rigid-flex hybrid modeling technological flow chart is established.Taking into account that the coupling features of multiple-domain in rail-wheel/MagLev train set, the co-simulation and integration among many different software environments are investigated. Taking buckling-mechanism analysis of solid/liquid coupling in water-tank as an example, it is shown that co-simulation and integration are important technology under
    performance simulation environment. Based on PDM technical management mode, collaborative management frame is presented in this paper for managing so many midway data files.Because the active control is another key technology and it could be used to increase the running speed when train is still running on the existing-grade railway, and also because the mid-/low-speed EMS (Electro-Magnetic Suspension) MagLev trainset comes into the city railway transportations, which has the extreme economical and ecological advantages, so at the end of this paper, the research about active control technology is focus on such three difficult problems: (1) output errors caused by the integral step harmonization; (2) the high-frequency error produced when the controller code-model being imported into ADAMS environment; (3) initial velocity non-sensitivity in linearising the dynamical model. After solving such problems, various engineering applications are given to verify these solving strategys. As a trial technical exposition, the three parameters in PID control are optimized through the genetic arithmetic and the control system stability is also improved.On mid-/low-speed EMS MagLev trainset, the single-bogie MagLev vehicle dynamical model is constructed including the electro-magnetic levitation control, and successfully solved the mechanical coupling problem solved through the anti-roll beams finally.In the last chapter, three innovations are given as follows:(1) In the field of creating simulation models of complex products, in order to overcome the difficulties such as how to create the model of the spot welds and rivet-jointed structures, based on the master-slave displacement constrain relationship, node-transferred force modeling technology is employed; in order to overcome the difficulties such as how to avoid large scale of elements, based on the static and dynamic energy equivalent exchange principle, the large-cell modeling is employed. And the comparisons between simulation results and the tested results prove the new technology mentioned above is very useful in engineering applications.(2) In the field of increasing the fidelity of performance simulation, four practical modeling principles are proposed: (1) Energy Equivalent Exchange Principle; (2) Qualitative Mechanics Principle; (3) Keeping Main Contradiction Principle; (4) Feedback Principle. These modeling principles have presented their engineering values.(3) In the field of active control, a strategy named as 'seamless solution' is presented based on model immigration, and three very difficult problems have been solved : (1) output errors caused by the integral step harmonization; (2) the high-frequency error produced when the controller code-model being imported into ADAMS environment; (3) initial velocity non-sensitivity in linearising the dynamical model. The consistence between the dynamical control system simulation and the expected theoretical values shows the effectivity of model immigration.
引文
[1] FanDai, Wolfgang Felger, Martin Gobel. Applying Virtual Reality to Electronic Prototyping-Concept and First Results Virtual Prototyping: Virtual environments and the product design process [C]. ChapMan and Hall Press, 1995
    [2] Kerttula M, Salmela M, Heikkinen M. Virtual reality prototyping a framework for the development of electronics and telecommunications products [A]. Proceeedings of 8th IEEE International Workshop on Rapid System Prorotyping [C], 1997
    [3] Tseng M M, Jianxin Jiao, et al. A Framework of Virtual Design for Product Customization [A]. Proceedings of IEEE Intal Conference on Emerging Technologies and Factory Automation[C], 1997
    [4] Bloor M S, McKay A. Product and shape Representation for Virtual Prototyping [M]. Book of Vitual Prototyping: Virtual environments and the product design process, ChapMan and Hall Press, 1995
    [5] Defense Systems Management College. Virtual Prototyping: Concept to Production [M]. DSMC Press. 1994.
