石灰处治土路基冻融作用特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石灰是道路工程中常用的工程材料之一,石灰掺加在路基填土中,可以起到减水、增强、加固的效果,有效的提高了土体的强度及抗冻性等性能,并且由于其经济性好、施工方便,在我国得到了较广泛的应用。
     我国冻土面积占全国总面积的三分之二,且北方冬季气候寒冷,道路结构必然要受到冻融作用,而目前对于石灰处治路基土在冻融循环作用下的力学性能变化还没有清晰的认识,其强度衰减规律并没有定量的研究。本文针对石灰处治土的研究现状,对不同掺量下的石灰处治土进行了室内试验,分析土体在冻融循环作用下模量、强度等指标的变化规律,并与素土相应指标进行了对比;同时结合黑龙江省鸡西至讷河公路的石灰处治土路基,进行了路基温度场的测试,并以室内试验结果为基础,进行有限元分析,分析在实测温度场下路基的应力分布及变形特征,其主要研究内容和研究成果如下:
     (1)对于不同掺量下石灰处治土的基本物理指标进行了室内试验,随着掺灰剂量的增加,石灰处治土的液限变化不大,但塑限不断增大,塑性指数随之逐渐减小。土体的弹性模量及无侧限抗压强度随石灰掺量的增大而增大,土体的粘聚力及内摩擦角也随之逐渐增大。
     (2)基于DS18B20温度传感器和单片机,针对寒区公路路基温度场监测的实际要求,设计了路基温度场监测系统,并实现了连续监测和数据的自动采集、存储。通过路基温度场测试,发现路基冻融过程跨度达8个月,在整个冻融循环期内,与气温相比,路基深处温度的变化有大约50天左右的延迟效应,路面下路基与土路肩下路基温度变化具有明显差异,且均大于天然地基,说明道路修筑改变了原地基的温度场。
     从路基横断面来看,无论是冻结期还是融化期,路基冻结区域均呈现不均匀分布,在融化初期内,路基内部出现冰冻夹层,随着时间推移,温度上升,冰冻夹层逐渐变薄,直至缩小成未化冻土核,大约在6月末土体全部融化。测试路段路基含水率全年范围内保持相对较平稳状态,且呈现出在融化期内较高,而在冰冻期内较低的状态。
     (3)石灰的掺加在一定程度上能抑制土体的冻胀现象。经试验测定,在相同的含水率下,石灰掺量越大,土体冻胀率越小,土体起始冻胀的温度区间为-2℃~-4℃,当温度降至-10℃时冻胀基本结束,-2℃~-8℃为冻胀现象明显的温度区间;冻胀量与土体的密实程度和饱和度有一定关系;含水率越大,冻胀率越大,掺灰剂量越大,起始含水率越高。
     (4)土体的无侧限抗压强度随着掺灰剂量的增加而增加,随冻融循环次数的增加而降低,且各级掺灰剂量下土体的压实度越大,经过冻融后土体的强度衰减率越小。掺灰剂量越大,土体的粘聚力和内摩擦角越大,冻融次数越多,土体的粘聚力越小,内摩擦角越大;土体的回弹模量也随着掺灰剂量的增大而不断增大,并随冻融循环的次数增加而不断降低;土体的强度在第一次冻融作用下衰减幅度较大,随着冻融作用次数的增多,强度衰减幅度逐渐减小,当冻融循环次数达到6次时趋于稳定。
     对于不同循环温度下土体的各指标进行了试验,-9℃~-3℃是土体水分相变的过渡温区,土体随着循环温度低温下限的降低,各指标衰减幅度慢慢增大,当低温区间达到-9℃时,土体的各项指标均与-15℃~15℃冻融循环相差不多,含水率越大的土体,其强度衰减越大。不同循环温度区间土体各项指标随循环次数的变化规律与前述基本一致;对于不同冻结温度下冻土的力学性能指标进行试验发现,冻结温度越低,土体的粘聚力越大,内摩擦角越小,回弹模量越大。同时探讨了石灰增强土体与冻融循环作用下石灰处治土强度衰减的机理。
     (5)运用有限元理论结合abaqus软件对石灰处治土在冻融过程中的应力和变形规律进行了分析,通过模拟分析发现,在冻融循环周期内,路基出现先冻胀后融沉的现象,且.路肩处的竖向变形均小于道路中心线处。随着冻融循环次数的增多,路基中心处的沉降量逐渐增大;路基在经过10次冻融循环后其沉降量随掺灰剂量的增加而减小,但路中心与路肩处不均匀沉降有增大趋势,道路中心线下路基土应力最大,在行车荷载的作用下有破坏的可能,而未掺灰土体由于冻融作用强度降低将产生破坏。
Lime is one of common materials used in road engineering. It plays the role of reducing water content, strengthening and consolidating, and improves strength and freezing resistance of soil, when lime is added into subgrade soil. This is applied on a large scale in China, because of its economy and convenience.
