堆石料风化过程中的抗剪强度和变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆石体的长期变形问题是目前工程界普遍关注又亟待解决的关键问题之一。堆石体的长期变形不仅与外部荷载有关,温度变化、水位波动、雨水入浸和蒸发等环境因素变化都会造成堆石料颗粒的逐步劣化,从而引发堆石体的变形。目前,国内外文献对在应力作用下堆石料风化过程中力学特性变化的研究尚鲜有报道。本文从设备研制入手,通过材料试验、机理分析、模型建立、数值实现和工程应用等多种途径,对应力作用下堆石料风化过程中力学性质变化的规律进行了深入地探讨。本文取得的主要成果有:
     1.堆石料风化仪研制。研制了可进行干湿循环、温度变化和应力三因素耦合试验研究的堆石料风化仪。该设备包括竖向压缩系统、水平直剪系统、冷热和干湿循环系统。能够研究受荷堆石料在风化过程中的变形和强度特性。
     2.堆石料风化试验和风化颗粒破碎特性研究。对泥质粉砂岩堆石料分别进行了岩块风化试验以及荷载作用下的干湿循环试验、冷热循环试验和湿冷-干热耦合循环试验。研究了干湿和温度变化导致堆石料发生风化的现象,对比分析了不同环境因素变化对堆石料风化过程和速度的影响,探讨了堆石料在风化过程中的颗粒劣化破碎现象。
     3.堆石料风化过程中的变形特性研究。根据泥质粉砂岩堆石料风化试验结果,对比分析了干湿、冷热和湿冷-干热耦合循环等不同环境因素变化所致堆石料劣化变形的特点和发生机理。以湿冷-干热耦合循环试验结果为基础,探讨了堆石料劣化变形的发展规律,分别建立了堆石料劣化变形基于初应变方法的非线性模型和弹塑性模型。
     4.堆石料风化过程中的抗剪强度特性研究。在泥质粉砂岩堆石料湿冷-干热耦合风化试验的基础上,分别进行了风化试验后的就机直剪试验、风化后再剪试验和常规三轴压缩试验,探讨了堆石料风化过程中强度特性的变化规律,分析了堆石料风化过程中抗剪强度变化的颗粒劣化和变形压密双重作用机理。
     5.有限元计算程序和工程应用。建立了堆石料劣化变形计算模型的有限元格式,并针对糯扎渡高心墙堆石坝上游侧软岩料的使用问题进行了典型工程案例分析。
The long-term evolution of rockfill deformation is one of the key issues that draw great attention of engineers and researchers. The long-term deformation of rockfill has relationship with not only loading, but also with environment factors, including wetting-drying cycle, cooling-heating cycle and so on. This thesis aims to investigate the mechanical characteristics of loaded rockfill during weathering. The development of a new test device, experimental observations, physical interpretations, constitutive model, and numerical implementation as well as practical application are presented. The main achievements obtained in the thesis are as follows.
     1. A new device called weathering test apparatus for rockfill is developed to investigate the deformation and shear strength characteristics of rockfill under the coupling action of drying-wetting cycle, cooling-heating cycle and vertical loading. The apparatus include vertical loading unit, horizontal shearing unit, drying-wetting cycle unit and cooling-heating cycle unit.
     2. A series of weathering tests including block weathering tests, drying-wetting cycle test, cooling-heating cycle tests and wetting-cooling- drying-heating cycles tests were performed by using argillaceous siltstone rockfill. By analyzing the block weathering phenomena and weathering velocity of argillaceous siltstone rockfill under various environmental factors, the weathering characteristics of particle breakage were investigated.
     3. Based on the weathering test results on argillaceous siltstone rockfill, the deformation characteristics and mechanism caused by various environmental factors were investigated. On the base of the wetting-cooling-drying-heating cycles tests results, the degrading deformation law was investigated and a nonlinear constitutive model and an elasto-plastic constitutive model were developed to calculate the degrading strain of rockfill.
