提速列车荷载下粉土的力学响应与路基稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
列车循环荷载下路基表现出来的动力特性是引起线路运行条件恶化的主要原因。随着列车速度提高、轴重增加、运量加大,加剧了线路和列车的振动,增加了路基承受动荷载与振动频率的水平,提高了路基的振动加速度,加快了路基的累积变形和疲劳破坏。
     当前,对铁路既有线细粒土路基基床在提速列车动荷载与物理状态改变下的动态参数及规律研究较少,特别是对黄河冲积粉土这种特殊的路基填料在密实度变化与增湿条件下的应力-应变关系、强度特点、以及在列车循环荷载下的动态力学行为,甚至还没有过专门的研究。而现行的提速线路路基技术条件没有考虑列车荷载对路基的动力作用,使得列车长期运行对路基的影响难以定量计算,路基的评判与加固缺乏理论指导,给铁路运输带来安全隐患。
     本文在铁道部科技研究开发计划项目“京九线粉土路基病害整治技术试验研究(2005G012)”支持下,并结合铁路提速现状,以现场调查和实测为基础,以室内静、动力学试验为手段,通过理论分析和数值模拟,对提速列车荷载下粉土的力学响应与路基稳定性进行了研究,取得了以下几个方面的研究成果:
     (1)通过试验,掌握了黄河冲积粉土的土质特性,对非饱和粉土在密实度变化与增湿条件下的应力-应变关系、屈服特性、以及强度特点进行了对比研究;调查了黄河冲积粉土铁路路基的病害特点及现状。
     (2)通过试验,认识了粉土在列车循环荷载与土体物理状态改变下的变形与强度破坏演化机理,得到了影响粉土动态稳定性的主要控制性因素;研究了列车循环荷载下粉土累积塑性变形、回弹变形、回弹模量、临界动应力和动强度的变化规律,建立了上述力学参数与动应力和土体物理状态指标间的关系模型。
     (3)采用车轨耦合动力模型及现场实测数据,研究了提速列车动荷载的变化规律及数学模拟;通过ABAQUS建立轨道路基三维数值动力计算模型,对提速列车移动荷载下粉土路基的瞬态动力响应进行了分析,对比了列车轴重、速度、线路平顺性对路基动力响应的影响,并将计算结果与实测现象进行了比较;此外,还探讨了列车轴距、道床厚度、材料刚度、阻尼等参数对路基动力响应的影响规律,并借助正交设计原理,对各影响参数的显著性进行了评价。从机理上更深入了解了提速线路路基的动力特性。
     (4)通过分析当前国内外铁路组织和学者提出的不同的路基结构设计原则,结合既有路基的特点,探讨了采用基床动强度和路基累积变形作为提速下路基长期稳定的控制参数的合理性;在此基础上,以京九线粉土路基为对象,分析在不同运输条件、养护维修、道床厚度、路基容许变形下,路基结构要求的差异,并与现行技术条件进行了比较。
The dynamic response of subgrade due to cyclic loading of moving train is the main reason of the deterioration of railroad.With increase in train speed,axle load and traffic weight of existing railway,the vibrations of train and track should be exacerbated, so the dynamic stress,loaded frequency,and vibration acceleration on subgrade will be grown,these should speed up the cumulative deformation and fatigue damage of subgrade.
     At present,there are very few studies on dynamic properties of fine-grained subgrade soils due to coupling effects of train loading increase and soil physical state changes.And there is even no special study on the deformation and strength characteristics of silt with varied compacting factor and water content,especially,the dynamic behaviors of silt under cyclic loading even has little literature.On the other hand,the effect of dynamic stress on subgrade is not be considered in the current subgrade specifications,which leads to difficult to predict the long-term effect of moving train on subgrade,in addition,there is also lack of a sound theoretical guidance system to evaluate and reinforce existing railroad subgrade,and these bring incipient faults for railway transportation.
     In this dissertation,silt railroad subgrade was taken as the study object,which has special characteristics and widespread distress as known.Field observations and testing results supplied the foundation to study,and according to laboratory static and cycling loading triaxial tests,theory analysis,and numeric simulation,the dynamic behaviors of silt and subgrade stability subjected to moving train loading were studied.Some achievements are as follows.