     In China, the area of frozen soil is over 2/3 of all the area and the weather in north is cold in winter, so the road must be thawed and freozen. At present, it is not fully known about change of mechanical property of lime modified soil with freezing and thawing. There is no quantificational study about strength attenuation of soil with freezing and thawing. Aim at current situation of lime modified soil, indoor test about different ratio of lime modified soil was carried out, index of modulus and resilience of soil with freezing and thawing was analyzed, compared with natural soil. With the result of indoor test, the subgrade temperature field was measured on the highway from Jixi to Nehe in Heilongjiang province, the stress distribution and deformation characteristic is analysed based on subgrade temperature field by finite element analysis. The principal contents and results of the study are as follows:
     (1) The basic physics index of lime modified soil on different ratio of lime to soil was tested indoor. The more ratio of lime to soil was, the more plastic limit was, the less plasticity index was, but liqiut limit changed a little. the more ratio of lime to soil was, the more resilience modulus and unconfined compression were, the more shear strength index, friction angle and cohesion were all.
     (2) Base on DS18B20 temperature sensor and singlechip, aim at practical requirement of measure of subgrade temperature field, the measure system was designed, in order to continuously observe, automatically collect and save data. The process of subgrade freezing and thawing lasted 8 mouth by measure of subgrade temperature field. During the time, the change of temperature under subgrade delayed for about 50 days, compared with air temperature. The changing range of soil temperature was significantly different between under pavement and under road shoulder. However, both were higher than the soil temperature under natural foundation. It indicated that the original temperature field of natural foundation was changed by subgrade.
     Judging from the subgrade cross-section, asymmetrical distribution existed in the period of freezing and thawing. In subgrade frozen area, in the preliminary period of thawing, the frozen interlayer appeared in subgrade. The frozen interlayer was gradually getting thin with increasing of temperature, and disappeared at the end of June. The water content of subgrade was high in the period of thawing and low in the period of freezing. but it remained a relatively stability in all a year.
     (3) Lime can limit frost heave of soil on a certain extent. The result indicated the more ratio of lime to soil was, the less ratio of frost heave was, at same moisture content. Initiative range of temperature of lime modified soil's frost heave was from -2℃to -4℃Frost heave almost ended at-10℃, and was obvious from -2℃to -8℃. Frost heave was relevant with soil compaction and saturation.. The frost heave increased with degree of moisture. The more ratio of lime to soil was, the more initial moisture of frost heave was.
     (4) Unconfined compression increased with ratio of lime to soil, while decreased with times of freezing and thawing. The same result was found for resilience modulus. At every ratio of lime to soil, the more degree of compaction was, the less ratio of soil strength attenuation was. The more ratio of lime to soil is,the more soil cohesion and friction angle are. Soil cohesion is rise and friction angle is descend with the time of freezing and thawing rise. At the first time of freezing and thawing, strength attenuation was the biggest. Then the more times of freezing and thawing were, the less strength attenuation was. Strength attenuation went to stable, at 6th times of freezing and thawing.
     Every index of soil was tested under all kind of tempreture of freezing and thawing, which indicating -9℃--3℃was regarded as the transitional temperature range of moisture phase transition. The low the floor temperature of freezing and thawing is, the more all kinds of index attenuation. when the temperature arrived at -9℃,all kinds of index of soil was similar to that of normal soil.The ratio of strength attenuation increased with water content. During the range of temperature of freezing and thawing, regularity of every index changing with times of freezing and thawing was the same as the upper stated. for the mechanical property index of frozen soil under different temperature of freezing and thawing, the lower freeze temperature was, the more soil cohension and resilience modulus was, the less soil friction angle was. It discussed the mechanism of lime strengthen soil and lime modified soil strength attenuation by freezing and thawing.