     4. Based on the wetting-cooling-drying-heating cycles tests on argillaceous siltstone rockfill, direct shear, re-direct shear and triaxial tests were performed. The shear strength characteristics and mechanism in weathering test were investigated. It was found that the change of the shear strength primarily rest with the actions of rockfill compaction and particle degradation.
     5. The finite element formulations of the present models were derived and incorporated into the FEM codes. They were applied to the evaluation of practical engineering problems.
引文
[1]郭庆国.粗粒土的工程特性及应用,黄河水利出版社,1999,郑州.
    [2] L.A.OLDECOP, E.E.ALONSO. A model for rockfill compressibility. Geotechnique.2001,51(2): 127-139.
    [3]张丙印,于玉贞,张建民.高土石坝的若干关键技术问题.中国土木工程学会第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003. 163-186.
    [4]柏树田,周晓光,晁华怡.软岩堆石料的物理力学性质.水利发电学报,2002,4:34-44.
    [5] Pinkerton, I. L., Siswowidjono, S., and Matsui, Y. _1985_.“Design of Cirata concrete face rockfill dam.”Proc., Concrete Face Rockfill Dams—Design, Construction and Performance, J. B. Cooke and J. L. Sherard, ed., 642–656.
    [6] Sierra, J. M., Ramirez, C. A., and Hacelas, J. E. _1985_.“Design features of Salvajina dam.”Proc., Concrete Face Rockfill Dams—Design, Construction and Performance, J. B. Cooke and J. L. Sherard, ed., 266–285.
    [7]侯文理,面板堆石坝利用软岩填筑的几点认识.湖北水利发电,2003,2:1-2.
    [8]卿启湘,高速铁路无碴轨道-软岩路基系统动力特性研究. [博士学位论文].长沙:中南大学,2005.
    [9] Hao-Feng Xing, Xiao-Nan Gong, Xiao-Guang Zhou, Hai-Feng Fu. Construction of Concrete-Faced Rockfill Dams with Weak Rocks, Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6): 778-785.
    [10] K. Pye and J.A. Miller. Chemical and biochemical weathering of pyrite mudrocks in a shale embankment. Quarterly journal of engineering geology, London, 1990, 23,365-381.
    [11] H. Cetin, M. Laman and A. Ertunc. Settlement and slaking problems in the world’s fourth largest rock-fill dam, the Ataturk Dam in Turkey. Engineering Geology, 2000, 56:225-242.
    [12]阿里木.吐尔逊,坝基老化岩-水-化学作用数值模拟研究. [博士学位论文].南京:河海大学,2005.
    [13]余永志,我国病险水库的主要“病症”及其常见处理措施.中国水利,2006,22:A61-63.
    [14]沈珠江.抗风化设计.岩土工程学报,2004,26(6):866–869.
    [15] Marsal R. J., Mechanical properties of rockfill, In Embankment dam engineering, Casagrand volume, Wiley, New York, 1973, 109-200.
    [16]郭诚谦,陈慧远.土石坝,北京:水利电力出版社, 1992.
    [17]蒋国澄,傅志安,凤家骥.混凝土面板坝工程,武汉:湖北科学技术出版社, 1997.
    [18]屈智炯,何昌荣、刘双光、胡德金.新型石渣坝—粗粒土筑坝的理论与实践,北京:中国水利水电出版社, 2002.
    [19]徐泽平.混凝土面板堆石坝应力变形特性研究.郑州:黄河水利出版社, 2005.
    [20] David Stephenson, Rockfill in hydraulic engineering., Amsterdam ; New York : Elsevier Scientific Pub. Co. ; New York : distributors for the United States and Canada, 1979.
    [21]杨荫华,高土石坝的筑坝材料.高土石坝技术的发展,北京:水利电力部水力发电编辑部, 1984.
    [22]陈明致,金来契.堆石坝设计.北京:水利出版社,1982.
    [23]米占宽.高面板坝坝体流变性状研究. [硕士学位论文] .南京:南京水利科学研究院,2001.
    [24] Nobari. E. S., Duncan. J.M. . Movements in Dams due to Reseervior Filling, Performance of Earth and Earth Supported Structures. 1972, 1(1): 797-815.