     (1)The properties of Yellow River alluviation silt were systemically studied. Especially,the changes of deformation and strength of this special soil with varied density and water moisture were obtained,at the same time,the subgrade distresses of railroad in Yellow River alluviation plain areas were also investigated and analyzed.
     (2)The dynamic deformation and strength mechanism of compacted silt with varied cyclic loading and soil physical states were apprehended,and the main controlled factors influencing the dynamic stability of compacted silt were obtained.The rules of cumulative deformation,resilient deformation,resilient modulus,threshold stress and dynamic strength of compacted silt were obtained,moreover,several prediction models about the relationships between these indices and stress and soil physical state were established.
     (3)The variations and expressions of wheel-track force with increasing train speed were studied by theoretical model of train-track and field observation data.After that, dynamic response of silt subgrade was simulated by tridimensional track-subgrade FEA model,and effects of axle load,train speed,and track smooth conditions were studied. During this course,the field observation results were applied to compare with calculated ones.Furthermore,effects of train axles distance,ballast thickness,material modulus and damping on subgrade dynamic response were also investigated,and significance tests of these parameters were carried out.
     (4)In order to consider the long-term effect of moving train loading on subgrade, two parameters,namely,dynamic strength and cumulative deformation of subgrade were selected as the controlled parameters of subgrade structure.Based on the two parameters and background of Jing-Jiu railroad,the required subgrade structures were calculated with different conditions of transportations,maintain periods,ballast thickness,and allowable settlement of subgrade,and comparisons between current specifications and the calculated subgrade structures were also done.
引文
[1]马伟斌,张千里,朱忠林,等.既有线提速路基评估方法综述及进展[J].中国铁路,2006,6:34-37.
    [2]Fortin.Dynamic track deformation[J].France Railway Review,1984,2(1):23-26.
    [3]Kerr AD.上海铁道学院译.轨道力学及轨道工程[M].北京:中国铁道出版社,1983.
    [4]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,1999.
    [5]铁道部科学研究院铁道建筑研究所.大运量条件下既有线路基强化改造要求[R].北京:铁道部科学研究院铁道建筑研究所,1990.
    [6]铁道部科学研究院铁道建筑研究所.路基受力和变形的实测分析[R].北京:铁道部科学研究院铁道建筑研究所,1990.
    [7]韩自力,张千里.既有线提速路基的对策研究[J].中国铁道科学,2002,23(2):53-58.
    [8]铁道部科技司.《既有线提速200km/h 技术条件(试行)》[铁科技函2006 747号].北京:中国铁道出版社,2007.
    [9]何华武.中国铁路既有线200km/h 等级提速技术[M].北京:中国铁道出版社,2007.
    [10]中华人民共和国铁道部行业标准.TB10001-99,铁路路基设计规范[S].北京:中国铁道出版社,1999.
    [11]中华人民共和国铁道部行业标准.TB10001-2005,铁路路基设计规范[S].北京:中国铁道出版社,2005.
    [12]潘振华.粉砂土路基工程特性及其整治[J].铁道标准设计,2002,7:51-53.
    [13]李治平,王洪波.粉土地区公路病害与防治对策研究[J].交通科技,2003,4:48-50.
    [14]商庆森,朱海波,杜红庆.行车荷载和填筑高度对粉性土路堤变形的影响[J].公路交通科技,2004,21(1):22-25.
    [15]Anon.Dam foundations strengthened by deep dynamic compaction[J].Highway and Heavy Construction,1987,130(6):70-71
    [16]Kyle MR,Start JJ,Todd ER.Optimum moisture content for dynamic compaction of collapsible soils[J].Journal of Geotechnical and environment Engineering,1998,124(8):699-708.
    [17]Iravani S.Geotechnical characteristics of Penticton silt[D].Edmonton,AB,Canada:University of Alberta,1999.
    [18]Zarling JC.Changes in the mechanical behavior of non-plastic silt due to drained aging[D].Michigan,America:Michigan Technological University,2002.
    [19]刘连喜.武汉地区粉土的工程特性的探讨[J].土工基础,1996,10(3):17-20.
    [20]申爱琴,郑南翔,苏毅,等.含砂低液限粉土填筑路基压实机理及施工技术研究[J].中国公路学报,2000,13(4):12-15.
    [21]李美江.道路材料振动压实特性研究[D].西安:长安大学,2002.
    [22]孙海军.粉土稳定技术研究[D].南京:东南大学,2002.
