交通流复杂动态特性的元胞自动机模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济不断发展,人们对交通的需求不断增长,因此,交通问题日益成为影响人们生活、制约经济发展的一个的关键性问题。如何充分利用现有的交通设施,有计划地开发有限的交通资源;如何以科学的理论来管理、指导以及控制交通,以缓解迅速增长的交通需求,就成为现代经济社会中一个突出的问题。于是,交通流理论研究做为当今社会对经济需求的一个方面而随之产生。交通流理论研究作为二十世纪一门新兴的交叉性学科,近年来已受到许多学科研究人员的关注,例如力学、非线性科学、物理学、应用数学、系统科学、信息科学、交通工程学、统计学、计算机科学等等。交通流理论的研究目的是,利用现代科学知识正确地描述与实际相关的交通流特性,然后建立适当的数学模型,经过数值模拟和理论分析,揭示交通流现象的本质特征,为实际的交通规划以及交通管理提供可靠的科学理论依据。
     本文作者在充分调查了交通流理论在国内外的发展情况以后,根据实际的交通状况,提出了更符合现实交通的模型,并通过数值模拟和理论分析,研究了交通流中出现的各种非线性现象,揭示了其物理本质。本文的主要工作如下:
     提出了一个改进的双通道交通流模型。由于原来双通道交通模型存在两个明显的缺点:(1)在每一时间步,都会有一辆车到达系统的入口处;(2)当车辆不能驶入道路时,人为地将车辆剔除出去。然而,在高速道路交通中,很少存在每一秒到达一辆车的情况,并且如果车辆不能进入系统,应该停下来等待机会再次进入。鉴于这些实际情况,在本文提出的改进模型中改进了原来双通道模型的上述两个缺点:(1)假设在每一秒钟,车辆以概率λ到达双通道的入口处,其中λ是介于0到1之间的可调参数;(2)若在入口处车辆不能进入系统,则排队等候,直到能进入所选路径。
     在改进模型中,我们首先假设在其中的一条道路上存在限速瓶颈(例如,行人穿马路、部分道路封闭施工等情况)。我们采用平均速度信息反馈策略对此模型进行了详细的数值模拟和数学分析。模拟结果表明系统存在四种物理状态:零态(zero state)、周期震荡态(periodic oscillation state)、交替态(alternation state)(即零态和周期震荡态交替出现)和等速度态(equal velocity state)(即系统中两条道路上车辆的平均速度近似相等)。并且,我们得到了系统处于零态时车辆到达概率与动态车比例之间的数学关系式。
     紧接着上面的研究,我们进一步改进了双通道模型:组成模型的两条道路是不等长的,并且在较短路径上存在限速瓶颈,我们称这样的由两条不同道路组成的双通道系统为非对称系统。相应地,由两条完全相同的道路组成的系统称为对称系统。由于以前应用在对称双通道交通中的信息反馈策略不能直接应用于非对称双通道交通中,所以我们采用改进的平均速度反馈和改进的拥挤系数反馈研究非对称双通道系统。模拟结果表明,出行者平均出行时间与车辆到达概率λ有关,当λ较小时,采用改进的平均速度信息反馈策略能节省出行时间;当λ较大时,采用改进的拥挤系数信息反馈策略能节省出行时间。所以交通管理者要根据实际的交通情况指导交通,已达到高效的目的。
     接着,针对对称双通道模型中采用行驶时间反馈策略出现的流量高幅震荡以及非对称双通道交通模型中出现的周期震荡态,我们调查了当部分动态车不遵守信息指示时的交通状态,模拟发现,对称系统及非对称系统中存在的大幅度震荡被压制了。系统的通行能力增加了,这说明,在某些情况下(例如双通道交通中进行路径选择时)司机太遵守规则反而达不到预想的效果。在这个改进模型中,我们首次研究了在何种情况下能降低双通道交通系统中道路上流量的震荡。
     最后,我们提出了一种耦合演化博弈理论的一维交通流模型。考虑到实际交通流是由车辆组成的,而车辆是由具有自主意识的司机来操控的,所以组成交通流的个体之间会存在一定的冲突,这种冲突可以用进化的博弈理论来描述。因此,我们将进化博弈理论引进一维交通流模型中。首先采用周期性边界条件,研究了耦合进化博弈理论的单道交通模型。采用蒙特-卡罗方法对于单道交通模型进行模拟,结果显示,当道路上粒子密度小于临界密度时,经过短暂的暂态过程后,背叛者比例随时间呈指数衰减;当道路上粒子密度大于临界密度时,经过短暂的暂态过程后,背叛者比例不再随时间变化,而是保持为一个常数。我们将本文模型得到的临界行为与以前文献中模型的临界行为做了比较,初步解释了造成两种不同临界行为的原因可能是由于系统经历的过程不同引起的。采用平均场理论,我们分析了系统中合作者比例随时间的变化及系统中流量的变化。结果显示,由于背叛者引入,系统中粒子的流动性降低了。这一模型可以用来描述行人交通或者生物交通(例如分子马达的运动)。
     做为对单道交通的扩展,同时考虑到实际的道路交通,采用开边界条件,我们进一步研究了耦合了进化博弈理论的双道交通流模型。模拟发现,当驶入道路的车辆中合作车辆所占比例增加时,系统处于较低密度的自由流区域增加了,这说明对于车辆的道路交通,车辆之间的合作与互相谦让会增加车辆的流动性,从而提高道路的通行能力。
With the continuous development of social economy, traffic demand rapidly increases. Therefore, transportation problem gradually becomes an emergent world problem, which influences human life greatly and limits economy development. How to make full use of the finite traffic resource, how to find the potential of existing infrastructure, how to guide the traffic designing, planning and management with scientific theory and how to alleviate the rapidly growing traffic supply and demand, all these become important problems to be solved. The study of traffic flow theory emerges as the times require. Recently, as a new cross subject, traffic flow theory have been paid attention by scientists on these aspects of mechanics, physics, nonlinear science, information science, traffic engineering, statistics, computer science and so on. The purpose of traffic flow theory is to describe traffic property by applying the advanced science knowledge. By founding appropriate model, carrying out computer simulation and mathematic analysis, we hope to discover the essential characteristics of traffic flow, provide reliable proof for traffic planning and managenment.