    [25]沈珠江.土石料的本构模型和土质心墙坝蓄水变形数值模拟,南京:南京水利科学研究院,1989.
    [26]李广信,堆石料的湿化试验和数学模型,岩土工程学报,1990,12(5):198-205.
    [27]殷宗泽,赵航.土坝浸水变形分析.岩土工程学报. 1990,12(2):1-7.
    [28]屈智炯,刘昌贵.论粗粒土的湿化变形特性.第六届全国土力学及基础工程学术会议论文集,同济大学出版社,1991
    [29]左元明,沈珠江.坝料土的没水变形特性研究,南京水利科学研究院土工研究所,1989.
    [30]王辉.小浪底堆石料湿化特性及初次蓄水时坝体湿化计算研究. [硕士学位论文]北京:清华大学,1992.
    [31]沈珠江,左元明,堆石料的流变特性试验研究.第六届土力学及墓础工程学术会议论文集.上海:同济大学出版社.1991.
    [32]沈珠江.土石料的流变棋型及其应用.水利水运科学研究,1994, 4 : 335-340
    [33]沈珠江.鲁布革心墙堆石坝变形的反馈分析.岩土工程学报,1994, 16(3): 1-13
    [34]李国英,米占宽,傅华,方维凤.混凝土面板堆石坝堆石料流变特性试验研究.岩土力学,2004, 25(11):1712-1716.
    [35]米占宽.高面板坝坝体流变性状研究[硕士学位论文].南京:南京水利科学研究院土工研究所, 2001.
    [36]米占宽,沈珠江,李国英.高面板堆石坝坝体流变性状.水利水运工程学报, 2002, (2): 35-41.
    [37]王勇,殷宗泽.一个用于面板坝流变分析的堆石流变模型.岩土力学,2000, 21(3):227-230.
    [38]张丙印,师瑞锋.流变变形对高面板堆石坝面板脱空的影响分析.岩土力学, 2004, 25(8): 1179-1184.
    [39]梁军,刘汉龙,高玉峰.堆石料流变的特性研究与反分析.防灾减灾工程学报, 2004, 24(1): 77-81.
    [40]梁军.高面板堆石坝流变特性研究[博士学位论文].南京:河海大学, 2003.
    [41] Duncan, J.M., Chang, C.Y., Nonlinear analysis of stress and strain in soils. Proc.ASCE, JSMFD, 1970,96(SM5), 1629-1633.
    [42]高莲士,王召华,宋文晶.非线性解耦K-G模型在高面板堆石坝应力变形分析中的应用.水利学报,2001,(10) :1-7.
    [43]保华富,屈智炯.粗粒土的本构模型研究.成都科技大学学报. 1990,(4):63-70.
    [44]刘开明,屈智炯,肖晓军.粗粒土的工程特性及本构模型研究.成都科技大学学报. 1993,(6):93-102.
    [45]沈珠江.土体应力应变分析中的一种新模型.第五届土力学及基础工程学术讨论会论文集.北京:中国建筑工业出版社,1990. 101 - 105.
    [46]罗刚,张建民.邓肯-张模型和沈珠江双屈服面模型的改进.岩土力学. 2004,25(6):887-890.
    [47]贾延安.复杂应力路径下堆石体本构模型的比较验证. [硕士学位论文].北京:清华大学,2006.
    [48]殷宗泽.一个土体的双屈服面应力-应变模型.岩土工程学报. 1988,10(4):64-71.
    [49]孙德安,姚仰平.粒状材料的一个实用弹塑性模型.岩石力学与工程学报. 2002,21(8):1147-1152.
    [50]朱俊高.粗粒料“空间准滑面”模型及其在高面板三维分析中的应用.河海大学学报. 1991,19(6):87-96.
    [51] Fernando Saboya, Jr. Performance prediction of a high rockfill embankment using the spatial mobilized plane model. EJGE , vol 8, Bundle C,2003.
    [52] Wadud Salim and Buddhima Indraratna. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage. Can. Geotech. J. 2004,(41):657-671.