    [6] Council of SBA. A Roadmap for Simulation Based Design [Z], 1998
    [7] ISO 10303-203. Industrial Automation System and Integration Product data Representation and Exchange-Part 203, Application Protocol: Configuration Controlled Design. International Organization for Standardization [S]. Geneva, Switzerland, 1994
    [8] http://www.lmsintl.com(比利时)
    [9] 赵雯等.协同虚拟样机技术研究[J].系统仿真学报,2001,13(1)
    [10] 熊光楞、李伯虎,柴旭尔.“虚拟样机技术”.系统仿真学报,2001,11(5)
    [11] 刘宏增,黄靖远编著.虚拟设计[M].机械工业出版社,1999.12
    [12] 王克明,熊光楞等.基于产品信息重用的设计仿真协同技术研究[J].清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集,2002,3
    [13] 苟凌怡,熊光楞.支持参考样车性能分析及新车目标性能确定的协同开发平台技术研究[J].清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集,2002,3
    [14] 苟凌怡,熊光楞.支持轿车车身结构设计分析的协同仿真平台技术研究[J].清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集,2002,3
    [15] 谢金崇,熊光楞.支持虚拟产品开发全过程的轿车信息模型框架研究[J].清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集,2002,3
    [16] 苟凌怡,熊光楞.支持虚拟样机的协同仿真平台关键技术研究[J].清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集,2002,3
    [17] 赵雯等.武器系统虚拟样机技术研究[J].国防科技大学学报,1999 21(1)
    [18] 施普尔·克劳舍.虚拟产品开发技术[M].北京:机械工业出版社.2000
    [19] 熊光楞.先进仿真技术与仿真环境[M].北京:国防工业出版社,1997
    [20] 柴旭东.复杂产品虚拟样机工程工具集的研究与初步实践.清华大学博士后出站报告,2002
    [21] 韦有双,王飞,冯允成.虚拟现实与系统仿真[J].计算机仿真,1999,16(2):63-66
    [22] 唐硕等.飞行器设计与试验的虚拟样机技术[J].宇航学报,2000,11
    [23] 李思昆等.协作虚拟样机与协同设计方法[J].系统仿真学报,2001,13(1)
    [24] 王立权等.给予虚拟样机的控制系统仿真研究[J].哈尔滨工程大学学报,2000,6
    [25] http://www.sdpc.gov.cn/indexl.htm
    [26] 傅小日.发展中的我国动车组[J].铁道车辆.2000,12
    [27] 吴礼本.国外现代中短途运输用电动车组(三、四、五)[J].国外铁道车辆.1998,(1,2,3)
    [28] P. K. Sinha, Electromagnetic suspension: Dynamic and control, IEE control engineering series[J], 1986, Ⅴ. 30.
    [29] Dr. Rogg, the Development of High-speed Magnetic Levitation System in the Fedral Republic of Germany, Objective and Present State, the 10th Int, Conf. on maglev System[C], 1988, 3-5.
    [30] U. Wiescholeck, D.Rogg, High-speed Magnetic Levitation System Transarpid, MAGLEV'95 [C].
    [31] Yoshihiro Kyotani, Recent Progress By JNR on Maglev, IEEE Trans. On Magn. [J], 1988, 24(2), 804-80
    [32] Akio Seki, Hitoshi Tsuruga, Akihiko Inoue, The Status of the development and the running tests of the JR-Maglev, MAGLEV 2002[C].
    [33] K. Kaminishi, K. Takahashi, A.Seki, Main Test Results on the Yamanashi Maglev Test line, MAGLEV 2000[C].
    [34] 余俊主编.现代设计方法及应用[M].北京:中国标准出版社,2002
    [35] 王玉新编著.数字化设计[M].北京:机械工业出版社,2003
    [36] 颜永年主编.先进制造技术[M].北京:化学工业出版社,2002,1
    [37] 刘惟信.机械最优化设计[M].北京:清华大学出版社,1994
    [38] 刘惟信.机械可靠性设计[M].北京:清华大学出版社,1996
    [39] 潘军,马登哲,蒋祖华.虚拟产品开发及其仿真模型的研究与应用[J].计算机集成制造系统—CIMS,2002,9
    [40] 黄斌,严隽琪等.虚拟产品开发技术及其建模方法的研究[J].计算机集成制造系统—CIMS,2002,4
    [41] 程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1988
    [42] 兆文忠编著.I-DEAS系统基本原理讲义[M].大连铁道学院机械工程研究所CAD室,1994.4
    [43] ANSYS/Theory Refrence Manual Release 8.0[M]. ANSYS Inc 2003 U.S.A
    [44] I-DEAS optimization[M]. I-DEAS Master series, SDRC, Inc. 1993
    [45] Liu Weixin, Ge Ping, Li Wei. Study of Optimal Matching Between Automobile Transmission Parameters and Engine [J]. Transportation System-1990-, AMD-Vol. 108. The Winter Annual Meeting of The ASME, Dallas, Texas, Nov. 25~30, 1990
    [46] 陈国平.复杂结构的动力学设计研究[J].振动与冲击,1993,2
    [47] 闫雪冬,李晓峰,丁彦闯,兆文忠.基于刚-柔混合模型的高速列车振动响应研究[J].东北大学学报(自然科学版),2003,24(7):35~37
    [48] 李晓峰,闫雪冬,魏明亮,于世明.铁路运煤货车开/关门机构动态特性仿真研究[J].东北大学学报(自然科学版),2003,24(7):38~41
    [49] 谢素明,兆文忠,闫雪冬.关于提高CAE性能仿真置信度的思考[J].系统仿真学报,2003,15(8):1061~1065
    [50] 闫雪冬,王东屏,兆文忠.客车水箱起皱机理及CAE性能仿真集成[J].中国机械工程,2003,14(10):1~5
    [51] 闫雪冬,李晓峰,兆文忠.多体系统刚柔耦合建模技术及其在高速列车盘型制动中的应用研究[J].铁道车辆,2004,42(3):14~17
    [52] 闫雪冬,丁彦闯,兆文忠.铸造件有限元数值仿真关键技术研究[J].中国铸造装备与技术,2004(3):9~13
    [53] 闫雪冬,马思群,丁彦闯,兆文忠.基于瑞雷函数的整备质量对车体基频影响的研究[J].机械设计,2004,21(6):40~41
    [54] 闫雪冬,李晓峰,兆文忠.车辆工程中有限无边界条件模型化的若干技术问题[J].机械设计,2004,21(8):41~43
    [55] 谢素明,闫雪冬,兆文忠.基于敏度信息的铝型材高速车体轻量化研究[J].铁道学报,2004,26(3):26~30
    [56] 朴明伟,闫雪冬,兆文忠.协同仿真/设计中存在的三个问题及解决技术对策[J].计算机集成制造系统,2005,5
    [57] 何明.客车水箱起皱的原因分析与对策[J].铁道车辆.1998(9).