    [23]朱志铎,刘松玉,孙海军.江苏徐宿地区粉土的基本特性及加固方法研究[J].岩土力学,2004,25(7):1155-1158.
    [24]朱志铎,刘松玉,邵光辉,等.粉土及其稳定土的三轴试验研究[J].岩土力学,2005,26(12),1967-1971.
    [25]朱志铎.粉土路基稳定理论与工程应用技术研究[D].南京:东南大学,2006.
    [26]王维桥,商庆森,王川,等.黄河冲积粉砂土的可塑性与压实控制标准分析[J].山东大学学报(工学版),2003,33(5):589-592.
    [27]毛洪录,曹卫东,商庆森.含砂低液限粉土路基压实标准的探讨[J].山东大学学报(工学版),2003,(10):593-596.
    [28]李辉,夏柏如,王园.含砂低液限粉土的压实特性研究[J].2006,9:1-3.
    [29]孙淑勤,李雯,张佩旭.中、日公路土质路基压实控制方法比较[J].中外公路,2001,21(2):37-39.
    [30]曹卫东,商庆森,宋修广.低液限粉土路基压实机理及性能的研究[J].华东公路,2003,(3):55-57.
    [31]郭绍影,赵亚男,彭泽仁,等.客运专线路基粉黏土填料适用性判别及改良设计[J].铁道标准设计,2004,9:1-4.
    [32]杨广庆,高民欢,张新宇.高速公路路基填料承载比影响因素研究[J].岩土工程学报,2006,28(1):97-100.
    [33]姚占勇.黄河冲积平原土的工程特性研究[D].天津:天津大学,2006.
    [34]曾长女,刘汉龙,周云东.粉土动力特性研究综述[J].防灾减灾工程学报,2005,25(1):99-104.
    [35]王立军.重载铁路路基评估的试验研究[D].北京:铁道科学研究院,2005.
    [36]Dawn TM,Stanworth CG.Ground vibration from passing trains[J].Journal of Sound and Vibrations,1979,66(3),355-362.
    [37]Lang J.Ground-borne vibrations caused by trains and control measures[J].Journal of Sound and Vibration,1988,120(2),407-412.
    [38]Okuma Y,Kuno K.Statistical analysis of field data of railway noise and vibration collected in an urban area[J].Applied Acoustics,1991,33,263-280.
    [39]Hall L.Simulations and analyses of train-induced ground vibrations,a comparative study of two-and three-dimensional calculations with actual measurements[D].Sweden,Royal Institute of Technology,2000.
    [40]Madshus C,Kaynia AM.High-speed railway lines on soft ground:dynamic behavior at critical train speed[J].Journal of Sound and Vibration,2000,231(3),689-701.
    [41]Kaynia AM,Madshus C,Zackrisson P.Ground vibration from high-speed trains:Prediction and countermeasure[J].Journal of Geotechnical and Geoenvironmental Engineering,2000,126(6):531-537.
    [42]铁道部科学研究院铁道建筑研究所.重载铁路路基技术条件研究报告[R].北京:铁道部科学研究院铁道建筑研究所,1987.
    [43]蔡英,黄时寿.重载铁路的线路动力学测试及分析[J].西南交通大学学报,1993,3:92-98.
    [44]周神根.铁路路基设计动荷载研究[J].路基工程,1996,5:6-11.
    [45]铁道部科学研究院铁道建筑研究所,郑州铁路局.郑武线最高时速240km/h 高速列车综合运行试验研究报告[R].北京:铁道科学研究院铁道建筑研究所;郑州:郑州铁路局,1998.
    [46]王炳龙,余绍锋,周顺华,等.提速状态下路基动应力测试分析[J].铁道学报,2000,22(增):79-81.
    [47]铁道科学研究院铁道建筑研究所,济南铁路局,北京铁路局.既有线提速200km/h 非改建地段试验报告[R].北京:铁道科学研究院铁道建筑研究所;济南:济南铁路局;北京:北 京铁路局,2006.
    [48]韩自力,张千里.既有线提速路基动应力分析[J].中国铁道科学,2005,26(5):1-5.
    [49]周顺华,王炳龙,宫全美.土工格室加固基床的动应力传播原理[J].铁道学报,2003,25(1):96-98.
    [50]王炳龙,周顺华,宫全美.不同高度土工格室整治基床下沉病害的试验研究[J].岩土工程学报,2003,25(2):163-166.