    [53] Changho Choi, Pedro Arduino2, and Michael D. Harney. Two-surface soilconstitutive model calibration for coarse granular materials. GSP139 Calibration of Constitutive Models. 2005,1-15.
    [54]张建民,罗刚.考虑可逆与不可逆剪胀的粗粒土动本构模型.岩土工程学报. 2005,27(2):178-184.
    [55]栾茂田,吴兴征,李相崧.堆石料的亚塑性边界面模型及其验证.岩石力学与工程学报. 2001,20(2):164-170.
    [56]岑威钧.堆石料亚塑性本构模型及面板堆石坝数值分析. [博士学位论文] .南京:河海大学. 2005.
    [57]张嘎,吴伟,张建民.粗粒土亚塑性损伤模型.清华大学学报(自然科学版). 46(6):793-796.
    [58] Cane Cekerevac, Lyesse Laloui and Laurent Vulliet. A novel triaxial apparatus for thermo-mechanical testing of soils. Geotechnical of testing journal, 2005, 28(2):1-10.
    [59] D. De Bruyn, J.-F. Thimus. The influence of temperature on mechanical characteristics of Boom clay: The results of an initial laboratory programme [J]. Engineering Geology. 1996,41: 117–126.
    [60] N. Sultan, P. Delage, Y. J. Cui. Temperature effects on the volume change behaviour of Boom clay [J]. Engineering Geology.2002, 64: 135–145.
    [61] B. Wiebe, J. Graham, G. X. Tang, D. Dixon. Influence of pressure ,saturation, and temperature on the behaviour of unsaturated sand-bentonite [J]. Canadian Geotechnical Journal. 1998, 35: 194–205.
    [62] M.S. Rosenbaum and B.A. Clarke. The design of a high pressure and temperature oedometer. Quarterly of journal of engineering geology,1987,20:245-249.
    [63] Enrique Romero Morales. Characterisation and thermo-hydro-mechanical behavior of unsaturated boom clay: an experimental study. Barcelona, Universitat Politècnica de Catalunya,1999.
    [64]陈正汉,谢云,孙树国,方祥位,李刚.温控土工三轴仪的研制及其应用.岩土工程学报. 2005,27(8):928-933.
    [65] Alberto S.F.J. Say?o,Paulo C.A. Maia,Anna Laura L.S. Nunes. Considerations on the shear strength behavior of weathered rockfill. 16ICSMGE,1917-1920.
    [66] Riccardo Castellanza and Roberto Nova. Oedometric tests on artificially weathered carbonatic soft rocks. Journal of geotechnical and geoenvironmental engineering, 2004,130(7):28-739.
    [67]张丹.软岩粗粒土的增湿及干湿循环试验研究[硕士学位论文].北京:清华大学,2006.
    [68]张丹,李广信,张其光.软岩粗粒土增湿变形特性研究.水力发电学报.2009,28(2):52-55.
    [69] Li Guangxin, Zhang Dan And Zhang Qiguang. Test Research on Deformation of Coarse-Grainded Soil With Weak Rock Due To Wetting-Drying Cycle, 2008.Nanjing, China. Proceedings of the 1st International Conference on Long Time Effects and Seepage Behavior of Dams (LTESBD08):122-126.
    [70]王海俊,殷宗泽.堆石料长期变形的室内试验研究.水利学报,2007,38(8): 914-919.
    [71] Yoshitake ETO, Kazuhiro KANEKO, Shinji YAMASHITA. Study of the deterioration for rock material on rockfill dam. 19thInternational congress on large dams, 1997, 659-687.
    [72] Masaaki NAGAI, Shinya AOKI and Kazuhiko BAN. Long-term durability of riprap materials for rockfill dams. 17thInternational congress on large dams, 1991, 321-340.
    [73] B. Wonneberger and S.A. Bortz. Comparing laboratory and field durability testing of stone. Durability of Building Materials and Components 8 (Volume One). Edited by M.A. Lacasse and D.J. Vanier. Published in 1999 by NRC Research Press,Ottawa ON K1A 0R6, Canada, 624-634.
