三次谐波法无传感器控制的高速永磁无刷直流电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速永磁无刷直流电机具有效率高、功率密度大等优点,因此在涡轮增压器、高速加工中心、飞轮储能、电动工具、空气压缩机、分子泵等许多领域有着广阔的应用前景,成为各国学者的研究热点。高速永磁无刷直流电机设计牵涉到转子损耗、轴承技术、转子动力学、等电磁技术与机械技术,必须重点考虑。
     高速永磁无刷直流电机正因为功率密度大、体积小,其损耗密度也很大,因此电机的温升往往比较高,所以当霍尔元件这一类的位置传感器安装在电机内部时往往无法正常工作。另外,位置传感器的使用也会受到体积上的限制。在功率较大的电机中,位置传感器信号也容易受到干扰。此外,永磁无刷直流电机高速运行时通常需要不同程度的超前触发控制,但直接使用转子位置信号进行换相时无法实现可变的超前触发控制。
     为了解决位置传感器带来的各种缺陷,许多学者开展了无传感器控制技术的研究,其主要思想是利用电机绕组中的有关电信号,通过适当的方法估算出转子的位置和转速,以此来取代转子位置传感器。在各种转子位置和速度的检测方法中,最常用的是通过检测每相反电势或三次谐波反电势来获得转子的位置信息。每相反电势法容易实现,但续流二极管导通引起的电压脉冲将干扰该信号。尤其是在高速、重载、或者绕组电气时间常数大等情况下,续流二极管导通角很大,此时通过检测每相反电势过零点的方法并不适合无位置传感器运行。相对于每相反电势法,三次谐波反电势法不受二极管导通角和逆变器PWM斩波的影响,对滤波器要求低,有更宽的调速范围。
     本文针对一台80,000r/min,15kW的高速永磁无刷直流电机及其基于三次谐波反电势的无位置传感器控制策略,研究了电机设计和控制的若干重要问题。
     1、研究了不同定子结构对三次谐波反电势的影响。对3齿2极和6齿2极集中绕组结构进行了对比研究,前者由于三次谐波的绕组系数为0,其相绕组中并不包含三次谐波反电势,因此其磁链和相反电势接近正弦分布,故不适合应用三次谐波反电势控制。后者的三次谐波绕组系数为1,其磁链和每相反电势包含大量的三次谐波,其波形远远偏离了正弦分布,因此适合三次谐波反电势控制,但基波绕组系数为0.5,绕组得不到充分利用。结合以上两种结构的优缺点,对不同齿宽(注:小齿为辅助齿)的6齿2极结构进行了研究,发现该结构既能利用三次谐波反电势控制,又能提高绕组的利用率。同时,也对各种结构电机的电感与单边磁拉力进行了对比分析。分析表明,由于3齿2极和不等齿宽6齿2极结构均具有空间不对称性,在电机运行时,具有较大的单边磁拉力,电机的噪声较大,影响轴承的寿命。因此最终采用等齿宽6齿2极集中绕组的对称结构。
     2、研究了转子结构对电机气隙磁场三次谐波和三次谐波反电势的影响。对电机中的气隙磁场进行有限元分析与解析计算。在采用表面粘贴磁瓦时,随着极弧系数的减小,气隙磁场的分布越来越偏离正弦,气隙磁场中的三次谐波也会相应地增加。这有利于增大每相反电势中的三次谐波。但同时,气隙磁场中的基波随永磁体极弧系数的减小而减小。由于气隙磁场的畸变增加了气隙磁场中的谐波,使电机定子铁耗增大,将影响电机的性能。因此,为了提高气隙磁场中的三次谐波同时又不减小气隙磁场中的基波,采用“平行充磁且每极分两块”的结构。对不同的转子磁瓦分块数的气隙磁场进行分析,可知随着分块数的增加,气隙磁场分布趋于径向充磁结构的分布,接近方波。随着分块数的增加,气隙磁场中基波分量也随之增加,但当每极转子分块数为2块时,气隙磁场中的三次谐波最大。因此为了提高利用三次谐波反电势控制时的抗干扰能力,采用转子每极磁瓦分块数为2的结构。对“平行充磁且极弧系数小于1”、“平行充磁且每极磁瓦分两块”、“径向充磁且极弧系数为1”共三种转子结构进行了研究。研究发现“平行充磁且极弧系数小于1”、“平行充磁且每极磁瓦分两块”这两种结构均能在电机相绕组中产生足够大的三次谐波反电势。其次,由于转子损耗在中、低速无刷直流电机中往往是可忽略的,但是在高速无刷电机中比较严重,能引起转子永磁体过热和不可恢复性退磁。因此,对三种不同的转子结构引起的额定负载转矩下的转子涡流损耗进行了对比研究,结果表明:“平行充磁且极弧系数小于1”结构引起的转子涡流损耗小于“平行充磁且每极分两块”的结构,“径向充磁且极弧系数为1”结构的转子涡流损耗小于“平行充磁且极弧系数小于1”和“平行充磁且每极分两块”的结构。但“径向充磁且极弧系数为1”的结构应用较少,永磁体充磁时需要专门的工装夹具,加工困难。“平行充磁且极弧系数小于1”结构和“平行充磁且每极分两块”的结构容易实现。
     3、研究了基于三次谐波反电势的无位置传感器超前触发控制。利用三次谐波反电势控制时,用比较器产生的过零点信号与电机触发信号密切相关。在实际系统中并不能确保比较器产生的过零点信号并不包含噪音信号。如果信号中噪音信号被控制系统误认为有效信号,将导致错误的换向信息,并且一旦产生一次错误的换向状态,将导致整个控制系统的崩溃。因此为了滤除噪音信号,有必要从软件上进行数字滤波,判断是否真正的发生信号跳变。采用数字滤波,必然导致信号滞后,进而引起电机的滞后换相。滞后的时间与数字滤波的深度有关。对于高速电机,将产生较严重的滞后。由于数字滤波引起滞后触发,电机电流变大,同时整个系统的功率因数、效率、功率输出能力降低、电机的温升更严重,对电机的冷却系统也提出了更高的要求,因此有必要采取超前触发控制。电机运行时,由于转子转动惯量的作用,其电周期不会发生突变,可以认为前一个换向周期的时间基本等于后一个换向周期,因此,如果知道前一个换向周期的时间,同时知道由于数字滤波产生的滞后时间,然后用延时导通来实现下一拍换相的正常触发控制甚至超前触发控制,研究表明超前触发可以明显的提高系统地功率因数、效率、输出功率,同时减小了损耗。