     After having sufficiently investigated the development of traffic flow theory, we put forward new traffic flow models according to the practical road situation. We have found a kind of nonlinear phenomena by simulation and theory analysis and discoved the physical characteristics of traffic models. The contents of the paper are as follows:
     We put forward an impoved two-route traffic flow model, in which we modified the two unreasonable aspects in previous works:(1) at every time step, a new vehicle is generated at the entrance of two routes; (2) if a new vehicle is not able to enter the desired route, it will be deleted. In our modified model, at every time step, a vehicle reaches the entrance with probabilityλand if the vehicle can not enter the selected route, it will stop and wait at the entrance. Theλis a random number between 0 and 1.
     In the first modified model, assume there is a limited speed bottleneck (for example, pedestrians go throught the road and a part of road is closed for working) on a route. We discussed the model in detail under mean velocity information feedback strategy and found that there exist four different system states in our model, i.e., zero state, periodic oscillation state, alternation state and equal velocity state. Furthermore, we also obtained the relationship between dynamic vehicles and critical vehicle arriving probability in zero state.
     On top of the previous work mentioned above, we have the model further developed. In the second modified two-route traffic model, the two routes are unequal and a limited speed bottleneck is sited on the shorter route, which is denoted as unsymmetrical two-toute system. Correspondin gly, the two-route system with the same routes is denoted as symmetrical two-route system. Because the previous information feedback strategies are invalid, we adopted improved mean velocity information feedback and improved congestion coefficient information feedback to study our modified model. The simulation results showed that the average cost of drivers is dependence on the vehicle arriving probabilityλ. It is able to save time under the improved mean velocity information feedback strategy when theλis small. However, it can save time under the improved congestion coefficient information feedback strategy when theλis large.
     In succession, we investiged the symmetrical and unsymmetrical two-route model when some static dynamic vehicle diobey the provided information. Simulation results showed that the high amplitude of average flux appearing on two routes is suppressed and the system capacity is enhanced. This indicates that, in some case (for example, drivers choose route in two-route system), it is not the best ways for divers obeying rules.
     Because the practical traffic system consists of lots of vehicles, at the same time vehicles is controlled by drivers with mind, the vehicles in traffic system can happen to compete each other. The competion is able to be described by evolutionary game. In this paper, it is the first time to introduce the evolutionary game into the one-dimensional road traffic system. Firstly, we investigated one road with periodic boundary condition. The simulation results indicated that the system is possessed of nontrivial critical behavior. There exists a critical density in our model. For large density, the fraction of cooperator maintains a nonzero constant. Contrarily, for small density, the fraction of cooperator decays exponentially. The introducing of defector decreases the mobility of vehicles. This model is able to describe pedestrian or biological traffic.
     As the extension for one road traffic, we have the model further developed and introduce the evolutionary game into two road traffic. Simulation results showed that when the share of cooperator increases, the region of low density enlarges, which indicates it can increase the mobility of vehicles when the share of cooperator increases.
引文
[1]Adrian Cho, Ourselves and Our Interactions:The Ultimate Physics Problem? Science 325 (2009) 406-408.
    [2]徐东云,张雷,兰荣娟,城市交通拥堵的背景变换分析,城市问题164(2009)46-49.
    [3]Ghassan abu-Lebdeh, Development of Dynamic Traffic Signal Control Procedures for Oversaturated Arterials and Genetic Algorithms Solution, Ph.D thesis, University of Illinois at Urbana-Champaign (1999).
    [4]http://www.mlit.go.jp/road/ITS/index.html, ITS Japan. ITS Handbook 2003-2004.
    [5]李瑞敏,城市交通信号控制系统相关理论模型研究及软件开发,Ph.D thesis,清华大学(2005).