    [74]宁宝宽.环境侵蚀下水泥土的损伤破裂试验及其本构模型. [博士学位论文]大连:东北大学,2006.
    [75]顾欢达,顾熙.干湿循环作用下发泡颗粒轻质土的稳定性.公路. 2005,(5),125-28.
    [76]周永祥;阎培渝.固化盐渍土经干湿循环后力学性能变化的机理.建筑材料学报. 2006,9(6):735-741.
    [77]李果,刘涛,费金新,饶丹,郭兵兵.干湿循环混凝土内钢筋腐蚀加速效应机理的研究[J].四川建筑科学研究. 2005,31(5):108-111.
    [78]慕儒.冻融循环与外部弯曲应力盐溶液复合作用下混凝土的耐久性与寿命预测. [博士学位论文]南京:东南大学,2000.
    [79]陈栓发.高性能混凝土应力腐蚀与腐蚀疲劳特性研究. [博士学位论文]西安:长安大学,2004.
    [80] Papadakis V.G., Vayenas C.G. et al. Fundamental modeling and experimental investigation of concrete carbonation. ACI Materials Journal, 1991,88:363-373.
    [81]张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型.工业建筑,1998, 28(1):16-19.
    [82] Bazant Z.P. et al. Physical model for steel corrosion in concrete sea structure theory. ASCE Journal of structural Division,1977,105(ST6):1137-1153,1155-1166
    [83]邸小坛,周燕.大气环境下钢筋锈蚀规律的研究.第四届全国混凝土耐久性学术交流会论文集.苏州,1996.
    [84]蔡昊.混凝土抗冻耐久性预测模型. [博士学位论文]北京:清华大学,1998.
    [85]杨和平,肖夺.干湿循环效应对膨胀土抗剪强度的影响.长沙理工大学学报(自然科学版). 2005,2(2):1-5.
    [86] K. Yuen, J. Graham and P. Janzen. Weathering-induced fissuring and hydraulic conductivity in a natural plastic clay. Can. Geotech. J. 1998,35:1101-1108.
    [87] Giovanni Gulla, Maria Clorinda Mandaglio and Nicola Moraci. Effect of weathering on the compressibility and shear strength of a natural clay. Canadian geotechnical journal ,2006,43:618-625.
    [88]陈生水,郑澄锋,王国利.膨胀土边坡长期强度变形特性和稳定性研究.岩土工程学报,2007,29(6):795-799.
    [89] P.G.Fookes Rock weathering in engineering time. Quarterly journal of engineering geology, London,1988,21,33-57.
    [90] S.R.Hencher. Engineering in weathered rock. Quarterly journal of engineering geology, London,1995,28,253-266.
    [91] D.G.Price . Weathering and weathering process. Quarterly journal of engineering geology, London,1995,28,243-252.
    [92]沈珠江,陈铁林.岩土破损力学:基本概念、目标和任务.中国岩石力学与工程学会编.岩石力学新进展与西部开发中的岩土工程问题.北京:中国科学技术出版社,2002,9-12.
    [93] T. Hueckel and M. Borsetto, Thermoplasticity of saturated soils and shales: constitutive equations, J. Geotech. Engng. 1990,116(12):1765-1777.
    [94] T. Hueckel and G. Baldi, Thermoplasticity of saturated clays: experimental constitutive study, J. Geotech. Engng. 1990,116(12), 1778-1798.
    [95] T. Hueckel, R. Pellegrini and C. Del Olmo. A constitutive study of thermo-elasto-plasticity of deep carbonatic clays. J. Numer. Anal. Meth. Geomech., 1998; 22:549-574.
    [96] T. Hueckel. Chemo-plasticity of clays subjected to stress and flow of a single contaminant. J. Numer. Anal. Meth. Geomech., 1997; 21:43-72.
    [97] Z. Liu, N. Boukpeti, X. Li, F. Collin, J.-P. Radu, T. Hueckel and R. Charlier. Modelling chemo-hydro-mechanical behavior of unsaturated clays: a feasibility study. J. Numer. Anal. Meth. Geomech., 2005; 29:919-940.