    [51]罗强,周华,王之犍.土工格室加固既有线铁路基床试验研究[J].铁道学报,2004,26(3):98-102.
    [52]铁道科学研究院铁道建筑研究所,中南大学.不同基床表层结构及路基、轨道动态试验研究报告[R].北京:铁道科学研究院铁道建筑研究所;长沙:中南大学,2003.
    [53]铁道第三勘察设计院,西南交通大学,中南大学,北京交通大学.路桥过渡段的设置方法[R].天津:铁道第三勘察设计院;成都:西南交通大学;长沙:中南大学;北京:北京交通大学,2003.
    [54]律文田,王永和.秦沈客运专线路桥过渡段路基动应力测试分析[J].岩石力学与工程学报,2004,23(3):500-504.
    [55]聂志红,李亮,刘宝琛,等.秦沈客运专线路基振动测试分析[J].岩石力学与工程学报,2005,24(3):1067-1071.
    [56]李献民,王永和,杨果林,等.高速下过渡段路基动响应特性研究[J].岩土工程学报,2004,26(1):100-104.
    [57]杨果林,汪谷香.秦沈高速铁路桥涵过渡段动力特性试验研究[J].路基工程,2005,1:32-35.
    [58]黄晚清,陆阳,罗书学,等.秦沈客运专线路涵过渡段动应力测试与分析[J].西南交通大学学报,2005,40(2):220-223.
    [59]陈雪华,律文田,王永和.高速铁路路桥过渡段路基动响应特性研究[J].振动与冲击,2006,25(3):95-98.
    [60]曹新文,蔡英.铁路路基动态特性的模型试验研究[J].西南交通大学学报,1996,31(1):36-41.
    [6l]苏谦,蔡英.高速铁路级配碎石基床表层不同厚度动态大模型试验研究[J].铁道标准设计,2001,21(8):2-4.
    [62]杨果林,王永和.加筋土挡墙在重复荷载作用下的模型试验与动态响应分析[J].岩石力学与工程学报,2001,21(10):1541-1546.
    [63]杨果林,李海深,王永和.加筋土挡墙动力特性模型试验与动力分析[J].土木工程学报,2003,36(6):105-110.
    [64]雷震宇.高速铁路路基基床动力特性的研究[D].上海:同济大学,2003.
    [65]曹新文,蔡英.客运专线土工格室复合基床的试验研究[J].铁道工程学报,2006,1:22-26.
    [66]田海波,许恺.时速250 km 客运专线路基动力响应研究试验[J].铁道标准设计,2006,2:4-5.
    [67]蒋关鲁,刘先峰,张建文,等.高速铁路液化土地基加固的振动台试验研究[J].西南交通大学学报,2006,41(6):190-196.
    [68]卿启湘,王永和,李光耀.软岩填筑高速铁路路堤的室内试验研究[J].岩土力学,2006,27(7):1119-1123.
    [69]马伟斌.既有线提速基床与道床相互影响的研究[D].北京:铁道科学研究院,2006.
    [70]肖宏,蒋关鲁,魏永幸,等.客运专线无砟轨道桩网结构模型试验研究[J].铁道学报,2007, 29(2):126-131.
    [71]詹永祥,蒋关鲁,牛国辉,等.高速铁路无碴轨道桩板结构路基模型试验研究[J].西南交通大学学报,2007,42(4):400-408.
    [72]Seed HB,Chart CK,Monismith CL.Effects of repeated loading on the strength and deformation of compacted clay[J].Highway Research Record,1955,34:541-558.
    [73]Li D,Selig ET.Resilient modulus for fine-grained subgrade soil[J].Journal of Geotechnical Engineering,ASCE,1994,120,(6):939-957.
    [74]Seed HB,Chan CK,Lee CE.Resilience Characteristics of Subgrade Soils and Their Relation to Fatigue Failure in Asphalt Pavement[A].Proc.,International Conference on Structural Design of Asphalt Pavement[C].University of Michigan,1962,611-636.
    [75]Fredlund DG,Bergan AT,Sauer EK.Deformation Characterization of Subgrade Soils for Highways and Runways in Northern Environments[J].Canadian Geotechnical Journal,1975,12:213-223.