     在论文的科研工作中,解决了以上电机设计与控制方面的重要问题,并制作了样机。相关实验也证明了理论分析、设计措施与控制方法的正确性。
Due to the advantage of high efficiency and power density, high-speed permanent magnet brushless DC (BLDC) machines are emerging as a key technology for applications such as turbocharger, spindle drives, flywheel energy storage system, machine tools, compressors, molecule pumps. Researchers all around the world are getting more and more attention on high-speed machines. However, their high rotation speed demands that careful consideration should be given to both electromagnetic and mechanical design issues, such as e.g. rotor loss, bearing technology, rotor dynamics, and aerodynamic loss.
     Since high-speed machines have high power density and small volume, their loss density is also high. In result, the temperature rise inside the motor is usually high which can cause Hall-effect position sensors unworkable if they are installed inside the motor. Meanwhile, the small volume may also limit the use of the position sensors. And more importantly, in high power rating motors, the position sensor signals are easy to be disturbed by the noise. Moreover, BLDC machines require variable advanced-firing control during high-speed operation. However, if the firing sequence is directly determined by the position sensor signals, advance-firing commutation cannot be implemented.
     In order to solve the drawbacks of using position sensors, lots of researchers have been working on sensorless controls. The main idea of sensorless control is to use electrical signals derived from the motor windings, with suitable methods, to calculate the rotor position and speed. The most common sensorless control is based on the detection of zero crossings of the phase back-EMF or the third harmonic back-EMF. In high-speed motors, however, the phase currents can flow more or less continuously due to the effect of winding inductances, thus preventing the detection of zero-crossings of the phase back-EMF. On the other hand, the method of detecting the third harmonic back-EMF zero-crossings is not affected by the diode conduction angle or the inverter PWM on-off noise. And, this method has a lower requirement on the filters, and is suitable for a wide speed range.
     This thesis focuses on the third harmonic back-EMF-based sensorless control of a 15kW, 80,000rpm high-speed PM BLDC motor, with consideration of major problems in the motor design and sensorless control.