    [98] L. Laloui, C. Cekerevac. Numerical simulation of the non-isothermal mechanical behavior of soils. Computers and geotechnics. 2008.
    [99] L. Laloui, C. Cekerevac. Non-isothermal plasticity model for cyclic behavior of soils. J. Numer. Anal. Meth. Geomech., 2008; 32:437-460.
    [100] Wenhua Wu, Xikui Li, R. Charlier and F. Collin. A thermo-hydro-mechanical constitutive model and its numerical modeling for unsaturated soils. Computers and geotechnics. 2004,31:155-167.
    [101] R. Nova, R. Castellanza and C. Tamagnini. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. International journal for numerical and analytical methods in geomechancis, 2003,27:705-732.
    [102] C. Tamagnini, R. Castellanza and R. Nova. A Generalized Backward Euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials. International journal for numerical and analytical methods in geomechancis, 2002,26:963-1004.
    [103] Kachanov L. M. On the time to failure under creep condition, Izv, Akad,Nauk, USSR, Otd. Tekhn. Nauk. 1958. 8, 26-31.
    [104]余寿文,冯西桥.损伤力学.北京:清华大学出版社,1997.
    [105]沈珠江,章为民.损伤力学在土力学中的应用,第三届全国岩土力学数值分析及解析方法讨论论文集,Ⅱ—595,珠海,1988.
    [106]沈珠江.结构性粘土的非线性损伤力学模型,水利水运科学研究,1993,3,247-255.
    [107]沈珠江.结构性粘土的弹塑性损伤模型.岩土工程学报,1993,15(3):21-28.
    [108]沈珠江.土体变形特性的损伤力学模拟.第五届全国岩土力学数值分析及解析方法讨论会论文集,重庆,1994, 1: 1-8.
    [109]沈珠江.黄土损伤力学模型探索.第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社, 1994 , 145 - 149.
    [110]沈珠江.结构性粘土的堆砌体模型.岩土力学, 2000 , 21 (1) : 1-4.
    [111] Shen ZJ, Hu Z Q. Damage function and a masonry model for loess. Asian Conf . Unsaturated soils . Singapore , 2000 , 245-249.
    [112]赵锡宏,孙红,罗冠威.损伤土力学.上海:同济大学出版社, 2000
    [113]罗晓辉,卫军,白世伟.脆性统计损伤模型在岩土工程中的应用研究.华中科技大学学报(自然科学版),2004,32(9):82-85.
    [114]孙星亮,汪稔,胡明鉴.冻土弹塑性各向异性损伤模型及其损伤分析.岩石力学与工程学报. 2005,24(19):3517-3521.
    [115]汪稔,孙吉主.钙质砂不排水性状的损伤-滑移耦合作用分析.水利学报. 2002,7,75-78.
    [116]熊玉春,房营光.徐国辉软黏土的动力损伤模型及其应用.岩石力学与工程学报. 2006,25,3152-3156.
    [117] Desai, C.S., 2001, Mechanics of Materials and Interfaces: The Disturbed State Concept,”CRC Press, Boca Raton, Florida, USA.
    [118] C.S. Desai, S. Somasundaram and G. Frantziskonis. A hierarchical approach for constitutive modeling of geologic materials. International journal for numerical and analytical methods in geomechancis, 1986,10:225-257.
    [119] Varadarajan, A., Sharma, K. G., Venkatachalam, K., and Gupta, A. K.“Testing and modeling two rockfill materials.”J. Geotech.Geoenviron. Eng., 2003,129(3), 206–218.
    [120] A. Varadarajan, K. G. Sharma, S. M. Abbas and A. K. Dhawan. Constitutive model for rockfill materials and determination of materials constants. International journal of geomechancis, 2006,6(4):226-237.
    [121] Varadarajan, A., Sharma, K.G., Desai, C.S., and Hashemi, M., Constitutive modeling of a schistose rock in the Himalaya, Int. J. of Geomechanics,.2001,1(1): 83-107.