     (5) Regularity of the stress distribution and deformation of lime modified soil subgrade in freezing and thawing were analyzed by finite element theory and Abaqus software. It indicated frost heave before thawing sink and portrait deformation is less in subgrade shoulder than that in center line of road in freezing and thawing by simulative analysis. the more times of freezing and thawing were, the more amount of precipitation of subgrade was. The less amount of precipitation of subgrade was, the more ratio of lime to soil was, after 10 times of freezing and thawing. But asymmetrical precipitation in center line of road and subgrade shoulder has increasing trend. The stress was the biggest in center line of road. Road might split under load of vehicles. Road might fracture because of low sthength of soil without lime.
引文
[1]周幼吾,邱国庆,程国栋,郭东信.中国冻土[M],北京:科学出版社,2000.第一版,1-2.
    [2]徐学祖,王家澄,张立新.冻土物理学[M],北京:科学出版社,2001,1-18.
    [3]Diamond S. Mechanism of Soil-lime Stabilization Public Roads.1996,33(12):260~265
    [4]Bell.FG. Lime stabilization of clay minerals and soils. Engineering Geology,1996, 412(4):223~237.
    [5]Osula D.A.lime stabilization of clay minerals and soils. Engineering Geology,1996, 42(1):71~80.
    [6]Loeat J, Tremblay H, Leorueils.Mechanical and hydaurlic behvaior of a soft inogini clay treated with lime. Canada Geotechnical Journal,1996,33(4):654~669.
    [7]Rajasekaran G, Narasimha R S.Lime migration studies in marine clay. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1996,33(7):317A.
    [8]Au wing-cheong, Chae Yong S. Dynamic shear modules of treated soils. Jr. of Geotech.Div, ASCE,1980,106(3):255~273
    [9]Sabry M A, Abdel-Ghani Kh I, El Nahas A M.Strength characteristics of soil-lime columns sections. Grouting and deep mixing. Proc.Tokyo,1996, Vol.1ed Yonekura R.et al(Blakema) 1996,393~405.
    [10]Porbaha A. Geotextile reinforced lime cohesive soil retaining walls. Geosynthetic International,1996,3(3):447~452.
    [11]Al-Abdul Wahhab HI, Asi, I M. Improvement of marl and dune sand for highway construction in arid areas. Building and Environment,1997,32(3):271~279
    [12]Wahls,H.E.NCHRP Synthesis of Highway Practice 159:Design and Construction of Bridge Approaches[R]. Transportaion Research Board, National Research Council, Wash- ington,D. C.,1990:27.
    [13]Sauer E K, Weimer N F. Deformation of lime modified clay after freeze-thaw. Transporta- tion Engineering Journal,1978,104(2):201~212
    [14]Akoto B K A, Singh G Behavior of lime-stabilized laterite under repeated loading. Australian Road Research,1986,16(4):259~267
    [15]Fahoum K.Dynamic prosperity of lime-stabilized cohesive soils.PhD dissertation, University of Maryland, College Park, Md.
    [16]Broms B.Slope protection and deep excavation with lime and cement soil column [J]. Journal of Geoengineering,1986,8(6):17-21 (Chinese translation).
    [17]程平,姚海林,李文斌,安骏勇.石灰改良高速公路膨胀土路基的试验研究[J].公路,2002,5:96~100.
    [18]唐剑潇.干湿循环后路基石灰改良土的动力特性及应用[D]天津,天津大学硕士论文,2007
    [19]赵青海,梁波,马学宁.高速铁路石灰改良路基填料试验研究[J].铁道科学与工程学报,2005,2(6),53~57.
    [20]徐洪跃,阮明和.浅谈石灰土路基施工中灰剂量衰减对压实度的影响[J].交通科技,2007,5:61~62.
    [21]贺建青.石灰改良土路基填料的动力特性及应用研究.[D]长沙,中南大学博士论文,2005.