    [58] 铁道车辆动力学性能评定及试验鉴定规范(GB5599-85)[M].中国国家标准,1985
    [59] 高速试验列车车辆强度及动力学规范(95J01-M)[M1.中华人民共和国铁道部,1995
    [60] 倪纯双.铁路车辆多体动力学综述[J].中国铁道科学,1996,12
    [61] 翟婉明等.第15届国际车辆系统动力学会议学术交流综述[J].国外铁道车辆,1998,1
    [62] 王福天.车辆系统动力学[M].北京:中国铁道出版社,1989
    [63] 菅原,能生等(日).垂向半主动悬挂装置性能试验.国外铁道车辆,Vol39(3),2002.5
    [64] 陈泽深,王成国.铁道车辆动力学与控制(M].北京:中国铁道出版社,2004
    [65] 翟婉明.车辆-轨道耦合动力学(第二版)[M].北京:中国铁道出版社,2001,12
    [66] 沈钢.面向对象的机车车辆动力学仿真建模研究[J].铁道学报,1998,4
    [67] 广深210KM/H电动车组中间动车车体结构静强度测试[R].中国北车集团四方车辆研究所,2002,11
    [68] 吴国视等.广深210KM/H电动车组中间动车车体结构固有频率测试[R].吉林大学测试科学试验中心,2002,12
    [69] 天津滨海快速轨道交通不锈钢车体静强度试验报告[R].中国北车集团四方车辆研究所,2004,7
    [70] 中低速磁悬浮头车车体静强度试验报告[R].中国北车集团四方车辆研究所,2005,3
    [71] 赵云生.广深线准高速客车动力学仿真建模及其分析[J].铁道车辆,1995,12
    [72] 闫雪冬,刘力军.铁路客车动力学软件的研究与应用[J].铁道车辆,1999,1
    [73] Roth, P. -A. Lizell, M. A.. A Lateral Semi-Active Damping System for Trains. Vehicle System Dynamices Supplement 25(1996), 585~598
    [74] Stribersky A., Steidl S., Muller H., and Rath B.. Dynamic Analysis of Rail Vehicles with electronically Controlled Suspensions. Proc. 14th IAVSD-Symp. Ann. Arbor, U.S.A, 1996, 614~628
    [75] Karnopp D., Crosby M. J., Harwood R. A.. Vibration Control using Semi-Active Force Generators. Transactions of the ASME, J of Eng. f. Industry, May 1974, 619~626
    [76] Eicdh off B M, Evans JR, Minn is A J. A Review of Modeling Methods for Railway Vehicle Suspension Components. Vehicle System Dynamics. 1995(24): 469-496
    [77] Wielenga, T. J. Analysis methods and model representation in ADAMS internal document of Mechanical Dynamics, Inc., 1986
    [78] Mechanical Dynamics, Inc. USING ADAMS/VIEW, RAIL, SOLVER, FLEX, 2000
    [79] Wang Chengguo, Yuan Liangrning, New high speed truck desing with virtual prototyping technology, 5th ADAMS User conference, Haarlem, the Newtherlands, May 10-11, 2000.
    [80] Guangdi Hu. Robust Measures for Stability and Controllability in Linear Time-Invariant Time-Delay Systems. A thesis submitted in conformity with the requirements for the Doctoral of Philosophy of Applied Science Department of Electrical and Computer Engineering University of Toronto.