    [122] A. Varadarajan, K.G. Sharma, C.S. Desai, M. Hashemi. Analysis of a Powerhouse Cavern in the Himalaya. Int. J. of Geomechanics,.2001,1(1):109-127.
    [123] SURAJIT PAL, G. WIJE WATHUGALA. Disturbed state model for sand-geosynthetic interfaces and application to pull-out tests. Int. J. Numer. Anal. Meth. Geomech. 1999, 23, 1873-1892.
    [124] Chandra S. Desai, Cemalettin Basaran, Terrance Dishongh, and John L. Prince, Thermomechanical Analysis in Electronic Packaging with Unified Constitutive Model for Materials and Joints. IEEE Transactions On Components, Packaging, And Manufacturing Technology—Part B, Vol. 21, No. 1, February 1998,87-97.
    [125] Martin D. Liu, John P. Carter and Chandra S. Desai. Modeling compression behavior of structured geomaterials International Journal of Geomechanics, 2003, 3(2):191-204.
    [126] Martin D. Liu, John P. Carter, Chandra S. Desai. and K.J. Xu. Analysis of the compression of structured soils using the disturbed state concept. Int. J. Numer. Anal. Meth. Geomech. 2000, 24, 723-735.
    [127] I-J. Park and C.S. Desai. CYCLIC BEHAVIOR AND LIQUEFACTION OF SAND USING DISTURBED STATE CONCEPT. J. Geotech.Geoenviron. Eng., 2000, 126(9):834-846.
    [128] Changming Shao and Chandra S. Desai. Implementation of DSC model and application for analysis of field pile tests under cyclic loading. Int. J. Numer. Anal. Meth. Geomech., 2000; 24:601-624.
    [129] Chandra S. Desai and Wu Zhang. Computational aspects of disturbed stateconstitutive models. Comput. Methods Appl. Mech. Engrg. 1998,151,361-376.
    [130] Chandra S. Desai and Joseph Y. Chen. Parameter optimization and sensitivity analysis for disturbed state constitutive model. International Journal of Geomechanics, Vol. 6,No. 2, March 1, 2006,75-88.
    [131] C.S. Desai, K.E. El-Hoseiny. Prediction of field behavior of reinforced soil wall using advanced constitutive model. Journal of Geotechnical and Geoenvironmental Engineering. 2005,131(6):729-739.
    [132] C.S. Desai, C. BASARAN and W. ZHANG. Numerical algorithms and mesh dependence in the disturbed state concept. International journal for numerical methods in engineering. 1997,40:3059-3083.
    [133] Macari EJ, Samarajiva P, Wathugala W. Selection and calibration of soil constitutive model parameters using genetic algorithms. Soil Constitutive Models 2005,169(13): 310–332.In: Yamamuro JA, Kaliakin VN, editors. Proceedings of the sessions of the Geo-Frontiers 2005 Congress. Austin, TX, USA; 2005. p. 310–332.
    [134]相彪.粗粒土的扰动状态本构模型及其参数确定. [硕士学位论文]大连:大连理工大学,2005.
    [135]王德玲,葛修润.岩石的扰动状态本构模型研究.长江大学学报(自然科学版). 2005,2(1):91-96.
    [136]王德玲,葛修润.扰动状态模型在三峡大坝3#坝段稳定性分析中的应用.长江大学学报(自然科学版). 2005,10(2):369-372.
    [137]沈珠江,陈铁林岩土力学分析新理论:岩土破损力学.中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册).北京,2003,406-411.
    [138]沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力应变关系.岩土工程学报. 2005,27(5):489-494.
    [139]沈珠江.岩土破损力学与双重介质模型.水利水运工程学报,2002, (4):1–6.
    [140]沈珠江.岩土破损力学:理想脆弹塑性模型.岩土工程学报,2003,24(3):253–257.
    [141]沈珠江,邓刚.超固结粘土的二元介质模型.岩土力学,2003,25(4):495–499.
    [142]沈珠江,陈铁林.岩土破损力学:结构类型与荷载分担.岩土力学与工程学报,2004,23(13):2137–2142.