    [22]徐勇,张婉琴等.石灰土作为路基填料的研究机理.[J].岩石力学与工程学报,1996(4):57~64,72
    [23]陈新民,罗国煜,李生林.生石灰改良膨胀土的试验研究[J].水文地质工程地质,1997,(10),41-43
    [24]邬瑞光,张德才.二灰稳定材料强度分析[J].山西交通科技,1997,112(5):11~14
    [25]张立新,王家澄.石灰土冻胀特性研究[J].岩土工程学报,2002,24(3):336~339
    [26]谢明逸.冬季石灰土路基加强加固方案浅议[J].上海公路,2008,2:34~36.
    [27]钱国飞.石灰土路基强度形成机理[J],上海公路2002,3:14~16.
    [28]张洪亮,高辉,胡长顺.压实石灰黄土压缩特性试验研究[J].中南公路工程,2005,30(2):45~47,135.
    [29]周明凯,沈卫国,陈平,马建荣.石灰土的增强改性研究[J].武汉工业大学学报,2000,20(5):38~41.
    [30]刘林芽,高柏松.石灰改良黏性土的物理特性研究[J].铁道建筑,2007,6:58~60.
    [31]顾欢达,顾熙,嘉门雅史.消石灰稳定土用于路基材料时的耐久性研究[J].公路,2001,12:84~87.
    [32]蔡奕,施斌,高玮,陈峰军,唐朝生.纤维石灰土工程性质的试验研究[J].岩土工程学报,2006,28(10):1283~1287.
    [33]夏琼,杨有海.石灰改良膨胀土填料试验研究[J].兰州交通大学学报,2009,28(4):30~34.
    [34]王建华,高玉琴,唐剑潇.路基填料石灰改良土弹性波速与压缩强度的相关性[J].天津大学学报,2007,40(4):399~404.
    [35]齐吉琳,程国栋,P.A. Vermeer.冻融作用对土工程性质影响的研究现状[J].地球科学进展,2005,20(8):887~894.
    [36]KONRAD J M, DUQUENNOIC.A model for water transport and ice lensing in freezing soils[J].Water Resources Research,1993,29(9):3109~3124.
    [37]Chamberlain Edwin J, GowAnthony J. Effectof freezing and thawing on the permeability and structure of soils[J].Engineering Geology,1979,13(1-4):73~92.
    [38]Chamberlain E J. Physical changes in clays due to frost actionand their effect on engineer-ing structures[A]. In:Proceedings ofthe InternationalSymposium on Frost in Geotechnical Engineering [C]. Rotterdam, the Netherlands:A. A. Balkema,1989.863~893.
    [39]ElliottR P, Thornton S I. Resilient modulus and AASHTO pavement design[J]. Transportation research record,1988,1 196:116~124.
    [40]Lee Woojin, Bohra N C, A ltschaeffl A Qetal. Resilient modulus of cohesive soils and the effect of freeze-thaw[J].Canadian Geotechnical Journal,1995,32(4):559~568.
    [41]Simonsen Erik, Janoo VincentC, Isacsson U If. Resilient properties of unbound road materials during seasonal frost conditions[J].Journal ofCold Regions Engineering,2002,16(1):28~50
    [42]OgataN, KataokaT, KomiyaA. Effect of freezing thawing on theme chanical properties of soil[A].In:Proceedings of the 4th International Symposium on Ground Freezing [C].Rotterdam,Netherlands:A.A. Balkema Publishers,1985.201~207.
    [43]Simonsen,E.,Ja noo,VC.,1999. Resilient properties of unbound road materials during seasonal frost conditions.ASCE J.Cold Regions Eng.,submitted.
    [44]刘兵,陶夏新,赵刚.冻融过程中土中水分迁移室内试验研究[J].低温建筑技术,2008,6:10~12.
    [45]赵刚,陶夏新,刘兵.原状土冻融过程中水分迁移试验研究[J]岩土工程学报,2009,31(12):1952~1957.
    [46]赵刚,陶夏新,刘兵.重塑土冻融过程中水分迁移试验研究[J].中南大学学报(自然科学版),2009,40(2):519~525.
    [47]梁波,张贵生,刘德仁.冻融循环条件下土的融沉性质试验研究[J].岩土工程学报,2006,28(10):1213~1217.
    [48]许珊珊,高伟.寒区公路路堑边坡抗冻融稳定性分析[J].低温建筑技术.2006,2:10~12.
    [49]苏谦,唐第甲,刘深.青藏斜坡黏土冻融循环物理力学性质试验[J].岩石力学与工程学报,2008,27(增1):2990~2994.