    [6]袁耀明,交通流元胞自动机模型的解析和模拟研究,Ph.D thesis,中国科学技术大学(2009).
    [7]罗建科,房新智,我国城市交通发展模式探讨,研究讨论,246(2009)37-39.
    [8]上海2009年安排40个重大交通项目,城市道桥与防洪 道路交通,2(2009)11.
    [9]综合运输研究所课题组,“十一五”综合交通发展规划中期评价,综合评述,1(2009)8-13.
    [10]漫画城市交通,城市交通,http://www.cnki.net.
    [11]唐孝威,张训生,陆坤权(Ed.),交通流与颗粒流,浙江大学出版社,2004.
    [12]D. Chowdhury, L. Santen, A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Phys. Rep.329 (2000) 199-329.
    [113]高坤,从基本图方法到三相交通流理论—交通流元胞自动机模型理论研究,Ph.Dthesis,中国科学技术大学(2009).
    [14]D. Helbing, Traffic and related self-driven many particle systems, Rev. Mod. Phys.73 (2001)1067-1141.
    [15]T. Nagatani, The physics of traffic jams, Rep. Prog. Phys.65 (2002) 1331-1386.
    [16]A. Schadschneider, in:M. Schreckenberg, D. Wolf (Eds.), Traffic and Granular Flow'97 Springer, Singapore (1998).
    [17]D. Helbing, M. Herrmann, M. Shreckenberg, D. E. Wolf (Eds.), Traffic and Granular Flow'99 Springer, Berlin, (2000).
    [18]TRANSIMS. Transportation Analysis and Simulation System. Los Alamos National Laboratory, Los Alamos, http://transims.tsasa.lanl.gov.
    [19]D. Helbing, A. Hennecke, V. Shvetsov, et al. MASTER:macroscopic traffic simulation
    based on a gas-kinetic, non-local traffic model. Transp. Res. B 35 (2001) 183-211.
    [20]姜锐,交通流复杂动态特征的微观和宏观模式研究,Ph.D thesis,中国科学技术大学(2002)
    [21]贾斌,高自友,李克平,李新刚,基于元宝自动机的交通系统建模与模拟,科学出版社 北京(2007).
    [22]段进宇,缪立新,交通流概论,in:[11], pp.5-16.
    [23]W. Knospe, Single-vehicle data of highway traffic:Microscopic description of traffic phases. Phys. Rev. E 65,056133 (2002).
    [24]D. L. Gerlough, and M. J. Huber, Traffic Flow Theory, Transportation Research Board, Washington, DC (1975) 165.
    [25]M. Koshi, Iwasaki M., and I. Ohkura, in Proceedings of the 8th International Symposium on Transportation and Traffic Flow Theory, University of Toronto, Toronto (1983) 403.
    [26]A. D. May, Traffic Flow Fundamentals, Prentice Hall, Englewood Cliffs, NJ, (1990).
    [27]C. F. Daganzo, Fundamentals of Transportation and Traffic Operations, Pergamon Elsevier, Oxford, England (1997).
    [28]C. F. Daganzo, A Behavioral Theory of Multi-lane Traffic Flow. Ⅰ:Long Homogeneous Freeway Sections. Research Report UCB-ITS-RR-99-5, Institute of Transportation Studies, University of California, Berkeley, CA, (1999).
    [29]C. F. Daganzo, A Behavioral Theory of Multi-lane Traffic Flow. Ⅱ:Merges and the Onset of Congestion. Research Report UCB-ITS-RR-99-6, Institute of Transportation Studies, University of California, Berkeley, CA (1999).
    [30]B. S. Kerner, in Proceedings of the 3rd International Symposium on Highway Capacity edited by R. Rysgaard, Road Directorate, Denmark, Vol.2 (1998) 621.
    [31]B. S. Kerner, in Traffic and Granular Flow'97, edited by M. Schreckenberg and D. E. Wolf, Springer, New York (1998) 239.
    [32]B. S. Kerner, Transp. Res. Rec.1678, (1999) 160.
    [33]B. S. Kerner, Phys. World 12 (8) (1999) 25.
    [34]B. S. Kerner, in Traffic and Granular Flow'99:Social, Traffic, and Granular Dynamics, edited by D. Helbing, H. J. Herrmann, M. Schreckenberg, and D. E. Wolf, Springer, Berlin, (2000)253.
    [35]B. S. Kerner, Transp. Res. Rec.1710 (2000) 136.
    [36]J. Treiterer, and J. I. Taylor, Highw. Res. Rec.142, (1966) 1.
    [37]J. Treiterer, and J. A. Myers, in Proceedings of the 6th International Symposium on Transportation and Traffic Theory, edited by D. Buckley, Reed, London, (1974) 13.
    [38]M. Koshi, M. Iwasaki, and I. Ohkura, in Proceedings of the 8th International Symposium on Transportation and Traffic Flow Theory, University of Toronto, Toronto, (1983) 403.
    [39]T. Bleile, in Proceedings of the 4th World Congress on Intelligent Transport Systems, October 1997, Berlin (ITS Congress Association, Brussels), (1997) 00022.