    [143]沈珠江,胡再强.黄土的二元介质模型.水利学报,2003 , (7) :1-6.
    [144]沈珠江.二元介质模型在黄土增湿变形分析中的应用.水利学报. 2005,36(2):129-134.
    [145]沈珠江,陈铁林.岩样变形和破坏过程的二元介质模拟.水利水运工程学报. 2004,1,1-5.
    [146]陈铁林.岩土材料二元介质模型的初步研究. 2003,清华大学:北京.
    [147]刘恩龙.岩土结构块破损机理与二元介质模型研究.北京:清华大学,2005.
    [148]邓刚.超固结粘土边坡变形机制的系统研究.北京:清华大学,2005.
    [149]李建红.基于细观破损机理的胶结结构性土本构模型研究[博士学位论文].北京:清华大学,2008.
    [150]杨和平,肖夺.干湿循环效应对膨胀土抗剪强度的影响.长沙理工大学学报(自然科学版). 2005,2(2):1-5.
    [151]顾欢达,顾熙.干湿循环作用下发泡颗粒轻质土的稳定性.公路. 2005,5,125-128.
    [152]赵明龙,王建华,梁爱华.干湿循环对水泥改良土疲劳强度影响的试验研究.中国铁道科学. 2005,26(2):25-28.
    [153] Hussein J, Adey M A. Changes in microstructure, voids and b-fabric of surface samples of a Vertisol caused by wet/dry cycles. Geoderma,1998,85(1):63-82.
    [154] Wells, T. Binning, P. Willgoose, G. Hancock, G. Laboratory simulation of the salt weathering of schist: I. Weathering of schist blocks in a seasonally wet tropical environment Earth Surface Processes and Landforms. 2006 31:339-354.
    [155]杨和平,张锐,郑健龙.有荷条件下膨胀土的干湿循环胀缩变形及强度变化规律.岩土工程学报. 2006,28(11):1936-1941.
    [156]李果,刘涛,费金新,饶丹,郭兵兵.干湿循环混凝土内钢筋腐蚀加速效应机理的研究.四川建筑科学研究. 2005,31(5):108-111.
    [157]王素瑞,刘保国,金钦华.碱-骨料反应和干湿循环对混凝土的协同破坏效应研究.混凝土与水泥制品. 2000,4:15-17.
    [158]李尉卿.干湿循环对加气混凝土制品抗拉强度的影响.粉煤灰综合利用. 2004,4:36-38.
    [159] NICHOLSON D T. Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surface Processes and Landforms.2001, 26:819-838.
    [160]应丰.粉质粘土混合疏浚土的长期性能研究[博士学位论文].浙江:浙江大学.2006.
    [161]周易平.高速铁路路基填料改良技术的研究[博士学位论文].北京:铁道部科学研究院.2000.
    [162] Currey. D.T. Rip rap weathering tests. ICOLD, 1976,1039-1045.
    [163]中华人民共和国国家标准. GB/T11975-1997.加气混凝土干湿循环试验方法.北京:中国标准出版社.1997.
    [164]胡春凤等.糯扎渡水电站招标设计阶段T2m岩层石料碾压试验研究报告.中国水电顾问集团昆明勘测设计研究院,2006.
    [165] Marsal R J. Large scale testing of rockfill materials. Jourmal of the Soil Mechanics and Foundations Division.1967, 93(SM2):27-43.
    [166] Marsal R J.土石坝工程. (第四章).江苏:水利出版社,1979.
    [167]柏树田.西北口混凝土面板堆石坝筑坝材料特性的试验研究.水利水电科学研究院论文集,1991.
    [168]沈新慧.天生桥混凝土面板堆石坝筑坝材料特性研究.水利水电科学研究院论文集,1991.
    [169]刘汉龙,高玉峰,秦红玉等.江苏宜兴抽水蓄能电站坝料试验研究.南京:河海大学, 2000.
    [170]孔德志.堆石料的颗粒破碎应变及其数学模拟[博士学位论文].北京:清华大学,2008.
    [171]沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [172]李广信.高等土力学.北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700