    [50]毛雪松,侯仲杰,王威娜.基于含水量和冻融循环的重塑土回弹模量试验研究[J].岩石力学与工程学报,2009,28(增2):3585~3590.
    [51]杨平,张婷,人工冻融土物理力学性能研究[J].南京林业大学学报,2002,24(5),665~667.
    [52]侯恩创.冻融循环对路基土物理力学性质影响的研究[D].哈尔滨:东北林业大学硕士论文,2010.
    [53]王威娜.季节冰冻区路基变形数值模拟[D].中国优秀硕士学位论文全文数据库:中国知网.2009.
    [54]李向群.吉林省公路冻害原因分析及处理方法研究[D].中国优秀硕士学位论文全文数据库:中国知网.2006.
    [55]Beskow G.Soil freezing and frost heaving with special application to roads and railroads [J].Swedish Geol.Survey Yearbook.1935.26(3):375-380.
    [56]Penner E.Fundamental aspects of frost action[R].Int.Symp.on Frost action in soils. Sweden, 1977.
    [57]Williams P J.Properties and behavior of freezing soils [R]. Oslo:Norwegian Geotech.Inst.Publ.1968.
    [58]Jones R H,Hurt K G.An osmotic method for detemining rock and aggregate suction chara-cteristics with applications to frost heave studies[J].Quarterly J.Eng.Gell.1978.11:245-252.
    [59]Loch JPG.Miller R D.Test of the concept of secondary frost heaving[J].Soil Sci. Soc.Am.proc.1975.39:1036-1041.
    [60]Miller RD.Freezing and heaving of saturated and unsaturated soils [J]. Highway Research Record,1972.
    [61]柯洁铭,杨平.冻土冻胀融沉的研究进展[J].南京林业大学学报(自然科学版),2004.28(4):105-108.
    [62]程国栋.冻土力学与工程的国际研究新进展[J].地球科学进展,2001,16(3):293~299
    [63]赵安平.季冻区路基土冻胀的微观机理研究[D].长春:吉林大学博士论文,2008.
    [64]黄小铭,我国寒区道路工程中冻土问题研究的回顾[J].冰川冻土.1988.9,10(3):344~351.
    [65]杨成松,何平,程国栋等.冻土热融下沉研究的现状和进展[J].工程地质学报,2004,12:147-151.
    [66]孔庆铨.素混凝土板衬砌渠道地基冻胀土壤的分级及防冻害措施.第二届全国冻土学术会议论文选集[M].兰州:甘肃人民出版社.1983,462~470.
    [67]戴惠民,王兴隆等.季节冻土区公路桥涵地基土冻胀性研究[J].冰川冻土.1993,15(2):377~382.
    [68]戴惠民,乐鹏飞等.季冻区公路路基土冻胀性的研究[J].中国公路学报,1994,7(2):1~8.
    [69]高伟.路基填料粉煤灰冻胀性判断试验方法[J].中国公路学报,1994,7(增1):6-8.
    [70]谷宪民.季冻区道路冻胀翻浆机理及防治研究[D].中国优秀硕士学位论文全文数据库:中国知网.2007.
    [71]杜兆成,张喜发,辛德刚,张冬青.季节冻土区高速公路路基冻胀试验观测研究[J].公路.2004,1:139~144.
    [72]张以晨,李欣,张喜发,张冬青.季冻区公路路基粗粒土的冻胀敏感性及分类研究[J].岩土工程学报,2007,29(10):1522~1526.
    [73]马巍,徐学祖,张立新.冻融循环对石灰粉土剪切强度特性的影响[J].岩土工程学报,1999,21(2):158~160.
    [74]徐昭巍,张滨.石灰改良分散土冻融性能的研究[J].水利科技与经济,2007,13(7):158~160.
    [75]刘志强,赖远明,张明义,张学富,陆昊.冻土路基的随机温度场[J].中国科学D辑地球科2006,36(6):587~592
    [76]司剑锋,冻土路基温度场分布的试验研究.铁道标准设计,2006.2:33~35.
    [77]毛雪松,胡长顺,侯仲杰.冻土路基温度场室内足尺模型试验[J].长安大学学报(自然科学 版),2004,24(1):30-33.