    [40]T. Bleile, Ph.D. thesis, University of Stuttgart (1999).
    [41]D. Manstetten, W. Krautter, and T. Schwab, in Proceedings of the 4th World Congress on Intelligent Transport Systems, Berlin (ITS Congress Association, Brussels) (1997) 00648.
    [42]D. Helbing, Traffic and related self-driven many-particle systems, Rev. Mod. Phys.,73 (2001).
    [43]K. Nagel, P. Wagner and R. Woesler, Still flowing:Approaches to traffic flow and traffic jam modeling, Oper. Res.51(5) (2003) 681-710.
    [44]N. Wu, Vehicle auf Schnellstraen im Fundamentaldiagramm-Ein neues Model undseine Anwendungen, Straenverstechnik, In German,8 (2000) 378.
    [45]G. F. Newell, Mathematical models of freely moving traffic, J. Oper. Res. Soci. America 3 (1955) 176-188.
    [46]W. Leutzbach, Introduction to the Theory of Traffic Flow, Springer, Berlin (1988).
    [47]L. C. Edie, Car-following and steady-state theory for non-congested traffic, Oper. Res.9 (1961)66-77:
    [48]F. L. Hall and K. Agyemang-Duah, Freeway capacity drop and the definition of capacity, Transp. Res. Rec.1320 (1991) 91-98.
    [49]B. S. Kerner and H. Rehborn, Experimental features and characteristics of traffic jams, Phys. Rev. E (1996) R1297-1230.
    [50]J. R. Windover and M. J. Cassidy, Some observed details for freeway traffic evolution, Transp. Res. A 35 (2001) 881-894.
    [51]S. Smulders, Transp. Res., Part B,24 (1990) 111.
    [52]S. Hoogendoorn, and P. H. L. Bovy, in Motorway Traffic Flow Analysis. New Methodologies and Recent Empirical Findings, edited by P. H. L. Bovy, Delft University of Technology, Delft (1998) 71.
    [53]L. Neubert, H. Y. Lee, and M. Schreckenberg, J. Phys. A 32 (1999) 6517.
    [54]B. Tilch, and D. Helbing, in Traffic and Granular Flow'99:Social, Traffic, and Granular Dynamics, edited by D. Helbing, H. J. Herrmann, M. Schreckenberg, and D. E. Wolf, Springer, Berlin (2000) 333.
    [55]T. Dijker, P. H. L. Bovy, and R. G. M. M. Vermijs, in Motorway Traffic Flow Analysis, New Methodologies and Recent Empirical Findings, edited by P. H. L. Bovy, Delft
    University of Technology, Delft (1998) 49.
    [56]B. S. Kerner, Experimental features of self-organization in traffic flow. Phys. Rev. Lett. 81(17) (1998) 3797-3800.
    [57]L. A. Safonov, Delay-induced chaos with multifractal attractor in a traffic flow model. Euro. Phys. Lett.57 (2002) 151-157.
    [58]S. A. Paul and J. L. David, A novel nonlinear car-following model, chaos 8 (1998) 791-799.
    [59]K. P. Li and Z. Y. Gao, Nonlinear dynamics analysis of traffic times series, Mod. Phys. Letts. B 18 (2004) 1395-1402.
    [60]K. P. Li and Z. Y.Gao, Controlling the states of traffic flow at the intersections, Int. J. Mod. Phys. C 15 (2004) 553-562.
    [61]K. P. Li and Z. Y. Gao, tranisition from disorder to order in traffic flow, Chin. Phys. Lett. 21 (2004)1212-1215.
    [62]K. P. Li and Z. Y. Gao, Order moving states in traffic flow, Physica A 348 (2005) 553-560.
    [63]K. P. Li and Z. Y. Gao, Controlling the vehicle states in two lane traffic, Int. J. Mod. Phys. C 16(3) (2005) 501-512.
    [64]D. Helbing, Master:macroscopic traffic simulation based on a gas-kinetic nonlocal traffic model.Trasp.Res. B 35 (2001) 180-211.
    [65]D. Helbing, Jams, waves and clusters, Science 282 (1998) 2001-2003.
    [66]T. Nagatani, Density wave in traffic flow, Phys. Rev. E 60 (1999) 6395-6401.
    [67]D. A. Kurtz, Traffic jam, granular flow and soliton selection, Phys. Rev. E 52 (1993) 5574-5582.
    [68]Y. Xue, Analysis of the stability and density waves for traffic flow, Chin. Phys.11(11) (2002)1128-1134.
    [69]J. P. Kinzer, Application of the theory of probability to problem of highway traffic, B. C. E thesis, Politech. Inst. Brooklyn (1933).
    [70]W. F. Adams, Road traffic considered as a random series. J. Inst. Civil Eng.4 (1936) 121-130.
    [71]B. D. Greenshields, A study of traffic capacity, Proc. Highway Res. Board 14 (1934) 448-477.