    [76]Fredlund DG,Bergan AT,Wong PK.Relation between resilient modulus and stress conditions for cohesive subgrade soils[J].Transportation Record No 642,Transportation Research Board,National Research Council,1977,73-81.
    [77]Thompson MR,Robnett QL.Resilient Properties of Subgrade Soils[J].Journal of Transportation Engineering,ASCE,1979,105(1):71-89.
    [78]Elliot RP,Thornton SI.Simplification of subgrade resilient modulus testing[J].Transportation Research Record No 1192,Transportation Research Board,National Research Council,1988,1-7.
    [79]Chen DH,Zaman MM,Laguro JG.Resilient moduli of aggregate materials variability due to testing procedure and aggregate type[J].Transportation Research Record No 1462,Transportation Research Board,National Research Council,1994,57-64.
    [80]Drumm EC,Reeves JS,Madgett MR,Trolinger WD.Subgrade Resilient Modulus Correction for Saturation Effects[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(7):663-670.
    [81]Muhanna AS,Rahman MS,Lambe PC.Model for resilient modules and permanent strain of subgrade soils[J].Transportation Research Record No 1619,Transportation Research Board,National Research Council,1998,85-93.
    [82]Muhanna AS,Rahman MS,Lambe PC.Resilient modulus measurement of fine-grained subgrade soils[J].Transportation Research Record No 1687,Transportation Research Board,National Research Council,1999,3-12.
    [83]Li J,Qubain BS.Resilient modulus variations with water content[J].Resilient modulus testing for pavement components,ASTM STP 1437,G.N.Durham,W.A.Marc,and W.L.De Groff,ASTM International,West Conshohocken,PA,2003,59-69.
    [84]铁道部科学研究院铁道建筑研究所.路基土动力特性的试验研究[R].北京:铁道部科学研究院铁道建筑研究所,1986.
    [85]叶阳升.饱和软黏土在单向循环荷载作用下变形特性的研究[D].北京:铁道部科学研究院,1996.
    [86]卢永贵,罗强,曹新文,等.成都粘土及其石灰稳定土的动力特性试验研究[J].路基工程,1997,2:34-37.
    [87]杨广庆.水泥改良土的动力特性[J].岩石力学与工程学报,2003,22(7):1156-1160.
    [88]李志勇,曹新文,谢强.全风化花岗岩的路用动态特性研究[J].岩土力学,2006,27(12):2269-2272.
    [89]杨树荣,拱祥生,黄伟庆,等.非饱和粘性路基土回弹模量之研究[J].岩土工程学报,2006,28(2):225-229.
    [90]凌建明,陈声凯,曹长伟.路基土回弹模量影响因素分析[J].建筑材料报,2007,10(4):446-451.
    [9l]陈声凯,凌建明,曹长伟.路基土回弹模量应力依赖性分析及预估模型[J].土木工程学报,2007,40(6):95-99.
    [92]Larew HG,Leonard GA.A strength criterion for repeated loads[J].Proc.Highway Research Board,1962,41:529-556.
    [93]Heath DL,Shenton M J,Sparrow RW,Waters JM.Design of conventional rail track foundation[J].Proc.Inst.Civil Engineering,1972,51,251-267.
    [94]Mitchell R J,King RD.Cyclic Loading of an Ottawa Area Champian sea clay[J].Canadian Geotechnical Journal,1977,14:52-63.
    [95]Raymond GP,Gaskin,PN.Repeated compressive loading of Leda clay[J].Canadian Geotechnical Journal,1979,16(1):1-10.
    [96]Gaskin PN,Raymond GP.Repeated compressive loading of a sand[J].Canadian Geotechnical Journal,1979,16:798-802.
    [97]Cheung LW.Laboratory assessment of pavement foundation materials[D].Nottingham,U.K.,University of Nottingham,1994.
    [98]Werkmeister S,Dawson AR,Wellner F.Permanent deformation behavior of unbound granular materials and the shakedown theory[J].Transportation Research Record No 1757,Transportation Research Board,National Research Council,2001,75-81.
    [99]Werkmeister S.Permanent deformation behavior of unbound granular materials[D].Dresden,Germany:Dresden Univ.of Technology,2003.
    [100]杨树荣.路基土壤反复载重下之回弹与塑性行为及模式建构[D].台北:国立中央大学土木工程研究所,2002.
    [101]蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探[J].西南交通大学学报,1996,31(1):1-5.