    [78]柯成刚,梁开东.冻土路基温度场有限元分析[J].中国西部科技,2007,9:39~40,70.
    [79]王铁行,胡长顺,王秉纲.考虑多种因素的冻土路基温度场有限元方法[J].中国公路学报,2000,13(4):8-11.
    [80]汪海年,窦明健,吴敏慧.青藏高原冻土区路面类型对路基温度场影响的非线性分析[J].冰川冻土,2005,27(2):169~175.
    [81]祁长青,吴青柏,施斌,徐洪钟.青藏铁路冻土路基温度场随机有限元分析,工程地质学报,2005,13(3):330~335.
    [82]王桂虎,李欣.冻土温度场与水分场耦合计算分析方法在某公路路基中的应用研究[J].长春工程学院学报(自然科学版),2008,9(2):15~17.
    [83]郭大华,张尧禹.多年冻土区路基温度场特征分析[J].公路交通科技,2009,7:101~104.
    [84]贺建清.石灰改良土路基填料的动力特性及应用研究[D].长沙:中南大学博士论文,2005.
    [85]袁聚云,钱建固等.土质学与土力学[M].北京:人民交通出版社.2009
    [86]JTG E40-2007.公路土工试验规程[S]
    [87]http://www.weather.com.cn/html/cityintro/101050504.shtml.2011-03-18
    [88]何东坡,任贵波,韩春鹏,张鸿儒.DS18B20在季冻区公路路基温度场测量中的应用[J].电子应用技术,2010.4(36):48-50.
    [89]梁广瑞,方羽,罗覃东.基于DS18B20的分布式温度监测系统的设计[J].广西大学学报,2008,6(33):138-140.
    [90]孙广利,王慧娣.季节性冻胀与路基稳定评析[J].吉林建筑工程学院学报,2006.1(23):22~26.
    [91]王小军,赵中秀.用生石灰改良膨胀岩基床的室内试验究.岩土工程学报,1998(1).
    [92]张建明,等.公路工程冻土类型划分研究.西安公路交通大学学报,2001,21(4):1-5.
    [93][苏]H.A.崔托维奇著.冻土力学.北京:科学出版社,1985:50-150
    [94]Wang J C,Xu X Z,et al.Influences of temperature and pressure on ice formation and cryogenic structure of freezing soils[J] Journalof Cryosphere,1996,2:87~92.
    [95]JTGE51-2009无机结合料试验规程.[S].
    [96]钱家欢,殷宗泽.土工原理与计算[M],北京:中国水利水电出版社,2003.
    [97]郑颖人,孔亮.岩土塑性力学[M],北京:中国建筑工业出版社,2010.
    [98]谢定义,姚仰平,党发宁.高等土力学[M],北京:高等教育出版社,2008.
    [99]沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [100]廖公云,黄晓明.ABAQUS有限元软件在道路工程中的应用.南京:东南大学出版社,2008.
    [101]关文章.湿陷性黄土工程性能新篇[M1.西安:西安交通大学出版社,1992
    [102]汪海年.青藏高原多年冻土地区路基温度场研究[D].西安,长安大学硕士学位论文,2004
    [103]杨林.高等级公路加宽路堤变形性状及稳定新技术研究[D].长春,吉林大学博士论文, 2007.
    [104]李洪峰.季冻区高等级公路加宽对路基变形影响研究[D].东北林业大学大学博士论文,2010.
    [105]徐学祖,王家澄,张立新.冻土物理学[M],北京:科学出版社,2001,1-18.
    [106]周易平,高速铁路路基填料改良技术的研究[D].北京,铁道部科学研究院硕士论文,2000
    [107]张显丰.白灰土中白灰剂量与最佳含水量的关系[J].黑龙江交通科技,2004年,第1期
    [108]范文忠.石灰稳定土最大干密度与龄期关系的实验分析[J]公路交通科技,2002.10,vol.19(:)PP65~66.
    [109]侯曙光,汪双杰,黄晓明.基于相空间重构的冻土路基变形预测[J].交通运输工程学报,2005,5(2):35~37.
    [110]郑仕建,李炳熙,刘逸,宋文宇.特殊环境下路基温度场模拟及参数优化[J].华北电力大学学报,2010,37(1):69~72.