    [81] Steffen Mueller et al, Adtranz(Schweiz)AG. Numerical Simulation of the Drive Performance of a Locomotive on Straight track and in Curves. ADAMS/Rail News & Views, 2000.
    [82] J. Kogan J. Hocherman and E.Zeheb. On exponential stability of linear systems and hurwitz stability of characteristic quasipolynomials. System and Control Letters, 25: 1-7, 1995.
    [83] J. Kogan. Robust Stability and Convexity. Springer-Verlag, 1995.
    [84] O.Toker and H.Ozbay.Complexity issues in robust stability of linear delay differential systems. Mathematics in Control, Signals and Systems, 9: 386-400, 1996.
    [85] Heyes P, Dakin J,John C.Theassessment and Use of Linear Static FE Stress Analyses for Durability Calculations.SAE Technical Paper 951101, 1995.
    [86] Schiehlen,Werner; Scholz,Christian: Simulator coupling for mechatronic systems. In: Proc. 1st International Symposium on Mechatronics ISOM 2002. Chemnitz, Germany, March 21-22, 2002
    [87] Martin,Arnold; Antonio,Carrarini, "Modular dynamical simulation of mechatronic and coupled systems", WCCM Ⅴ(Fifth World Congress on Computational Mechanics), July 7-12, 2002, Vienna, Austria
    [88] P. Fisette, T. Postiau, L. Sass, J. C. Samin,"Fully Symbolic Generation of Complex Multibody Models",[J], Mechanics Based Design of Structures and Machines, 2002, 30(1), 31-82.
    [89] C. Kossman, Investigation of Active Bogie Stabilisation Using SIMPACK Control and SIMAT, SIMPACK User Meeting 2003, 2003.4.
    [90] Sinha, R., Paredis, C. J. J., Khosla, P. K., INTERACTION MODELING IN SYSTEMS DESIGN, Proceedings of DETC'01, 2001 ASME Design Engineering Technical Conferences, September 9-12, 2001, Pittsburgh, PA, USA.
    [91] Roger Goodall, Dynamics and Control for Single-stage EMS Maglev Suspensions, Topic8-2, MagLev 2004, Oct. 25-28, 2004.
    [92] Boudali H.; Williams R. D.; Giras T. C., A Simulink simulation framework of a MagLev model, Proceedings of the I MECH E Part F Journal of Rail and Rapid Transit, September 1, 2003, vol. 217, no. 3, pp. 227-236(10)
    [93] Ahmet Orhan, Erhan Akin, Mehmet Karakose, DSP Implementation of Fuzzy Controlled Magnetic Levitation System, Fuzzy Days 2001, LNCS 2206, pp. 950-958, Springer-Verlag Berlin Heidelberg.
    [94] 刚直久.500系列动车的半主动悬挂系统.国外内燃机车,1998(5):8~12
    [95] Sinha P. K.. Electromagnetic suspension. Peter Peregrinus Ltd., 1987
    [96] Jung V.. Magnetisches Schweben. Springer, Berlin, 1988
    [97] 洪嘉振.动力刚化与多体系统刚.柔耦合动力学[J].计算力学学报,1999,8
    [98] 钟绍华.主动悬架及控制理论的研究[J].武汉汽车工业大学报,1999,(5):5~8
    [99] 曹登庆.车辆动力学系统横向稳定性的鲁棒性分析[J].铁道学报,1996,10
    [100] 曹登庆.含不确定参数的车辆动力学模型横向稳定性分析[J].西南交通大学学报,1999,6
    [101] 王勖成,邵敏.有限元法基本原理和数值方法(第二版)[M].清华大学出版社,1997,3