    [102]Monismith CL,Ogawa N,Frume CR.Permanent deformation characteristics of subgrade soils due to repeated loading[J].Transportation Research Record No 537,Transportation Research Board,National Research Council,1975,1-17.
    [103]Lentz RW,Baladi GY.Constitutive equation for permanent strain of sand subjected to cyclic loading[J].Transportation Research Record No 810,Transportation Research Board,National Research Council,1981,50-53.
    [104]Pumphrey ND,Lentz RW.A deformation analysis of Florida highway subgrade sand subjected to repeated load triaxial tests[J].Transportation Research Record No 1089,Transportation Research Board,National Research Council,1986,49-56.
    [105]Li DQ,Selig ET.Accumulative plastic deformation for fine-grained subgrade soil[J].Journal of Geotechnical Engineering,ASCE,1996,122(12):1006-1013.
    [106]Belrradi G,Yandell WO.Determination of elastic and plastic subgrade soil parameters for asphalt cracking and rutting prediction[J].Transportation Research Record No 1540,Transportation Research Board,National Research Council,1996,97-104.
    [107]Qiu YJ.Permanent deformation of subgrade soils laboratory investigation and application in mechanistic-based pavement design[D].Arkansas,America:University of Arkansas,1998.
    [108]Lekarp F,Dawson A.Modelling Permanent Deformation Behaviour of Unbound Granular Materials[J].Construction and Building Materials.1998.12(1):9-18.
    [109]钟辉虹,汤康民,等.铁路粘土路基动力特性试验研究[J].西南交通大学学报,2002,37(5):488-489.
    [110]毛成,邱延峻.膨胀土与改性膨胀土的动力特性试验研究[J].岩石力学与工程学报,2005,20(5):1783-1788.
    [111]廖化荣.红粘土路基循环动荷载下塑性力学行为及预测模型研究[D].广州:中山大学,2004.
    [112]汤连生,张庆华,尹敬泽,等.交通荷载下路基土动应力应变累积的特性[J].中山大学学报(自然科学版),2007,46(6):143-144.
    [113]王常晶.列车移动荷载作用下地基的动应力及饱和软粘土特性研究[D].杭州:浙江大学,2006.
    [114]Takemiya H,Sukeyasu Y.Transient response of rigid strip foundations on a half-space/stratum soil due to impulsive loads[J].Computer Methods and Advances in Geomechanics,1994,2:993-998.
    [115]Takemiya H,Fei G,Sukeyasu Y.2-D Transient Soil-surface foundation interaction and wave propagation by time domain BEM[J].Earthquake Engineering and Structural Dynamics,1994,23:931-945.
    [116]Takemiya H.Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct[J].Soil Dynamics and Earthquake Engineering,2004,24(1):69-87.
    [117]Hung HH.Vibration of Foundation and Soils Generated by High-Speed Trains(in Chinese)[D].Taipei:National Taiwan University,1995.
    [118]Andersen L,Nielsen SRK,Kirkegaard PH.Finite element modeling of infinite Euler beams on Kelvin foundations exposed to moving loads in connected co-ordinates[J].Journal of Sound and Vibration.2001,241(4):587-604.
    [119]Schillemans L.Impact of sound and vibration of the North-South high-speed railway connection through the city of Antwerp Belgium[J].Journal of Sound and Vibration,2003,267:637-649.
    [120]Malek Abdelkrim,Guy Bonnet,Patrick de Buhan.A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading[J].Computers and Geotechnics,2003,30:463-467.
    [121]李军世,李克钏.高速铁路路基动力反应的有限元分析[J].铁道学报,1998,17(1):66-75.
    [122]梁波.高速铁路路基的动力特性及土工合成材料的应用研究[D].成都:西南交通大学,1998.
    [123]梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,21(2):84-88.
    [124]梁波,孙常新.高速铁路路基动力响应中的双峰现象分析[J].土木工程学报,2006,39(9):117-122.
    [125]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,28(4):89-94.
    [126]宫全美,张达石.高速铁路地基刚度的合理取值范围[J].同济大学学报,2004,32(10):1390-1393.
    [127]李亮,张丙强 杨小礼.高速列车振动荷载下大断面隧道结构动力响应分析[J].岩石力学与工程学报,2005,24(23):4259-4264.
    [128]邱延峻,张晓靖,魏永幸.列车速度对无碴轨道路基动力特性的影响[J].交通运输工程学报,2007,7(2):1-4.