     Firstly, the influence of different stator structures on third harmonic back-EMF is studied. The 3-slot/2-pole and 6-slot/2-pole non-overlapping-winding structures have been comparatively studied, showing that the 3-slot/2-pole structure is not suitable for the 3rd harmonic EMF-based sensorless operation, because the 3rd harmonic winding factor is 0. The 6-slot/2-pole structure in which the fundamental winding factor is 0.5 and the third harmonic winding factor is 1, is suitable for the 3rd harmonic EMF-based sensorless operation. However, its fundamental winding factor is low, the winding is thus not fully utilized. In order to combine the advantage of both structures, another topology is proposed by employing unequal teeth, where the small teeth have no winding wound around. The proposed 6-slot/2-pole unequal-teeth structure improves the utility of the winding and is also suitable for the3rd harmonic EMF-based sensorless operation. Meanwhile, the inductance and the unbalanced magnetic force in these three different stator structures are also comparatively studied with different structure, showing that the 3-slot/2-pole structure and the 6-slot/2-pole unequal-teeth structure exhibit significant unbalanced magnetic force due to diametrically asymmetric, which will reduce the bearing service life and increase the motor vibration and acoustic noise. The 6-slot/2-pole structure with all teeth wound gives highest third harmonic component of back-EMF and lowerest unbalanced magnetic force, hence, is eventually employed in this thesis.
     Secondly, influence of the rotor structures with different magnet assemblies on the third harmonic airgap field and third harmonic back-EMF is studied. The airgap field is analyzed with both FEM and analytical model. In surface-mounted permanent magnet motors, when the pole-arc to pole-pitch ratio decreases, the airgap field distribution waveform becomes farther away from sinusoidal waveform, containing more higher 3rd harmonic component. This will produce higher third harmonic back-EMF which can be used for the sensorless control. However, the fundamental component decreases as pole-arc to pole-pitch ratio decreases, which will deteriorate the motor performance. Therefore, in order to enhance the third harmonic airgap field but meanwhile hardly decrease the fundamental component, it is not sufficiently good to reduce the pole-arc to pole-pitch ratio solely. Instead, magnet-segmenting technique can be employed. Influence of the number of magnet segments on the airgap field distribution is also investigated with FEM, showing that the number of segments has a significant effect on the airgap field waveform. It is also shown that the structure with two magnet segments per pole exhibits the highest third harmonic in the airgap field, and even the fundamental component is higher than that with one segment per pole. This is beneficial to improve the motor performance. Therefore, the structure with two magnet segments per pole is employed in the designed high-speed BLDC motor. Three motor configurations, viz., (1) parallel magnetization with pole-arc less than 1, (2) parallel magnetization with magnet segmenting and (3) radial magnetization, are comparatively studied. It is shown that the first and second configurations can give sufficient high third harmonic back-EMF in the motor windings. On the other hand, the rotor loss is negligible in low or moderate-speed PM BLDC motors, but becomes significant in high-speed motors in which case the magnets may be over-heated and permanently demagnetized. Therefore, the influence of the three motor configurations on the rotor eddy-current loss is also comparatively studied, showing that the third configuration is superior to the first and the second. However, the third configuration has difficulty in manufacturing, thus the first and the second configurations are usually employed.
     Thirdly, the advanced-firing commutation based on the third-harmonic back-EMF sensorless control is achieved. In this sensorless control, the commutation signal has a relationship with the comparator output of the zero-crossing signal. In a practical system, the zero-crossing signal may contain noise, which could cause an erroneous update of the estimated rotor position. Hence, this will cause the whole system unworkable. It is necessary to filter out the noise signal using software. For high speed motor, the digital filter will make the motor commutation retarded. Consequently, the commutation retarding will cause lower power factor, lower efficiency, lower power output power capability and high temperature rise, and the cooling system must be enhanced. Therefore, it is necessary to use the advanced-firing commutation based on the third-harmonic back-EMF sensorless control. Due to the rotor inertia during the motor operation, the electric cycle will not abruptly change. Hence, the electric cycle in the successive two commutations is almost the same. Hence, if the former commutation cycle and the digital filter time-constant are known, the next-step advanced-firing commutation can be achieved by using the timer delay. It is shown that the advanced-firing commutation can largely improve the motor power factor, efficiency, power output power capability, and at the same time reduce the loss.
     The above-mentioned three major problems have been solved during the research, whilst a prototype has been manufactured. Experiments have verified the related theoretical analysis, design method and sensorless control strategy.