    [72]B. D. Greenshields, D. Shapiro and E. L. Ericksen, Traffic performance at urban street intersections, Tech. Rep. No.l, Yale Bureau of Highway traffic, New Haven Corn (1947).
    [73]M. J. Lighthill, G. B. Whitham, On kinematic waves:Ⅱ. a theory of traffic flow on long crowded roads, Proceedings of the Royal Society, Ser. A 229 (1955) 317-345.
    [74]P. I. Richards, Shock waves on the highway, Oper. Res.4 (1956) 42-51.
    [75]H. J. Payne Models of freeway traffic and control, In:Bekey, G.A. (Ed.), Mathematical Models of Public Systems 1, Simulation Council, La Jolla, (1971) 51-61.
    [76]H. J. Payne, Freflo:a macroscopic simulation model for freeway traffic. Transpn. Res. Rec. 722(1979)68-77.
    [77]P. Ross, Traffic dynamics, Transp. Res. B 22 (1988) 421-435.
    [78]P. G. Michalopoulos, P. Yi, A.S. Lyrintzis, Continuum modeling of traffic dynamics for congested freeways, Transp. Res. B 27 (1993) 315-332.
    [79]M. Papageorgiou, J.M. Blosseville, H. Hadj-Salem, Macroscopic modeling of traffic flow on the Boulevard Peripherique in Paris, Transp. Res. B 23 (1989) 29-47.
    [80]R. D. Kiihne, Macroscopic freeway model for dense traffic stop-start waves and incident detection, In:Proceedings of the Ninth International Symposium on Transportation and Traffic Theory (1984) 20-42.
    [81]B. S. Kerner, P. KonhAauser, Cluster effect in initially homogeneous traffic flow, Phys. Rev. E48 (1993) R2335-2338.
    [82]B. S. Kerner, P. Konhauser, Structure and parameters of clusters in traffic flow, Phys. Rev. E50(1994)54-83.
    [83]H. Y. Lee, H.W. Lee, D. Kim, Origin" of synchronized traffic flow on highways and its dynamic phase transition, Phys. Rev. Lett.81 (1998) 1130-1133.
    [84]H. Y. Lee, H.W. Lee, D. Kim, Dynamic states of a continuum traffic equation with on-ramp, Phys. Rev. E 59 (1999) 5101-5111.
    [85]C. F. Daganzo, Requiem for second-order fluid approximation of traffic flow, Transp. Res. B 29 (1995) 277-286.
    [86]H. M. Zhang, A theory of nonequilibrium traffic flow, Transp. Res. B 32 (1998) 485-498.
    [87]A. Aw, M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Appl. Math.60 (2000) 916-938.
    [88]R. Jiang, Q. S. Wu, Z. J. Zhu, A new continuum model for traffic flow and numerical tests, Transp. Res. B 36 (2002) 405-419.
    [89]Y. Xue, S. Q. Dai, Continuum traffic model with the consideration of two delay time scales, Phys. Rev. E68 (2003) 066123.
    [90]F. Siebel, W. Mauser, On the fundmental diagram of traffic flow, SIAM Journal on Appl. Math.66(2006)1150-1162.
    [91]F. Siebel, W. Mauser, Synchronized flow and wide moving jams from balanced vehicular traffic, Phys. Rev. E 73 (2006) 066108.
    [92]I. Prigogine, R. Herman, Kinetic theory of vehicular traffic, American Elsevier, New York 1971.
    [93]S. L. Paveri-Fontana, On Boltzmann-like treatments for traffic flow. A critical review of the basic model and an alternative proposal for dilute traffic analysis. Tranpn. Res.9 (1975) 225-235.
    [94]D. Helbing, Derivation and empirical validation of a refined traffic flow model, PhysicaA 233 (1996) 253-282.
    [95]D. Helbing, A. Greiner, Modeling and simulation of multilane traffic flow, Phys. Rev. E 55 (1997)5498-5508.
    [96]T. Nagatani, Kinetic segregation in a multilane highway traffic flow, Physica A 237 (1997) 67-74.
    [97]V. Shvetsov, D. Helbing, Macroscopic dynamics of multilane traffic, Phys. Rev. E 59 (1999) 6382-6339.
    [98]S. P. Hoogendoorn, P. H. L. Bovy, Continuum modeling of multiclass traffic flow, Transp. Res. B 34 (2000) 123-146.
    [99]M. Treiber, A. Hennecke, D. Helbing, Derivation, properties and simulation of a gas-kinetic-based nonlocal traffic model, Phys. Rev. E 59 (1999) 239-253.
    [100]D. Helbing et al., MASTER:macroscopic traffic simulation based on a gas-kinetic, non-local traffic model, Transp. Res. B 35 (2001) 183-211.
    [101]S. P. Hoogendoorn, P. H. L. Bovy, Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow, Transp. Res. B 35 (2001) 317-336.
    [102]A. Reuschel, Vehicle movements in a platoon. Oesterreichisches Ingenieur-Archir 4 (1950) 193-215.
    [103]L. A. Pipes, An operational analysis of traffic dynamics.J. Appl. Phys.24 (1953) 274-287.