    [129]Hwang RN,Lysmer J.Response of buried structures to traveling waves[J].Journal of Geotechnical Engineering,ASCE,1981,107(GT2),183-200.
    [130]Hanazato T,Ugai K,Mori M,Sagakuchi R.Three-dimensional analysis of Traffic-induced ground vibrations.Journal of Geotechnical Engineering,ASCE,1991,117(8),1133-1151.
    [13l]边学成.高速列车运动荷载作用下地基和隧道的动力响应分析[D].杭州:浙江大学,2005.
    [132]Shahu JT,Rao NSV,Kameswara.Parametric study of resilient response of tracks with a sub-ballast layer[J].Canadian Geotechnical Journal,1999,36(6):1137-1150.
    [133]夏禾.车辆与结构动力相互作用[M].北京:科学出版社,2005.
    [134]翟婉明.车辆轨道耦合动力学[M].北京:科学出版社,2007.
    [135]梁波,张艳美,韩自力.京秦提速工程车路动力仿真与试验的对比研究[J].工程力学,2004,21(1):159-164.
    [136]马学宁,梁波.高速铁路路基结构时变系统耦合动力分析[J].铁道学报,2006,28(5):65-70.
    [137]苏谦.高速铁路路基空间时变耦合系统动力分析模型及其应用研究[D].成都:西南交通大学,2001.
    [138]聂志红.高速铁路轨道路基竖向动力响应研究[D].长沙:中南大学,2005.
    [139]郑颖人,沈珠江,龚晓南.广义塑性力学一岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [140]王林玉.交通荷载作用下道面和软土地基共同作用数值分析[D].杭州:浙江大学,1999.
    [14l]候永峰.循环荷载作用下复合土与复合地基性状研究[D].杭州:浙江大学,2000.
    [142]邱钰.软质粗粒土的工程力学特性与路基工程应用研究[D].南京:东南大学,2002.
    [143]刘飞禹.交通荷载作用下软土地基动力特性及加筋道路动力响应研究[D].杭州:浙江大学,2007.
    [144]周镜,叶阳升.基床结构设计的探讨[J].铁道科学与工程学报,2004,1(1):1-6.
    [145]叶阳升,周镜.铁路路基结构设计的探讨[J].铁道工程学报,2005,1:39-46.
    [146]周神根.高速铁路路基基床设计[J].路基工程,1997,3:1-6.
    [147]Li DQ,Selig ET.Method for railroad track foundation design(Ⅰ:Development)[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1998,124(4):316-322.
    [148]Li DQ,Selig ET.Method for railroad track foundation design(Ⅱ:Applications)[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1998,124(4):323-329.
    [149]张千里,韩自力,吕宾林.高速铁路路基基床结构分析及设计方法[J].中国铁道科学,2005,26(11):53-57.
    [150]Vucetic M.Effect of soil plasticity on cyclic response[J].Journal of Geotechnical Engineering,ASCE,1994,120(12),2208-2228.
    [15l]宫全美,王炳龙,周顺华,等.沪宁线提速铁路路基的强度条件[J].同济大学学报,2006,34(2):207-211.
    [152]宗军良,刘涛,宫全美,等.既有线提速路基动力响应特性研究[J].中国铁道科学,2007, 28(4):7-11.
    [153]刘福臣.对粉土定名的商榷[J].岩土工程技术,1999,1:58-60.
    [154]赵忠宝.黄河的六次大变迁[J].陕西水利,1996,1:45.
    [155]彭丽云,刘建坤,陈立宏.非饱和击实粉土的强度和屈服特性研究.岩土力学[J],2008,29(8):2241-2245.
    [156]叶朝良,于炳炎,李卫国.京九铁路某段路基病害调查[J].路基工程,2005,6:107-108.
    [157]Ishihara K.Soil response in cyclic loading induced by earthquakes,traffic and waves[A].Proceedings of the 7~(th)Asian Regional Conference on Soil Mechanics and Foundation Engineering[C],Haifa,Israel,1983,2:42-66.
    [158]Barksdale RD.Laboratory evaluation of rutting in base course materials[A].Proceedings 3~(th)International Conference on the Structural Design of Asphalt Pavement[C],University of Michigan,1972,161-174.
    [159]Thom NH.Design of road foundation[D].Nottingham,United Kingdom:Nottingham University,1988.