引文
[1]沈建新,超高速永磁无刷电机拓扑结构与控制策略的研究,浙江省自然科学基金(Y104442)申请报告,2004.
    [2]王凤翔,高速电机的设计特点及相关技术研究,沈阳工业大学学报,第28卷第3期,2006年6月,pp.258-264.
    [3]M.A. Rahman, A. Chiba, T. Fukao, Super high speed electrical machines-summary, Proceeding of IEEE Power Engineering Society General Meeting,2004, Vol.2, pp.1272-1275.
    [4]徐永向,单霍尔传感器高速永磁同步电机的控制与转子损耗研究,博士学位论文,2005.10,哈尔滨工业大学.
    [5]周凤争,高速永磁无刷直流电机转子涡流损耗的研究,博士学位论文,2008.6,浙江大学
    [6]H. Zhou, F. X. Wang, Comparative study on high speed induction machine with different rotor structures, Proceeding of International Conference on Electrical Machines and Systems,2007,8-11 Oct.2007, pp.1009-1012.
    [7]W. L. Soong, G. B. Kliman, R. N. Johnson, R. A. White, J. E. Miller, Novel high-speed induction motor for a commercial centrifugal compressor, IEEE Trans. on Industry Applications, vol.36, no.3,2000, pp.706-713.
    [8]Y.-K. Kim, M.-C. Choi, K.-H. Suh, et al., High-speed induction motor development for small centrifugal compressor, the Fifth International Conference on Electrical Machines and systems,2001, Vol.2, pp,891-894.
    [9]李冰,邓智泉,严仰光,高速异步电机设计的关键技术,微特电机,2002年6月,第35卷,第6期,pp.7-10.
    [10]J. Lahteenmaki, Design and voltage supply of high-speed induction machines, PhD dissertation 2002, Helsinki University of Technology, Espoo, Finland.
    [11]J. Huppunen, High-speed solid-rotor induction machine-electromagnetic calculation and design, PhD dissertation 2004, Lappeenranta University of Technology, Lappeenranta, Finland.
    [12]T. Noguchi, M. Kano, Development of 150000r/min,1.5kW permanent-magnet motor for automotive supercharger, PEDS 2007, pp.183-188.
    [13]M. Kano, T. Noguchi, Efficiency improvement and loss analysis of ultra-high speed permanent-magnet motor, The International Workshop on Mechatronics 2006,12-13 Dec,2006, pp.1345-1350.
    [14]T. Noguchi, Y. Takata, Y. Yamashita, S. Ibaraki,160,000-r/min 2.7-kW electric drive of supercharger for automobiles. The Sixth International Conference on Power Electronics and Drive Systems,2005, pp.1380-1385.
    [15]T. Noguchi, Y. Takata, Y. Yamashita, S. Ibaraki,220,000-r/min 2-kW permanent magnet motor drive for turbocharger. IEEJ Trans. On Industry Applications, Vol.125, No.9,2005, pp.854-861.
    [16]T. Noguchi, Y. Takata, Y. Yamashita, S. Ibaraki,220,000-r/min 2-kW pm motor drive for turbocharger. Electrical Engineering in Japan, Vol.161, No.3,2007, pp.31-40.
    [17]C. Zwyssig, J.W. Kolar, W. Thaler, M. Vohrer, Design of a 100 W,500000 rpm permanent-magnet generator for Mesoscale Gas Turbines, Proceedings of IEEE IAS Annual Meeting 2005, pp.253-260.
    [18]C. Zwyssig, S.D. Round, J.W. Kolar, Power electronics interface for a 100 W,500000 rpm gas turbine portable power unit, Applied Power Electronics Conference, Dallas, Texas, USA,19-23 Mar,2006, pp.283-289.
    [19]C. Zwyssig, J.W. Kolar, Design considerations and experimental results of 100 W, 500000 rpm electrical generator, Journal of Micromechanics and Microengineering, vol.16,2006, pp.S297-S320.
    [20]C. Zwyssig, S.D. Round, J.W. Kolar, Analytical and experimental investigation of a low torque, ultra-high speed drive system, IEEE Industry Applications Conference 2006, Conference Record of the 41th IAS Annual Meeting, Tampa, FL, Oct.8-12, 2006, Vol.3, pp.1507-1513.
    [21]C. Zwyssig, M. Duerr, D. Hassler, J.W. Kolar, An ultra-high-speed,500000rpm, 1kW electrical drive system, Power Conversion Conference - Nagoya,2007. PCC '07 pp.1577-1583.