    [104]G. F. Newell, Nonlinear effects in the dynamics of car following, Oper. Res.9 (1961) 209-229.
    [105]M. Bando et al., Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E51(1995)1035-1042.
    [106]D. Helbing, B. Tilch, Generalized force model of traffic dynamics, Phys. Rev. E 58 (1998)133-138.
    [107]R. Jiang, Q. S. Wu, Z. J. Zhu, Full velocity difference model for car-following theory, Phys. Rev. E64 (2001) 017101.
    [108]H. Lenz, Multi-anticipative car-following model, Eur. J. Phys. B 7 (1999) 331-335.
    [109]T. Nagatani, Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction, Phys. Rev. E 60 (1999) 6395-6401.
    [110]A. Nagayama et al., Effect of looking at the car that follows in an optimal velocity model of traffic flow, Phys. Rev. E 65 (2002) 016112.
    [111]M. Treiber, A. Hennecke, D. Helbing, Congested traffic states in empirical observations and microscopic simulations, Phys. Rev. E 62 (2000) 1805-1824.
    [112]E. Tomer et al., Presence of many stable nonhomogeneous states in an inertial car-following model, Phys. Rev. Lett.84 (2000) 382-385.
    [113]D. Helbing et al., Modelling widely scattered states in'synchronized'traffic flow and possible relevance for stock market dynamics, Physica A 303 (2002) 251-260.
    [114]S. Yukwa et al., Dynamical phase transition in one dimensional traffic flow model with blockage, J. Phys. Soc. Jpn.63 (1994) 3609-3618.
    [115]S. Tadaki et al., Coupled map traffic flow simulator based on optimal velocity functions, J. Phys. Soc. Jpn.67 (1998) 2270-2276.
    [116]S. Krauss et al., Metastable states in a microscopic model of traffic flow, Phys. Rev. E 55 (1997)5597-5602.
    [117]B. S. Kerner, S.L. Klenov, A microscopic model for phase transitions in traffic flow, J. Phys. A 35 (2002) L31-L43.
    [118]A. Sasoh, Impact of unsteady disturbance on multi-lane traffic flow, J. Phys. Soc. Japn. 71 (2002) 989-996.
    [119]V. Neumann, Cellular automata, Academic Press, New York (1968).
    [120]M. Cremer, J. Ludwig, A fast simulation model for traffic flow on the basis of Boolean operations, J. Math. Comp. Simul.28 (1986) 297-303.
    [121]S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys.55 (1983) 601-644.
    [122]K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic,J. DE Phys. 12(1992)2221-2229.
    [123]O. Biham, A. A. Middleton, D. A. Levine, Self-organization and a dynamical transition in traffic flow models, Phys. Rev. A 46 (1992) R6124-R6127.
    [124]S. Wolfram, Theory and application of cellular automata, World Scientific Singapore, 1986.
    [125]M. Takayasu and H. Takayasu,1/f noise in a traffic model, Fractals 1 (1993) 860-866.
    [126]R. Barlovic, L. Santen, A. Schadschneider, M. Schreckenberg, Metastable states in cellular automata for traffic flow, Eur. Phys. J. B 5 (1998) 793-800.
    [127]S. C. Benjamin, N. F. Johnson and P. M. Hui, Cellular automaton models of traffic flow along a highway containing a junction, J. Phys. A 29, (1996) 3119-3127.
    [128]X. B. Li, Q. S. Wu and R. Jiang, Cellular automaton model considering the velocity effect of a car on the successive car. Phys. Rev. E 64 (2001) 066128.
    [129]W. Knopse, L. Santen and A. Schadschneider, Toward a realistic microscopic description of highway traffic. J. Phys. A 33 (2000) L477-L485.
    [130]R. Jiang, Q.S.Wu, Spatial-temporal patterns at an isolated on-ramp in a new cellular automaton model based on three-phase traffic theory, J. Phys. A 36 (2003) 8197-8213.
    [131]R. Jiang, Q.S. Wu, First order phase transition from free flow to synchronized flow in a cellular automata model, Eur. Phys. J. B 46 (2005) 581-584.
    [132]T. Nagatani, Self-organization and phase-transition in traffic-flow model of a 2-lane roadway, J. Phys. A 26 (1993) L781-L787.
    [133]T. Nagatani, Dynamical jamming transition induced by a car accident in traffic-flow model of a 2-lane roadway, Physica A 202 (1994) 449-458.
    [134]M. Rickert, K. Nagel and M. Schreckenberg, Two lane traffic simulation using cellular automata, PhysicaA 231 (1996) 534-550.
    [135]D. Chowdhury, D. E. Wolf and M. Schreckenberg, particle hopping models for two-lane traffic with two kinds of vehicles:effects of lane changing rules. Physica A 235 (1997) 417-439.
    [136]P. Wagner, K. Nagel and D. E. Wolf, Realistic multi-lane traffic rules for cellular automata, Physica A 234 (1997) 687-698.