    [102] 施光燕,董加礼.最优化方法[M].北京:高等教育出版社,2001,4
    [103] 隋允康.建模·变换·优化——结构综合方法新进展(第一版)[M].大连理工大学出版社,1996
    [104] 吴礼本,王其立.国外铁路高速列车(M].北京:中国铁道出版社,1994
    [105] 沈志云.关于高速铁路及高速列车的研究[J].振动、测试与诊断,1998,3
    [106] 姚建伟.机车车辆动力学强度专业发展的建议和设想[J].铁道机车车辆,2000,6
    [107] 胡国清,刘文艳.工程控制理论[M].北京:机械工业出版社,2004,3
    [108] N.维纳著.控制论[J].郝季仁译.北京:科学出版社,1985
    [109] 孙增圻,张再兴,邓志东.智能控制理论与技术[M].北京:清华大学出版社,1997,7
    [110] 魏克新,王云亮,陈志敏.MATLAB语言与自动控制系统设计[M].北京:机械工业出版社,1999
    [111] 伍先俊,江征风,刘小英.用MATLAB解决汽车悬架的主动控制问题[J].计算机仿真,2000,Vol.17(2):50~53
    [112] 崔胜民,肖利寿,宋宝玉等.汽车操纵动力学十八自由度模型仿真研究[J].汽车工程,1998 Vol.20(4):212~219
    [113] 雷雨成.汽车系统动力学及仿真[M].北京:国防工业出版社,1997,8
    114] 程海涛.长大货物列车制动动力学及车辆柔性动力学研究[M].铁道部科学研究院博士论文,1999,12
    [115] 李世亮.铰接式高速车辆动力学及结构优化分析研究[M].北京理工大学博士论文,1997,9
    [116] 张锟.磁浮列车悬浮系统的数字控制技术研究.国防科学技术大学工学博士学位论文,2004,10
    [117] 郑建荣编著.ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社,2002,1
    [118] 王国强主编.实用工程数值模拟技术及其在ANSYS上的实践[M].陕西:西北工业大学出版社,1999,8
    [119] 章卫国主编.先进控制理论与方法导论[M].陕西:西北工业大学出版社,2000,4
    [120] 曹登庆,孙训方,舒仲周.冲击动力系统的鲁棒稳定性分析[J].力学学报,1995,3
    [121] 张克越,曹登庆.非线性动力系统的鲁棒控制器设计[J].西南交通大学学报,1997,2
    [122] 赵洪伦,周劲松,王福天.高速客车蛇行运动稳定性最优化研究[J].上海铁道学院学报,1995,12
    [123] 翟婉明.列车提速对线路的动力影响研究与对策[J].中国铁道科学,2000,9
    [124] 陈果,翟婉明,左洪福.仿真计算比较我国干线谱与国外典型轨道谱[J].铁道学报,2001,6
    [125] 魏巍,翟婉明.轮轨系统高频振动响应[J].铁道学报,1999,4
    [126] 沈钢,曹志礼.机车车辆动力学集成仿真系统的开发[J].铁道车辆,1997,3
    [127] 王沫然 编著.MATLAB与科学计算[M].北京:电子工业出版社,2001.9
    [128] 吕文阁,谢里阳,徐灏.复杂载荷下的疲劳寿命估算[J].东北大学学报(自然科学版),1996,17(6)
    [129] 田成果,宋孔杰.复杂线性振动系统的结构噪声控制及最优化设计研究[J].声学学报,1995,20(5).
    [130] 韩增尧,曲广吉.典型结构的高频响应研究[J].宇航学报,2000,2
    [131] 李克强,段飞等.结构噪声主动控制原理及方法[J].声学技术,1998,17(4)
    [132] 傅茂海,葛来熏,严隽耄.高速机车车辆的线性利非线性随机响应以及平稳性能指标预测[J].铁道学报,1996,16(6)
    [133] 俞展猷.铁路车辆振动控制技术——有源与半有源悬挂分析[J].中国铁道科学,2003,12
    [134] 沈志云,高速磁浮列车对轨道的动力作用及其与轮轨高速铁路的比较[J].交通运输工程学报,Vol.1,No.1,2001.3.
    [135] 李云钢,常文森,磁浮列车悬浮系统的串级控制[J].自动化学报,Vol.25,No.2,1999.3
    [136] 李云钢,常文森,龙志强,EMS磁浮列车的轨道共振和悬浮控制系统设计[J].国防科技大学学报,Vol121 No12 1999
    [137] 龙志强,洪华杰,周晓兵,磁浮列车的非线性控制问题研究[J].控制理论与应用,Vol.20,No.3,2003.6
    [138] 龙志强,郝阿明,常文森,考虑轨道周期性不平顺的磁浮列车悬浮控制系统设计[J].国防科技大学学报,Vol.25 No.2 2003.
    [139] 翟婉明,赵春发,蔡成标,磁浮列车与轮轨高速列车对线桥动力作用的比较研究[J].交通运输工程学报,Vol.11,No11,2001.
    [140] 尹力明,磁悬浮转向架的动力学关系及部件强度的计算方法[J].机车电传动,No.5,1997.
    [141] 胡基士,EMS型磁浮列车悬浮力分析[J].西南交通大学学报,Vol.36 No.1 Feb2001.
    [142] Kortum., R. Sharp. Multibody Computer Code in Vehicle System Dynamics, Vehicle System Dynamics supplement, Vol. 22, 1993
    [143] Iwnicki S.. The Manchester Benchmarks For Rail Vehicles Simulation, Vehicle System Dynamics, Vol. 31(supplement),1999
    [144] Laszlo Pallkovics. The Dynamics of Vehicles and Roads and on Track, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700