    [22]C. Zwyssig, S.D. Round, J.W. Kolar, An ultrahigh-speed, low power electrical drive system, IEEE Trans. on Industrial Electronics, vol.55, no.2,2008, pp.577-585.
    [23]H. Hofmann, S.R. Sanders, High-speed synchronous reluctance machine with minimized rotor losses, IEEE Trans, on Industry Applications, vol.36, no.2,2000, pp.531-539.
    [24]Mohammed El Hadi Zaim, High-speed solid rotor synchronous reluctance machine design and optimization, IEEE Trans. on Magnetics, vol.45, no.3,2009, pp.1796-1799.
    [25]方雪,基于软磁铁氧体的高速无刷直流电机的研究,硕士学位论文,2008,5,山东大学.
    [26]孙健,6/2结构开关磁阻电机的研究与实现,硕士学位论文,2007.3,南京航空航天大学.
    [27]黄允凯,余莉,胡虔生,高速永磁电动机设计的关键问题,微电机,2006年,第39卷,第8期,pp.6-9.
    [28]方瑞明,高速变频电机设计与电机智能设计方法的研究,博士学位论文,2002.8,东南大学.
    [29]王继强,高速永磁电机的机械和电磁特性研究,博士学位论文,2007.3,沈阳工业大学.
    [30]J.D. Ede, Z.Q. Zhu, D. Howe, Optimal split ratio for high-speed Permanent magnet brushless DC motors, Proceedings of the 5th International Conference on Electrical Machines and Systems 2001,18-20 Aug, pp.909-912.
    [31]Y.K. Huang, J.G. Zhu, Y.G. Guo, Z.W. Lin, Q.S. Hu, Design and analysis of a high-speed claw pole motor with soft magnetic composite core, IEEE Trans. on Magnetics, vol.43, no.6,2007, pp.2492-2494.
    [32]H. Toda, K. Senda, M. Ishida, Effect of material properties on motor iron loss in PM brushless DC motor, IEEE Trans. on Magnetics, vol.41, no.10,2005, pp.3937-3939.
    [33]J.J.H. Paulides, G.W. Jewell, D. Howe, An evaluation of alternative stator lamination materials for a high-speed,1.5MW, permanent magnet generator, IEEE Trans. on Magnetics, vol.40, no.4,2004, pp.2041-2043.
    [34]F.Z. Zhou, J.X. Shen, W.Z. Fei, R.G. Lin, Study of retaining sleeve and conductive
    shield and their influence on rotor loss in high-speed PM BLDC motors, IEEE Trans. on Magnetics, Vol.42, no.10, Oct.2006, pp.3398-3400.
    [35]周凤争,沈建新,林瑞光,从电机设计的角度减小高速永磁电机转子涡流损耗,浙江大学学报工学版,2007年9月,第41卷,第9期,pp.1587-1591.
    [36]F.Z. Zhou, J.X. Shen, W.Z. Fei, Influence on rotor eddy-current loss in high-speed PM BLDC motors, Proceeding of UPEC 2006,6-8 Sep.2006, Newcastle upon Tyne, UK, pp.734-738.
    [37]周凤争,沈建新,王凯,转子结构对高速永磁无刷直流电机转子涡流损耗的影响,浙江大学学报工学版.2008年9月,第42卷,第9期,pp.1587-1590.
    [38]周凤争,沈建新,王凯,林瑞光,高速永磁无刷直流电动机拓扑结构的研究,微特电机,2007年10月,第35卷,第10期,pp.1-3.
    [39]N. Bianchi, S. Bolognani, F. Luise, Potentials and limits of high-speed PM motors, IEEE Trans. on Industry Applications, vol.40, no.6,2004, pp.1570-1578.
    [40]N. Bianchi, S. Bolognani, F. Luise, Analysis and design of a PM brushless motor for high-speed operations, IEEE Trans. on Energy Conversion, vol.20, no.3,2005, pp.629-636.
    [41]N. Bianchi, S. Bolognani, F. Luise, High speed drive using a slotless PM motor, IEEE Trans. on Power Electronics, vol.21 no.4,2006, pp.1083-1090.
    [42]K. Reichert, G. Pasquarella, High-speed electric machines, status, trends and problems, Proceeding of IEEE/KTH Stockholm Power Tech. Conference, Stockholm, Sweden, June 18-22,1995, pp.41-49.