    [137]K. Nagel, D. E. Wolf and P. Wagner, Two-lane traffic rules for cellular automata:A systematic approach. Phys. Rev. E 58 (1998) 1425-1437.
    [138]W. Knospe, L. Santen and A Schadschneider, Disorder effects in cellular automata for two-lane traffic. PhysicaA 265 (1999) 614-633.
    [139]W. Knospe, L. Santen and A Schadschneider, A realistic two-lane traffic model for high-way traffic, J. Phys. A 35 (2002) 3369-3388.
    [140]B. Jia, R. Jiang and Q. S. Wu, Honk effect in the two-lane cellular automation model for traffic flow. PhysicaA 348 (2005) 544-552.
    [141]X. J. Kong, Z. Y. Gao and K. P. Li, A two-lane cellular model with influence of next-nearest neighbor vehicle, Commun. Theor. Phys.45 (2006) 657-662.
    [142]孔宪娟,高自友,赵小梅,贾斌,反馈控制双车道跟驰模型研究,物理学报56(4)(2007)2024-2029.
    [143]J. P. Meng, S. Q. Dai, L. Y. Dong and J. F. Zhang, Cellular automaton model for mixed
    traffic flow with motorcycles, PhysicaA 380 (2007) 470-480.
    [144]B. S. Kerner and S. L. Klenov, Spatial-temporal patterns in heterogeneous traffic flow with a variety of driver behavioral characteristics and vehicle parameters, J. Phys. A 37 (2004) 8753-8788.
    [145]B. Jia, R. Jiang, Z. Y. Gao and X. M. Zhao, The effect of mixed vehicles on traffic flow in two lane cellular automata model, Int. J. Mod. Phys. C 16(10) (2005) 1617-1626.
    [146]M. M. Pederson and P. T. Ruhoff, Entry ramps in the Nagel-Schrekenberg model, Phys. Rev. E65(2002)056705.
    [147]A. K. Daoudia and N. Moussa, Numerical simulations of a three-lane traffic model using cellular automata, Chin. J. Phys.,41(6) (2003) 671-681.
    [148]T. Nagatani, Anisotropic effect on jamming transition in traffic flow, J. Phys. Soc. Japan 62(1993)2656-2662.
    [149]M. Fukui, H. Oikawa and Y. Ishibashi, Flow of cars crossing with unequal velocities in a two-dimensional cellular automaton model. J. Phys. Soc. Japn.65 (1996) 2514-2517.
    [150]T. Nagatani, Jamming transition in the traffic-flow model with two-level crossings, Phys. Rev. E48(1993)3290-3294.
    [151]K. H. Chung, P. M. Hui and G. Q. Gu, Two-dimensional traffic flow problems with faulty traffic lights, Phys. Rev. E 51 (1995) 772-774.
    [152]J. Torok and J. Kertesz, The green wave model of two-dimensional traffic:transitions in the flow properties and in the geometry of the traffic jam, Physica A 231 (1996) 515-533.
    [153]J. A. Cuesta, F. C. Martines and J. M. Molera, Phase transition in two-dimensional traffic-flow models, Phys. Rev. E 48 (1993) R4175-R4178.
    [154]T. Nagatani, Effect of jam-avoiding turn on jamming transition in two-dimensional traffic flow model, J. Phys. Soc. Japn.63(4) (1994) 1228-1231.
    [155]G. Q. Gu, K. H. Chung, P. M. Hui, two-dimensional traffic flow model problems in inhomogeneous lattice, Physica A 217 (1995) 339-347.
    [156]Raissa M. D'Souza, Coexisting phases and lattice dependence of a cellular automaton model for traffic flow, Phys. Rev. E 71(2005) 066112.
    [157]D. Sun, R. Jiang and B. H. Wang, Timing of traffic lights and phase separation in two-dimensional traffic flow, Computer Physics Communications (2009) 3932.
    [158]孙舵,汪秉宏,红绿灯周期对二维交通流的影响及平均场理论,吉林大学学报39(2)(2009)80-82.
    [159]M. R. Evans, D. P. Foster, C. Godreche and D Mukamel, Spontaneous Symmetry Breaking in a One-Dimensional Driven Diffusive System, Phys. Rev. Lett.74 (1995)
    208-211.
    [160]M. R. Evans, D. P. Foster, C. Godrecher and D. Mukamel, Asymmetric Exclusion Model with Species:Spontaneous Symmetry Breaking, J. Stat. Phys.80 (1995) 69-102.
    [161]T. L. Friesz, J. Luque and R. L. Tobin, Dynamic network traffic assignment considered as a continuous-time optimal-control problem, Operations Research 37 (1989) 893-901.
    [162]R. A. Reiss, H. G Nathan and L. C. Stephen, Dynamic control and traffic performance in a freeway corridor:a simulation study, Transp. Res. Part A 25(1991) 267-276.
    [163]H. S. Mahmassani and R. Jayakrishnan, System performance and user response under real-time information in a congested traffic corridor, Transp. Res. Part A 25 (1991) 293-307.