    [160]Bonaquist RF,Witczak MW.Plasticity modeling applied to the pavement deformation response of granular materials in flexible pavement systems[J].Transportation Research Record No 1540,Transportation Research Board,National Research Council,1996,97-104.
    [161]Moossazadeh J,Witczak MW.Prediction of subgrade moduli for soil that exhibits nonlinear behavior[J].Transportation Research Record No 810,Transportation Research Board,National Research Council,1981,9-17.
    [162]Pezo RF,Kim DS,Stokoe KH,Hudson WR.Aspects of a reliable resilient modulus testing system[J].Transportation Research Board Preprint,70th Annual Meeting,Washington,D.C.,1991,1.
    [163]AASHTO T294-94.Standard Method of Test for Resilient Modulus of Subgrade Soils and Untreated Base/Subbase Materials-SHRP Protocol P46[S].American Association of State Highway and Transportation Officials,Washington,D.C.,1995.
    [164]Drumm EC,Boateng-Poku Y,Pierce TJ.Estimation of subgrade resilient modulus from standard tests[J].Journal of Geotechnical Engineering,ASCE,1991,116(5),774-789.
    [165]Brown SF,Lashine AKF,Hyde AFL.Repeated load triaxial testing of a silty clay[J].Geotechnique,1975,25(1):95-114.
    [166]Uzan J.Characterization of Granular Material[J].Transportation Research Record 1022,Transportation Research Board,National Research Council,1985,52-59.
    [167]Witczak MW,Uzan J.The Universal Airport Pavement Design System:Report of Ⅳ:Granular Material Characterization[R].College Park:College of Engineering,University of Maryland,1988.
    [168]Ni B,Hopkins TC,Sun L.Modeling the Resilient Modulus of Soils[C].Proceedings of the 6th International Conference on the Bearing Capacity of Roads,Railways and Airfields[A].Lisbon:A.A.Balkema Publishers,2002,1131-1142.
    [169]铁道部科学研究院铁道建筑研究所.路基动态参数测试报告(广深准高速铁路运营线试验报告之六)[R].北京:铁道部科学研究院铁道建筑研究所,1995.
    [170]铁道部科学研究院铁道建筑研究所.环行线200km/h 以上高速列车综合试验研究报告[R].北京:铁道部科学研究院铁道建筑研究所,1997.
    [171]李子春.轨道结构垂向荷载传递与路基附加动应力特性的研究[D].北京:铁道部科学研究院,2000.
    [172]铁道部科情所编译组.国外高速铁路技术发展研究资料之四-法国 TGV 高速铁路[R].北京:铁道部科学研究院,1991.
    [173]潘昌实,Pande GN.黄土隧道列车动荷载响应有限元初步数定分析研究[J].土木工程学报,1984,17(4):19-28.
    [174]刘学毅.钢轨波形磨耗成因研究[D].成都:西南交通大学,1996.
    [175]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学,2001.
    [176]姜忻良,谭丁,姜南.交叉隧道地震反应三维有限元和无限元分析[J].天津大学学报,2004,37(4):307-311.
    [177]Hibbit,Karlsson & Sorensen..ABAQUS/Standard & Explicit User's Manual(Version 6.4)[M].Inc.,USA,2004.
    [178]胡仁伟,王红,赵国堂.道碴动三轴试验研究[J].中国铁道科学,2001,22(2):101-106.
    [179]Josef Eisenmann.Railroad track structure for high-speed lines[J].Railroad Track Mechanics and Technology,1978:39-61.
    [180]Shenton MJ.Deformation of railway ballast under repeated loading conditions.Railroad Track Mechanics and Technology,1978:405-424.
    [181]袁晓铭,孙锐,孙静,等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程与工程振动,2000,20(4):133-139.
    [182]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [183]刘晓明.红层软岩崩解性及其路基动力变形特性研究[D].长沙:湖南大学,2006.
    [184]中国人民共和国国家标准.GB50090-2006,铁路线路设计规范[S].
    [185]铁道部.铁路线路修理规则[S].北京:中国铁道出版社,2006.
    [186]李庆鸿.既有线提速至200k m/h 的轨道养修对策[J].中国铁路,2007,4:39-44.
    [187]刘建坤主编.《路基工程》[M].北京:中国建筑工业出版社,2006,8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700