    [43]I. Takahashi, T. Koganezawa, G.J Su, K. Ohyama, A super high speed PM motor drive system by a quasi-current source inverter, IEEE Trans. on Industry Applications, vol.30, no.3,1994, pp.683-690.
    [44]S.M. Jang, H.W. Cho, S.H. Lee, H.S. Yang, Y.H. Jeong, The influence of magnetization pattern on the rotor losses of permanent magnet high-speed machines, IEEE Trans. on Magnetics, vol.40, no.4,2004, pp.2062-2064.
    [45]H.W. Cho, S.M. Jang, S.K. Choi, A design approach to reduce rotor losses in high-speed permanent magnet machine for turbo-compressor, IEEE Trans. on Magnetics, vol.42, no.10,2006, pp.3521-3523.
    [46]J.L.F. vanderVeen, L.J.J. Offringa, A.J.A. Vandenput, Minimizing rotor losses in high-speed high-power permanent magnet synchronous generators with rectifier load, IEE Proceeding on Electric Power Applications, Vol.144, No.5, September 1997, pp.331-337.
    [47]J.D. Ede, Z.Q. Zhu, D. Howe, Rotor resonances of high-speed permanent-magnet brushless machines, IEEE Trans. on Industry Applications, vol.38, no.6,2002, pp.1542-1547.
    [48]黄允凯,铁磁材料损耗及高速软磁复合材料电机的研究,博士学位论文,2007.6,东南大学
    [49]B. Andreas, S. Tobias, K. Markus, Fixation of buried and surface-mounted magnets in high-speed permanent-magnet synchronous machines, IEEE Trans. on Industry Applications, vol.42, no.4,2006, pp.1031-1037.
    [50]V. Lelos, S. Manifold, J. Granier, Structural properties and testing of a composite banding used in high-speed rotors, IEEE Trans. on Magnetics, vol.43, no.1,2007, pp.250-253.
    [51]E.C. Lovelace, T.M. Jahns, T.A. Keim, J.H. Lang, Mechanical design considerations for conventionally laminated, high-speed, interior PM synchronous machine rotors, IEEE Trans. on Industry Applications, vol.40, no.3,2004, pp.806-812.
    [52]秦峰,贺益康,刘毅等.两种高频信号注入法的无传感器运行研究[J],中国电机工程学报,2005年5月,第25卷,第5期,pp.116-121
    [53]沈建新,陈永校.永磁无刷直流电动机基于反电势的无传感器控制技术综述[J],微特电机,2006年7月,第34卷,第7期,pp.36-40
    [54]Z.Q. Zhu, J.D. Ede, D. Howe, Design criteria for brushless dc motors for high-speed sensorless operation, International Journal of Applied Electromagnetics and Mechanics, vol.15, no.1-4,2001/2002, pp.79-87.
    [55]P.P, Acarnley, J.F, Watson Review of position-sensorless operation of brushless permanent-magnet machines, IEEE Trans. Industrial Electronics, Vol.53, no.2,2006, pp.352-362
    [56]J.X, Shen, S. Iwasaki, Improvement of ASIC-Based sensorless control for ultrahigh-speed brushless DC motor drive, Record of 2003 IEEE International Electric Machines and Drives Conference,2003, pp.1049-1054
    [57]J.X, Shen, S. Iwasaki, Sensorless control of ultrahigh-speed pm brushless motor using pll and third harmonic back emf. IEEE Trans. Industrial Electronics, Vol.53, no.2, 2006, pp.421-428
    [58]Z.Q. Zhu, K. Ng, D. Howe, Design and analysis of high-speed brushless permanent magnet motors, Proceeding of 8th International Conference on Electrical Machines and Drives 97,, No.444,1-3 September 1997, pp.381-385.
    [59]K. Wang, J.X, Shen, F.Z, Zhou, R.G, Lin, R.H, Qiu, Optimal design of magnet pole arc considering utility of third-harmonic back-emf in high-speed sensorless brushless dc motors, Proceeding of International Conference on Electrical Machines and Systems. 2007. ICEMS2007, pp.680-684.