    [164]A. Richard, Andre de Palma and L. Robin, Does providing information to drivers reduce traffic congestion?, Transp. Res. Part A 25 (1991) 309-318.
    [165]P. Bonsall, The influence of route guidance advice on route choice in urban networks, Transportation 19 (1992) 1-23.
    [166]J. Adler and V. Blue, Toward the design of intelligent traveler information systems, Transp. Res. C 6 (1998) 157-172.
    [167]H. Dia and H. Purchase, Modeling the impacts of advanced traveler information system using intelligent agents, Road Transp. Res.8 (1999) 68-73.
    [168]H. Dia and S. Panwai, Modelling drivers'compliance and route choice behavior in response to travel information, Nonlinear Dyn.49 (2007) 493-509.
    [169]J. Wahle, A. Lcia, C. Bazzan, F. Klgl and M. Schreckenberg, Decision dynamics in a traffic scenario, Physica A 287 (2000) 669-681.
    [170]J. Wahle, A. Lcia, C. Bazzan, F. Klgl and M. Schreckenberg, The impact of real-time information in a two-route scenario using agent-based simulation, Transp. Res. C 10 (2002) 399-417.
    [171]Y. Yokoya, Dynamics of traffic flow with real-time traffic information, Phys. Rev. E 69 (2004)016121.
    [172]K. Lee, P. M. Hui, B. H. Wang and N. F. Johnson, Effects of announcing global information in a two-route traffic flow model, J. Phys. Soc. Japn.70 (2001) 3507-3510.
    [173]W. X. Wang, B. H. Wang, W. C. Zheng, C. Y. Yin and T. Zhou, Advance information feedback in intelligent traffic systems, Phys. Rev. E 72 (2005) 066702.
    [174]M. Fukui, K. Nishinari and Y. Yokoya, Effect of real-time information upon traffic flows on crossing roads, PhysicaA 388 (2009) 1207-1212.
    [175]L. J. Tian, H. J. Huang and T. L. Liu, Comparing the Information Feedback Strategies in a Signal Controlled Network, International conference on intelligent computation technology and automation 2 (2008) 238-242.
    [176]L. J. Tian, H. J. Huang and T. L. Liu, Comparative studies on information feedback strategies in traffic networks with overlapping routes, Acta physica sinica 57 (2008) 2122-2129.
    [177]L. J. Tian, H. J. Huang and T. L. Liu, Information feedback strategies in a signal controlled network with overlapped routes, Chinese Physics Letters 26 (7) (2009) 078903.
    [178]H. Y. Shang, H. J. Huang and Z. Y. Gao, Impacts of variable message signs on traffic congestion, Science in china series E-technological sciences 52 (2009) 477-483.
    [179]H. Y. Shang and H. J. Huang, A cell transmission model and its application in optimizing the location of variable message signs, Third International Conference on Natural Computation 4 (2007) 75-79.
    [180]H. Y. Shang, H. J. Huang and Z. Y. Gao, Locating the variable message signs by cell transmission model, Acta Physica Sinica 56 (2007) 4342-4347.
    [181]L. C. Davis, Realizing Wardrop Equilbria with Real-Time Traffic Information, Physica A 388 (2009) 4459-4474.
    [182]R. Jiang, Q. S. Wu and B. H. Wang, Cellular automata model simulating traffic interactions between on-ramp and main road, Phys. Rev. E 66, (2002) 036104.
    [183]J. Nash, Essays on Game Theory, Cheltenham:Elgar (1996).
    [184]J. Weibull, Evolutionary Game Theory, Cambridge:MIT Press (1995).
    [185]J. Hofbauer and K.Sigmund, Evolutionary Games and Population Dynamics, Cambridge: Cambridge University Press (1998).
    [186]J. V. Neuman and O. Morgenstern, Theory of games and economic behavior, Princeton: Princeton University Press (1953).
    [187]R. Axelrod, The Evolution of Cooperation, NewYork:Basic Books (1984).
    [188]G. Szaboand and C. Toke, Evolutionary prisoner's dilemma game on a square lattice, Phys. Rev. E 58(1998)69-73.
    [189]C. Hauert and G. Szabo, Game theory and physics, American Journal of Physics 73 (2005) 405-414.
    [190]Matjaz Perc, Premature seizure of traffic flow due to the introduction of evolutionary games, New Journal of Physics 9 (2007) 3-17.
    [191]J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics, Cambridge: Cambridge University Press (1998).
    [192]A. Yamauchi, J. Tanimoto, A. Hagishima, and H. Sagara, Dilemma game structure observed in traffic flow at a 2-to-1 lane junction, Phys. Rev. E 79 (2009) 036104.
    [193]A. C. Barato and H. Hinrichsen, Boundary-Induced Nonequilibrium Phase Transition into an Absorbing State, Phys. Rev. Lett.100 (2008) 165701.
    [194]J. de Gier and B. Nienhuis, Exact stationary state for an asymmetric exclusion process with fully parallel dynamics, Phys. Rev. E,59 (1999) 4899-4911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700