    [111]王铁行,胡长顺.多年冻土地区路基温度场和水分迁移场藕合问题研究,土木工程学报,2003,36(12):93~97.
    [112]张玉富,单炜,柳俊哲.季节性冻土切向冻胀力与冻胀性关系[J].低温建筑技术,2004,5:70~71.
    [113]Colias, K.and Megown, A. The orm and function of micro fabric feature in a variety of natural soils[J].Geotechnique,1974,2:93-98.
    [114]Gillott J.E.Study of the fabric of fine-grained sediments with the scanning electron microscope, Sedimentary Petrology[J],1969,39(1):90-105.
    [115]刘鸿绪.法向冻胀力计算[J].冰川冻土,1981,2:13~17.
    [116]程国栋.冻土力学与工程的国际研究新进展[J].地球科学进展,2001.16(3):293~299.
    [117]柯洁铭,杨平.冻土冻胀融沉的研究进展[J].南京林业大学学报(自然科学版),2004.28(4):105-108.
    [118]张喜发,张冬青,辛德刚等.季节冻土区高速公路路基土中的水分迁移变化[J].冰川冻土.2004.8,26(4):454~460.
    [119]Williams P J.Properties and behavior of freezing soils[R].Oslo:Norwegian Geotech. Inst.Publ.1968.
    [120]Jones R H, Hurt K G.An osmotic method for detemining rock and aggregate suction characteristics with applications to frost heave studies[J].Quarterly J.Eng.Gell.1978.11:245-252.
    [121]雷汉忠.冻融土的工程性质及利用[J].煤炭设计,1994(6):39~44.
    [122]王铁行.多年冻土地区路基计算原理及临界高度研究[D].西安:长安大学,2000
    [123]朱明,宋辉,钟卫.季冻地区路基中的水分迁移机理及处理措施[J].基础工程,2007,130(1):63~64
    [124]齐吉琳,马巍.冻融作用对超固结土强度的影响[J].岩土工程学报.2006, 28(12):2082~2086
    [125]李宁,程国栋,徐学祖,等.冻土力学的研究进展与思考[J].力学进展.2001,31(1):95~102
    [126]Michael K.H.LEUNG, Kit-ying CHAN. Theoretical and experimental studies of heat transfer with moving phase-change interface in freezing and thawing of porous potting soil[J]. Journal of Zhejiang University SCIENCE A.2009,10(1):1~6.
    [127]汪海年,窦明健.青藏高原多年冻土区路基温度场数值模拟[J].长安大学学报(自然科学版).2006,26(4):11~15.
    [128]毛雪松,王秉纲,胡长顺,李宁.路基冻结过程中温度场对变形场的影响[J].长安大学学报(自然科学版).2005,25(5):11~14.
    [129]王丽.道路结构温度场实测研究[J].公路.2003,8:31~35.
    [130]朱强,付思宁,武福学,王忠静,黄军兰[J].冰川冻土.1988,10(1):1-7.
    [131]周琛晖,冯少怀.基于DS18B20的温度测量系统.第三届全国软件测试会议与移动计算L栅格L智能化高级论坛论文集.223~226.
    [132]侯曙光,黄晓明,汪双杰.基于相空间重构的冻土路基温度场分形特征分析[J].公路交通科技.2005,22(7):49~51.
    [133]刘戈,章金钊,吴青柏.多年冻土地区路基变形特征及影响因素[J].公路.2006,11:23~26.
    [134]刘戈,樊凯,朱东鹏,章金钊.多年冻土区融化盘偏移引发路基病害的治理工程措施研究[J].公路.2008,9:324~327.
    [135]Jiankun Liu, Tianliang Wang, Yahu Tian. Experimental study of the dynamic properties of cement- and lime-modified clay soils subjected to freeze-thaw cycles.Cold Regions Science and Technology,2010,61(1),:29-33.
    [136]A.Sahin Zaimoglu.Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Regions Science and Technology,2010,60(1):63~65.
    [137]凯兹迪,张起森译.稳定土道路.北京:人民交通出版社,1989
    [138]张登良.加固土机理.北京:北京:人民交通出版社,1990
    [139]李立寒,张南鹭.道路建筑材料.上海:同济大学出版社,1999
    [140]邓学钧,张登良.路基路面工程.北京:人民交通出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700