    [60]K. Wang, J.X, Shen, F.Z, Zhou, W.Z, Fei, Design aspects of a high-speed sensorless brushless dc motor using third harmonic back-emf for sensorless control. J. Appl. Phys. Vol.103, no.7,2008..1-3
    [61]L. Zhao, C.H. Ham, Q. Han, T.X. Wu, L. Zheng, K.B. Sundaram, J. Kapat, L. Chow, Design of optimal digital controller for stable super-high-speed permanent-magnet synchronous motor, IEE Proceeding on Electric Power Applications, Vol.153, No.2, March 2006, pp.213-218.
    [62]L.Y. Xu, C.J. Wang, Implementation and experimental investigation of sensorless control schemes for PMSM in super-high variable speed operation, Proceedings of the 33rd IAS Annual Meeting 1998,12-15 Oct.1998, Vol.1, pp.483-489.
    [63]S.I. Park, T.S. Kim, S.C. Ahn, D.S. Hyun, An improved current control method for torque improvement of high-speed BLDC motor, Proceedings of the 18th IEEE Annual Applied Power Electronics Conference and Exposition 2003, pp.294-299.
    [64]K.H. Kim, M.J. Youn, Performance comparison of PWM inverter and variable DC link inverter schemes for high-speed sensorless control of BLDC motor, Electronics Letters,10th October 2002 Vol.38, no.21, pp.1294-1295.
    [65]C. Zwyssig, S.D. Round, J.W. Kolar, Power electronics interface for a 100 W,500000 rpm gas turbine portable power unit, Proceedings of the 21st IEEE Applied Power Electronics Conference and Exposition 2006,19-23 March 2006, pp.283-289.
    [66]J.B. Zou, Y.X. Xu, J.H. Hu, H.W. Zhu, Sinusoidal commutation of a high speed PM synchronous motor with one discrete hall sensor, Proceeding of IEEE International Power Electronics Congress 2002,20-24 Oct.2002, pp.115-119.
    [67]B.H. Bae, S.K. Sul, J.H. Kwon, J.S. Byeon, Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor, IEEE Trans. on Industry Applications, vol.39, no.3,2003, pp.811-818.
    [68]R.C. Becerra, M. Ehsani, High-speed torque control of brushless permanent magnet motors, IEEE Trans. on Industrial Electronics, vol.35, no.3,1988, pp.402-406.
    [69]C.Y. Bian, S.Y. Ren, L.Y. Ma, Sensorless DTC of super high-speed PMSM, Proceedings of the IEEE International Conference on Automation and Logistics 2007, August 18-21,2007, Jinan, China, pp.3060-3064.
    [70]Md. MuminulI. Chy., M. Nasir Uddin, Nonlinear controller based high speed control of IPMSM, Proceedings of International Conference on Electrical and Computer Engineering 2006,19-21 December 2006, Dhaka, Bangladesh, pp.477-480.
    [71]J.A. Haylock, B.C. Mecrow, A.G. Jack, D.J. Atkinson, Enhanced current control of high-speed PM machine drives through the use of flux controllers, IEEE Trans. on Industry Applications, vol.35, no.5,1999, pp.1030-1038.
    [72]G. Jang, M.G. Kim, A bipolar-starting and unipolar-running method to drive a hard disk drive spindle motor at high speed with large starting torque, IEEE Trans. on Magnetics, vol.41, no.2,2005, pp.750-755.
    [73]B.H. Kenny, P.E. Kascak, R. Jansen, T. Dever, W. Santiago, Control of a high-speed flywheel system for energy storage in space applications, IEEE Trans. on Industry Applications, vol.41, no.4,2005, pp.1029-1038.
    [74]H. Kim, K.K. Huh, R.D. Lorenz, T.M. Jahns, A novel method for initial rotor position estimation for IPM synchronous machine drives, IEEE Trans. on Industry Applications, vol.40, no.5,2004, pp.1369-1378.
    [75]T.H. Kim, M. Ehsani, Sensorless control of the BLDC motors from near-zero to high speeds, IEEE Trans. on Power Electronics, vol.19, no.6,2004, pp.1635-1645.
    [76]M. Morimoto, K. Aiba, T. Sakurai, A. Hoshino, M. Fujiwara, Position sensorless starting of super high-speed PM generator for micro gas turbine, IEEE Trans. on Industrial Electronics, vol.53, no.2,2006, pp.415-420.
    [77]M.N. Uddin, M.A. Rahman, High-speed control of IPMSM drives using improved fuzzy logic algorithms, IEEE Trans. on Industrial Electronics, vol.54, no.1,2007, pp.190-199.
    [78]C.Y. Wang, L.Y. Xu, A novel approach for sensorless control of PM machines down to zero speed without signal injection or special PWM technique, IEEE Trans. on Power Electronics, vol.19, no.6,2004, pp.1601-1607.
    [79]J.S. Yim, W.J. Lee, S.K. Sui, H.S. Yang, J.T. Kim, Sensorless vector control of super high speed yurbo compressor, Proceedings of the 20th IEEE Applied Power Electronics Conference and Exposition 2005,6-10 March 2005, pp.950-953.
    [80]Y. Li, N. Ertugrul, A Novel, Robust DSP-based indirect rotor position estimation for permanent magnet AC motors without rotor saliency, IEEE Trans. on Power Electronics, vol.18, no.2,2003, pp.539-546.
    [81]王继强,王凤翔,鲍文博,关恩录,高速永磁电机转子设计与强度分析,中国电机工程学报,2005年8月,第25卷,第15期,pp.140-145.
    [82]王继强,王凤翔,宗鸣,高速电机磁力轴承-转子系统临界转速的计算,中国电机工程学报,2007年9月,第27卷,第27期,pp.94-98.
    [83]孙妍,高速永磁与磁阻电机电磁和机械特性对比研究,硕士学位论文,2007.3,沈阳工业大学.
    [84]于莉,高速永磁无刷直流电机性能分析与设计的研究,博士学位论文,2007,6,东南大学.
    [85]邹继斌,徐永向,于成龙,正弦波无刷直流电机的新型转子位置检测方法,中国电机工程学报,第22卷,第12期,2002年12月,pp.47-55.
    [86]刘闯,朱旭勇,卿湘文,开关磁阻电机转子动力学建模与分析,中国电机工程学报,2008年1月,第28卷,第3期,pp.83-89.
    [87]J.X, Shen, Z.Q, Zhu, D. Howe, Practical issues in sensorless control of pm brushless machines using third-harmonic back-emf, Power Electronics and Motion Control Conference.2006. IPEMC'06, CES/IEEE 5th international.2006, pp.1-5.
    [88]D. Ishak, Z.Q, Zhu, D. Howe, Comparison of PM brushless motors, having either all teeth or alternate teeth wound, IEEE Trans. on Energy Conversion, Vol.21, no.1,2006, pp.95-103.
    [89]D. Ishak, Z.Q, Zhu, D. Howe, Permanent magnet brushless machines with unequal tooth widths and similar slot and pole numbers, IEEE Trans. on Industry Applications, Vol.41, no.2,2005, pp.584-590.
    [90]Z. J. Liu, J. T. Li, M. A. Jabbar, Prediction and analysis of magnetic forces in permanent magnet brushless dc motor with rotor eccentricity. J. Appl. Phys. Vol.99, no.8,2006.08R321-1-3.
    [91]Z. Q. Zhu, D. Ishak, D. Howe, and J. T. Chen, "Unbalanced magnetic forces in permanent-magnet brushless machines with diametrically asymmetric phase windings," Trans. Ind. Applicat., vol.43, no.6, Nov./Dec.2007. pp.1544-1553.
    [92]Z.Q, Zhu, K. Ng, D. Howe, Design and analysis of high-speed brushless permanent magnet motors, Proc. IEE Int'l Conf. Electrical Machines and Drives (EMD'97),1997, pp.381-385.
    [93]Z.Q, Zhu, D. Howe, CC. Chan, Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines, IEEE Trans. on Magnetics, Vol.38, no.1,2002, pp.229-238.
    [94]Z.Q, Zhu, D. Howe, E. Bolte, B. Ackermann, Instantaneous magnetic field distribution in brushless permanent magnet dc motors, part Ⅲ:Effect of stator slotting. IEEE Trans. on Magnetics, Vol.29, no.1,1993, pp.143-151.
    [95]J.X, Shen, Sensorless control of permanent magnet brushless drives, PhD dissertation 2003, University of Sheffield.
    [96]S.J, Lee, Y.H, Yoon, C.Y, Won, Precise speed control of the PM brushless DC motor for sensorless drives, Proceedings of the Eighth International Conference on Electrical Machines and Systems,2005. ICEMS 2005.,2005, pp.290-295.
    [97]Y.H, Yoon, T.W, Lee, S.H, Park, B.K, Lee, C.Y, Won, New approach to rotor position detection and precision speed control of the BLDC motor, IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,6-10 Nov.2006 pp.1305-1310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700